RESUMO
Membrane scission is essential for intracellular trafficking. While BAR domain proteins such as endophilin have been reported in dynamin-independent scission of tubular membrane necks, the cutting mechanism has yet to be deciphered. Here, we combine a theoretical model, in vitro, and in vivo experiments revealing how protein scaffolds may cut tubular membranes. We demonstrate that the protein scaffold bound to the underlying tube creates a frictional barrier for lipid diffusion; tube elongation thus builds local membrane tension until the membrane undergoes scission through lysis. We call this mechanism friction-driven scission (FDS). In cells, motors pull tubes, particularly during endocytosis. Through reconstitution, we show that motors not only can pull out and extend protein-scaffolded tubes but also can cut them by FDS. FDS is generic, operating even in the absence of amphipathic helices in the BAR domain, and could in principle apply to any high-friction protein and membrane assembly.
Assuntos
Endocitose , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Aciltransferases/química , Aciltransferases/metabolismo , Animais , Fenômenos Biomecânicos , Fricção , Humanos , Metabolismo dos Lipídeos , Domínios Proteicos , RatosRESUMO
Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.
Assuntos
Movimento Celular , Adesões Focais/metabolismo , Animais , Fenômenos Biomecânicos , Humanos , Modelos BiológicosRESUMO
Constitutive models of fault friction form the basis of physics-based simulations of seismic activity. A generally accepted framework for the slip-rate and state dependence of friction involves a thermally activated process, whereby the probability of slip along microasperities adheres to an Arrhenius law. This model, which has become widely adopted among experimentalists and theoreticians, predicts a continuous increase of the direct effect with absolute temperature, but is it observed experimentally? Leveraging comprehensive laboratory data across diverse hydrothermal, barometric, and lithological conditions, we demonstrate that, contrary to the classical view, the direct effect for a given deformation mechanism remains largely temperature-independent. Instead, the incremental shifts in the direct effect often coincide with the brittle to semi-brittle transition, across which distinct deformation mechanisms operate. These considerations challenge the validity of the classical model. Realistic constitutive laws for rock failure within the lithosphere must incorporate the contributions of multiple deformation mechanisms within active fault zones.
RESUMO
Superhydrophobic surfaces are often seen as frictionless materials, on which water is highly mobile. Understanding the nature of friction for such water-repellent systems is central to further minimize resistance to motion and energy loss in applications. For slowly moving drops, contact-line friction has been generally considered dominant on slippery superhydrophobic surfaces. Here, we show that this general rule applies only at very low speed. Using a micropipette force sensor in an oscillating mode, we measure the friction of water drops approaching or even equaling zero contact-line friction. We evidence that dissipation then mainly stems from the viscous shearing of the air film (plastron) trapped under the liquid. Because this force is velocity dependent, it can become a serious drag on surfaces that look highly slippery from quasi-static tests. The plastron thickness is found to be the key parameter that enables the control of this special friction, which is useful information for designing the next generation of ultraslippery water-repellent coatings.
RESUMO
Soft and biological matter come in a variety of shapes and geometries. When soft surfaces that do not fit into each other due to a mismatch in Gaussian curvatures form an interface, beautiful geometry-induced patterns are known to emerge. In this paper, we study the effect of geometry on the dynamical response of soft surfaces moving relative to each other. Using a simple experimental scheme, we measure friction between a highly bendable thin polymer sheet and a hydrogel substrate. At this soft and low-friction interface, we find a strong dependence of friction on the relative geometry of the two surfaces-a flat sheet experiences significantly larger friction on a spherical substrate than on flat or cylindrical substrate. We show that the stress developed in the sheet due to its geometrically incompatible confinement is responsible for the enhanced friction. This mechanism also leads to a transition in the nature of friction as the sheet radius is increased beyond a critical value. Our finding reveals a hitherto unnoticed mechanism based on an interplay between geometry and elasticity that may influence friction significantly in soft, biological, and nanoscale systems. In particular, it provokes us to reexamine our understanding of phenomena such as the curvature dependence of biological cell mobility.
