Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2320777121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630719

RESUMO

The hybrid electrolyzer coupled glycerol oxidation (GOR) with hydrogen evolution reaction (HER) is fascinating to simultaneously generate H2 and high value-added chemicals with low energy input, yet facing a challenge. Herein, Cu-based metal-organic frameworks (Cu-MOFs) are reported as model catalysts for both HER and GOR through doping of atomically dispersed precious and nonprecious metals. Remarkably, the HER activity of Ru-doped Cu-MOF outperformed a Pt/C catalyst, with its Faradaic efficiency for formate formation at 90% at a low potential of 1.40 V. Furthermore, the hybrid electrolyzer only needed 1.36 V to achieve 10 mA cm-2, 340 mV lower than that for splitting pure water. Theoretical calculations demonstrated that electronic interactions between the host and guest (doped) metals shifted downward the d-band centers (εd) of MOFs. This consequently lowered water adsorption and dissociation energy barriers and optimized hydrogen adsorption energy, leading to significantly enhanced HER activities. Meanwhile, the downshift of εd centers reduced energy barriers for rate-limiting step and the formation energy of OH*, synergistically enhancing the activity of MOFs for GOR. These findings offered an effective means for simultaneous productions of hydrogen fuel and high value-added chemicals using one hybrid electrolyzer with low energy input.

2.
Angew Chem Int Ed Engl ; 63(14): e202319153, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38356309

RESUMO

As a sustainable valorization route, electrochemical glycerol oxidation reaction (GOR) involves in formation of key OH* and selective adsorption/cleavage of C-C(O) intermediates with multi-step electron transfer, thus suffering from high potential and poor formate selectivity for most non-noble-metal-based electrocatalysts. So, it remains challenging to understand the structure-property relationship as well as construct synergistic sites to realize high-activity and high-selectivity GOR. Herein, we successfully achieve dual-high performance with low potentials and superior formate selectivity for GOR by forming synergistic Lewis and Brønsted acid sites in Ni-alloyed Co-based spinel. The optimized NiCo oxide solid-acid electrocatalyst exhibits low reaction potential (1.219 V@10 mA/cm2) and high formate selectivity (94.0 %) toward GOR. In situ electrochemical impedance spectroscopy and pH-dependence measurements show that the Lewis acid centers could accelerate OH* production, while the Brønsted acid centers are proved to facilitate high-selectivity formation of formate. Theoretical calculations reveal that NiCo alloyed oxide shows appropriate d-band center, thus balancing adsorption/desorption of C-O intermediates. This study provides new insights into rationally designing solid-acid electrocatalysts for biomass electro-upcycling.

3.
J Colloid Interface Sci ; 665: 152-162, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38520932

RESUMO

H2 and formate are important energy carriers in fuel-cells and feedstocks in chemical industry. The hydrogen evolution reaction (HER) coupling with electro-oxidative cleavage of thermodynamically favorable polyols is a promising way to coproduce H2 and formate via electrochemical means, highly active catalysts for HER and electrooxidative cleavage of polycols are the key to achieve such a goal. Herein, molybdenum (Mo), tungsten (W) doped cobalt phosphides (Co2P) deposited onto nickel foam (NF) substrate, denoted as Mo-Co2P/NF and W-Co2P/NF, respectively, were investigated as catalytic electrodes for HER and electrochemical glycerol oxidation reaction (GOR) to yield H2 and formate. The W-Co2P/NF electrode exhibited low overpotential (η) of 113 mV to attain a current density (J) of -100 mA cm-2 for HER, while the Mo-Co2P/NF electrode demonstrated high GOR efficiency for selective production of formate. In situ Raman and infrared spectroscopic characterizations revealed that the evolved CoO2 from Co2P is the genuine catalytic sites for GOR. The asymmetric electrolyzer based on W-Co2P/NF cathode and Mo-Co2P/NF anode delivered a J = 100 mA cm-2 at 1.8 V voltage for glycerol electrolysis, which led to 18.2 % reduced electricity consumption relative to water electrolysis. This work highlights the potential of heteroelement doped phosphide in catalytic performances for HER and GOR, and opens up new avenue to coproduce more widespread commodity chemicals via gentle and sustainable electrocatalytic means.