RESUMO
Pipe flows are commonly found in nature and industry as an effective mean of transporting fluids. They are primarily characterized by their resistance law, which relates the mean flow rate to the driving pressure gradient. Since Poiseuille and Hagen, various flow regimes and fluid rheologies have been investigated, but the behavior of shear-thickening suspensions, which jam above a critical shear stress, remains poorly understood despite important applications (e.g., concrete or food processing). In this study, we build on recent advances in the physics of shear-thickening suspensions to address their flow through pipes and establish their resistance law. We find that for discontinuously shear-thickening suspensions (large particule volume fractions), the flow rate saturates at high driving stress. Local pressure and velocity measurements reveal that this saturation stems from the emergence of a frictional soliton: a unique, localized, superdissipative, and backpropagating flow structure coexisting with the laminar frictionless flow phase observed at low driving stress. We characterize the remarkably steep effective rheology of the frictional soliton and show that it sets the resistance law at the whole pipe scale. These findings offer an unusual perspective on low-Reynolds suspension flows through pipes, intriguingly reminiscent of the transition to turbulence for simple fluids. They also provide a predictive law for the transport of such suspensions in pipe systems, with implications for a wide range of applications.
RESUMO
The melting of ice sheets and global glaciers results in sea-level rise, a pole-to-equator mass transport increasing Earth's oblateness and resulting in an increase in the length of day (LOD). Here, we use observations and reconstructions of mass variations at the Earth's surface since 1900 to show that the climate-induced LOD trend hovered between 0.3 and 1.0 ms/cy in the 20th century, but has accelerated to 1.33 [Formula: see text] 0.03 ms/cy since 2000. We further show that surface mass transport fully explains the accelerating trend in the Earth oblateness observed in the past three decades. We derive an independent measure of the decreasing LOD trend induced by Glacial Isostatic Adjustment (GIA) of [Formula: see text]0.80 [Formula: see text] 0.10 ms/cy, which provides a constraint for the mantle viscosity. The sum of this GIA rate and lunar tidal friction fully explains the secular LOD trend that is inferred from the eclipse record in the past three millennia prior to the onset of contemporary climate change. Projections of future climate warming under high emission scenarios suggest that the climate-induced LOD rate may reach 2.62 [Formula: see text] 0.79 ms/cy by 2100, overtaking lunar tidal friction as the single most important contributor to the long-term LOD variations.
RESUMO
Spatiotemporal patterns in multicellular systems are important to understanding tissue dynamics, for instance, during embryonic development and disease. Here, we use a multiphase field model to study numerically the behavior of a near-confluent monolayer of deformable cells with intercellular friction. Varying friction and cell motility drives a solid-liquid transition, and near the transition boundary, we find the emergence of local nematic order of cell deformation driven by shear-aligning cellular flows. Intercellular friction contributes to the monolayer's viscosity, which significantly increases the spatial correlation in the flow and, concomitantly, the extent of nematic order. We also show that local hexatic and nematic order are tightly coupled and propose a mechanical-geometric model for the colocalization of [Formula: see text] nematic defects and 5-7 disclination pairs, which are the structural defects in the hexatic phase. Such topological defects coincide with regions of high cell-cell overlap, suggesting that they may mediate cellular extrusion from the monolayer, as found experimentally. Our results delineate a mechanical basis for the recent observation of nematic and hexatic order in multicellular collectives in experiments and simulations and pinpoint a generic pathway to couple topological and physical effects in these systems.
Assuntos
Movimento Celular , Fricção , Modelos Biológicos , Movimento Celular/fisiologia , ViscosidadeRESUMO
In a stack of atomically thin van der Waals layers, introducing interlayer twist creates a moiré superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult; hence, determining that twist angle and mapping its spatial variation is very important. Techniques have emerged to do this by imaging the moiré, but most of these require sophisticated infrastructure, time-consuming sample preparation beyond stack synthesis, or both. In this work, we show that torsional force microscopy (TFM), a scanning probe technique sensitive to dynamic friction, can reveal surface and shallow subsurface structure of van der Waals stacks on multiple length scales: the moirés formed between bi-layers of graphene and between graphene and hexagonal boron nitride (hBN) and also the atomic crystal lattices of graphene and hBN. In TFM, torsional motion of an Atomic Force Microscope (AFM) cantilever is monitored as it is actively driven at a torsional resonance while a feedback loop maintains contact at a set force with the sample surface. TFM works at room temperature in air, with no need for an electrical bias between the tip and the sample, making it applicable to a wide array of samples. It should enable determination of precise structural information including twist angles and strain in moiré superlattices and crystallographic orientation of van der Waals flakes to support predictable moiré heterostructure fabrication.
RESUMO
The shape of cells is the outcome of the balance of inner forces produced by the actomyosin network and the resistive forces produced by cell adhesion to their environment. The specific contributions of contractile, anchoring and friction forces to network deformation rate and orientation are difficult to disentangle in living cells where they influence each other. Here, we reconstituted contractile actomyosin networks in vitro to study specifically the role of the friction forces between the network and its anchoring substrate. To modulate the magnitude and spatial distribution of friction forces, we used glass or lipids surface micropatterning to control the initial shape of the network. We adapted the concentration of Nucleating Promoting Factor on each surface to induce the assembly of actin networks of similar densities and compare the deformation of the network toward the centroid of the pattern shape upon myosin-induced contraction. We found that actin network deformation was faster and more coordinated on lipid bilayers than on glass, showing the resistance of friction to network contraction. To further study the role of the spatial distribution of these friction forces, we designed heterogeneous micropatterns made of glass and lipids. The deformation upon contraction was no longer symmetric but biased toward the region of higher friction. Furthermore, we showed that the pattern of friction could robustly drive network contraction and dominate the contribution of asymmetric distributions of myosins. Therefore, we demonstrate that during contraction, both the active and resistive forces are essential to direct the actin network deformation.
Assuntos
Actinas , Actomiosina , Fricção , Contração Muscular , Bicamadas LipídicasRESUMO
The ability of cells to move in a mechanically coupled, coordinated manner, referred to as collective cell migration, is central to many developmental, physiological, and pathophysiological processes. Limited understanding of how mechanical forces and biochemical regulation interact to affect coupling has been a major obstacle to unravelling the underlying mechanisms. Focusing on the linker protein vinculin, we use a suite of Förster resonance energy transfer-based biosensors to probe its mechanical functions and biochemical regulation, revealing a switch that toggles vinculin between loadable and unloadable states. Perturbation of the switch causes covarying changes in cell speed and coordination, suggesting alteration of the friction within the system. Molecular scale modelling reveals that increasing levels of loadable vinculin increases friction, due to engagement of self-stabilizing catch bonds. Together, this work reveals a regulatory switch for controlling cell coupling and describes a paradigm for relating biochemical regulation, altered mechanical properties, and changes in cell behaviors.
Assuntos
Transferência Ressonante de Energia de Fluorescência , Fenômenos Mecânicos , Vinculina/metabolismo , Movimento Celular/fisiologia , Adesão Celular/fisiologiaRESUMO
When described by a low-dimensional reaction coordinate, the folding rates of most proteins are determined by a subtle interplay between free-energy barriers, which separate folded and unfolded states, and friction. While it is commonplace to extract free-energy profiles from molecular trajectories, a direct evaluation of friction is far more elusive and typically relies on fits of measured reaction rates to memoryless reaction-rate theories. Here, using memory-kernel extraction methods founded on a generalized Langevin equation (GLE) formalism, we directly calculate the time-dependent friction acting on the fraction of native contacts reaction coordinate Q, evaluated for eight fast-folding proteins, taken from a published set of large-scale molecular dynamics protein simulations. Our results reveal that, across the diverse range of proteins represented in this dataset, friction is more influential than free-energy barriers in determining protein folding rates. We also show that proteins fold in a regime where the finite decay time of friction significantly reduces the folding times, in some instances by as much as a factor of 10, compared to predictions based on memoryless friction.
Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Fricção , Proteínas/metabolismoRESUMO
SignificanceThe empirical nature of rate-and-state friction (RSF) equations remains a drawback to their application to predict earthquakes. From nanoscale friction measurements on smooth and rough calcite crystals, a set of parameters is analyzed to elucidate microscopic processes dictating RSF. We infer the influence of roughness on the velocity dependence of friction in dry environment and that atomic attrition leads to stick-slip instabilities at slow velocities. In fault dynamics, stick-slip is associated with seismic slips. The aqueous environment eliminates atomic attrition and stick-slip and dissolves calcite under pressure. This yields remarkable lubrication, even more so in rough contacts, and suggests an alternative pathway for seismic slips. This work has implications for understanding mechanisms dictating fault strength and seismicity.
RESUMO
Nearly all frictional interfaces strengthen as the logarithm of time when sliding at ultra-low speeds. Observations of also logarithmic-in-time growth of interfacial contact area under such conditions have led to constitutive models that assume that this frictional strengthening results from purely time-dependent, and slip-insensitive, contact-area growth. The main laboratory support for such strengthening has traditionally been derived from increases in friction during "load-point hold" experiments, wherein a sliding interface is allowed to gradually self-relax down to subnanometric slip rates. In contrast, following step decreases in the shear loading rate, friction is widely reported to increase over a characteristic slip scale, independent of the magnitude of the slip-rate decrease-a signature of slip-dependent strengthening. To investigate this apparent contradiction, we subjected granite samples to a series of step decreases in shear rate of up to 3.5 orders of magnitude and load-point holds of up to 10,000 s, such that both protocols accessed the phenomenological regime traditionally inferred to demonstrate time-dependent frictional strengthening. When modeling the resultant data, which probe interfacial slip rates ranging from 3 .[Formula: see text]. to less than [Formula: see text], we found that constitutive models where low slip-rate friction evolution mimics log-time contact-area growth require parameters that differ by orders of magnitude across the different experiments. In contrast, an alternative constitutive model, in which friction evolves only with interfacial slip, fits most of the data well with nearly identical parameters. This leads to the surprising conclusion that frictional strengthening is dominantly slip-dependent, even at subnanometric slip rates.
RESUMO
Whether or not someone turns out to vote depends on their beliefs (such as partisanship or sense of civic duty) and on friction-external barriers such as long travel distance to the polls. In this exploratory study, we tested whether people underestimate the effect of friction on turnout and overestimate the effect of beliefs. We surveyed a representative sample of eligible US voters before and after the 2020 election (n = 1,280). Participants' perceptions consistently underemphasized friction and overemphasized beliefs (mean d = 0.94). In participants' open-text explanations, 91% of participants listed beliefs, compared with just 12% that listed friction. In contrast, turnout was shaped by beliefs only slightly more than friction. The actual belief-friction difference was about one-fourth the size of participants' perceptions (d = 0.24). This bias emerged across a range of survey measures (open- and close-ended; other- and self-judgments) and was implicated in downstream consequences such as support for friction-imposing policies and failing to plan one's vote.
Assuntos
Cultura , Política , Percepção Social , Fricção , Humanos , Modelos Psicológicos , Poder Psicológico , Inquéritos e Questionários , Estados UnidosRESUMO
The endosomal sorting complexes required for transport (ESCRT) system is an ancient and ubiquitous membrane scission machinery that catalyzes the budding and scission of membranes. ESCRT-mediated scission events, exemplified by those involved in the budding of HIV-1, are usually directed away from the cytosol ("reverse topology"), but they can also be directed toward the cytosol ("normal topology"). The ESCRT-III subunits CHMP1B and IST1 can coat and constrict positively curved membrane tubes, suggesting that these subunits could catalyze normal topology membrane severing. CHMP1B and IST1 bind and recruit the microtubule-severing AAA+ ATPase spastin, a close relative of VPS4, suggesting that spastin could have a VPS4-like role in normal-topology membrane scission. Here, we reconstituted the process in vitro using membrane nanotubes pulled from giant unilamellar vesicles using an optical trap in order to determine whether CHMP1B and IST1 are capable of membrane severing on their own or in concert with VPS4 or spastin. CHMP1B and IST1 copolymerize on membrane nanotubes, forming stable scaffolds that constrict the tubes, but do not, on their own, lead to scission. However, CHMP1B-IST1 scaffolded tubes were severed when an additional extensional force was applied, consistent with a friction-driven scission mechanism. We found that spastin colocalized with CHMP1B-enriched sites but did not disassemble the CHMP1B-IST1 coat from the membrane. VPS4 resolubilized CHMP1B and IST1 without leading to scission. These observations show that the CHMP1B-IST1 ESCRT-III combination is capable of severing membranes by a friction-driven mechanism that is independent of VPS4 and spastin.
Assuntos
Membrana Celular , Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas Oncogênicas , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fricção , Humanos , Proteínas Oncogênicas/metabolismo , Espastina/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismoRESUMO
Mechanochemical strategies are widely used in various fields, ranging from friction and wear to mechanosynthesis, yet how the mechanical stress activates the chemical reactions at the electronic level is still open. We used first-principles density functional theory to study the rule of the stress-modified electronic states in transmitting mechanical energy to trigger chemical responses for different mechanochemical systems. The electron density redistribution among initial, transition, and final configurations is defined to correlate the energy evolution during reactions. We found that stress-induced changes in electron density redistribution are linearly related to activation energy and reaction energy, indicating the transition from mechanical work to chemical reactivity. The correlation coefficient is defined as the term "interface reactivity coefficient" to evaluate the susceptibility of chemical reactivity to mechanical action for material interfaces. The study may shed light on the electronic mechanism of the mechanochemical reactions behind the fundamental model as well as the mechanochemical phenomena.
RESUMO
Understanding and controlling the wear process of heterogeneous interfaces between soft and hard phases is crucial for designing and fabricating materials, such as improving the wear resistance of particle reinforced metal matrix composites and the accuracy and efficiency of chemical mechanical polishing. However, the wear process can be hardly observed, as interfaces are buried under the surface. Here, we proposed a nanowear test method by combining focused ion beam cutting to expose interfaces, atomic force microscopy to rub against interfaces, and scanning electron microscope to characterize the interface damage. Using this method, three typical wear forms had been observed in Al/SiC composite, i.e., merely matrix wear, particle fracture, and particle pullout. A theoretical model was proposed that revealed that the increasing interfacial friction would induce particle fracture or pullout, depending on the particle edge angle and tip edge angle. This work sheds light on wear control in composites and nanofabrication.
RESUMO
Using atomic force microscopy experiments and molecular dynamics simulations of gold nanoislands on graphite, we investigate why ultralow friction commonly associated with structural lubricity can be observed even under ambient conditions. Measurements conducted within a few days after sample synthesis reveal previously undiscovered phenomena in structurally lubric systems: rejuvenation, a drop in kinetic friction of an order of magnitude shortly after the onset of sliding; aging, a significant increase in kinetic friction forces after a rest period of 30 min or more; and switches, spontaneous jumps between distinct friction branches. These three effects are drastically suppressed a few weeks later. Imaging of a contamination layer and simulations provide a consistent picture of how single- and double-layer contamination underneath the gold nanoislands as well as contamination surrounding the nanoislands affect structural lubricity without leading to its breakdown.
RESUMO
Due to the coupled contributions of adhesion and carrier to friction typically found in previous research, decoupling the electron-based dissipation is a long-standing challenge in tribology. In this study, by designing and integrating a graphene/h-BN/graphene/h-BN stacking device into an atomic force microscopy, the carrier density dependent frictional behavior of a single-asperity sliding on graphene is unambiguously revealed by applying an external back-gate voltage, while maintaining the adhesion unaffected. Our experiments reveal that friction on the graphene increases monotonically with the increase of carrier density. By adjusting the back-gate voltage, the carrier density of the top graphene layer can be tuned from -3.9 × 1012 to 3.5 × 1012 cm-2, resulting in a â¼28% increase in friction. The mechanism is uncovered from the consistent dependence of the charge density redistribution and sliding barrier on the carrier density. These findings offer new perspectives on the fundamental understanding and regulation of friction at van der Waals interfaces.