4.
Adv Mater ; 36(26): e2401857, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594018

RESUMO

Defect-engineered bimetallic oxides exhibit high potential for the electrolysis of small organic molecules. However, the ambiguity in the relationship between the defect density and electrocatalytic performance makes it challenging to control the final products of multi-step multi-electron reactions in such electrocatalytic systems. In this study, controllable kinetics reduction is used to maximize the oxygen vacancy density of a Cu─Co oxide nanosheet (CuCo2O4 NS), which is used to catalyze the glycerol electrooxidation reaction (GOR). The CuCo2O4-x NS with the highest oxygen-vacancy density (CuCo2O4-x-2) oxidizes C3 molecules to C1 molecules with selectivity of almost 100% and a Faradaic efficiency of ≈99%, showing the best oxidation performance among all the modified catalysts. Systems with multiple oxygen vacancies in close proximity to each other synergistically facilitate the cleavage of C─C bonds. Density functional theory calculations confirm the ability of closely spaced oxygen vacancies to facilitate charge transfer between the catalyst and several key glycolic-acid (GCA) intermediates of the GOR process, thereby facilitating the decomposition of C2 intermediates to C1 molecules. This study reveals qualitatively in tuning the density of oxygen vacancies for altering the reaction pathway of GOR by the synergistic effects of spatial proximity of high-density oxygen vacancies.

5.
Adv Sci (Weinh) ; 11(23): e2402343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572506

RESUMO

Rechargeable Zn-air batteries (ZABs) are considered highly competitive technologies for meeting the energy demands of the next generation, whether for energy storage or portable power. However, their practical application is hindered by critical challenges such as low voltage, CO2 poisoning at the cathode, low power density, and poor charging efficiency Herein, a rechargeable hybrid alkali/acid Zn-air battery (h-RZAB) that effectively separates the discharge process in an acidic environment from the charging process in an alkaline environment, utilizing oxygen reduction reaction (ORR) and glycerol oxidation reaction (GOR) respectively is reported. Compared to previously reported ZABs, this proof-of-concept device demonstrates impressive performance, exhibiting a high power density of 562.7 mW cm-2 and a high operating voltage during discharging. Moreover, the battery requires a significantly reduced charging voltage due to the concurrent utilization of biomass-derived glycerol, resulting in practical and cost-effective advantages. The decoupled system offers great flexibility for intermittently generated renewable power sources and presents cost advantages over traditional ZABs. As a result, this technology holds significant promise in opening avenues for the future development of renewable energy-compatible electrochemical devices.

6.
ChemSusChem ; : e202400624, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616165

RESUMO

Glycerol oxidation-assisted water electrolysis has emerged as a cost-effective way of co-producing green hydrogen and HCOOH. Still, preparing highly selective and stable nickel-based metal electrocatalysts remains a challenge. Herein, heterostructure Ni3N/WO3 nanosheet arrays of bifunctional catalysts with large specific surface areas loaded on nickel foam (denoted as Ni3N/WO3/NF) were synthesized. This catalyst was for glycerol oxidation reaction (GOR) and hydrogen evolution reaction (HER) with excellent catalytic performance, a voltage saving of 267 mV compared to oxygen evolution reaction (OER), and a HER overpotential of 104 mV at 100 mA cm-2. The cell voltage in the assembled GOR//HER hybrid electrolysis system reaches 100 mA cm-2 at 1.50 V, 296 mV lower than the potential required for overall water splitting. This work demonstrates that replacing GOR with OER using a cost-effective and highly active Ni-based bifunctional electrocatalyst can make hybrid water electrolysis an energy-efficient, sustainable, and green strategy for hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA