Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(37): e2408919121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39240967

RESUMO

Free of posttransfer, on-surface synthesis (OSS) of single-atomic-layer nanostructures directly on semiconductors holds considerable potential for next-generation devices. However, due to the high diffusion barrier and abundant defects on semiconductor surfaces, extended and well-defined OSS on semiconductors has major difficulty. Furthermore, given semiconductors' limited thermal catalytic activity, initiating high-barrier reactions remains a significant challenge. Herein, using TiO2(011) as a prototype, we present an effective strategy for steering the molecule adsorption and reaction processes on semiconductors, delivering lengthy graphene nanoribbons with extendable widths. By introducing interstitial titanium (Tiint) and oxygen vacancies (Ov), we convert TiO2(011) from a passive supporting template into a metal-like catalytic platform. This regulation shifts electron density and surface dipoles, resulting in tunable catalytic activity together with varied molecule adsorption and diffusion. Cyclodehydrogenation, which is inefficient on pristine TiO2(011), is markedly improved on Tiint/Ov-doped TiO2. Even interribbon cyclodehydrogenation is achieved. The final product's dimensions, quality, and coverage are all controllable. Tiint doping outperforms Ov in producing regular and prolonged products, whereas excessive Tiint compromises molecule landing and coupling. This work demonstrates the crucial role of semiconductor substrates in OSS and advances OSS on semiconductors from an empirical trial-and-error methodology to a systematic and controllable paradigm.

2.
Nano Lett ; 24(35): 10718-10723, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39185821

RESUMO

Although several porous carbon/graphene nanoribbons (GNRs) have been prepared, a direct comparison of the electronic properties between a nonporous GNR and its periodically perforated counterpart is still missing. Here, we report the synthesis of porous 12-atom-wide armchair-edged GNRs from a bromoarene precursor on a Au(111) surface via hierarchical Ullmann and dehydrogenative coupling. The selective formation of porous 12-GNRs was achieved through thermodynamic and kinetic reaction control combined with tailored precursor design. The structure and electronic properties of the porous 12-GNR were elucidated by scanning tunneling microscopy/spectroscopy and density functional theory calculations, revealing that the pores induce a 2.17 eV band gap increase compared to the nonporous 12-AGNR on the same surface.

3.
Nano Lett ; 24(3): 797-804, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38189787

RESUMO

Structurally well-defined graphene nanoribbons (GNRs) are nanostructures with unique optoelectronic properties. In the liquid phase, strong aggregation typically hampers the assessment of their intrinsic properties. Recently we reported a novel type of GNRs, decorated with aliphatic side chains, yielding dispersions consisting mostly of isolated GNRs. Here we employ two-dimensional electronic spectroscopy to unravel the optical properties of isolated GNRs and disentangle the transitions underlying their broad and rather featureless absorption band. We observe that vibronic coupling, typically neglected in modeling, plays a dominant role in the optical properties of GNRs. Moreover, a strong environmental effect is revealed by a large inhomogeneous broadening of the electronic transitions. Finally, we also show that the photoexcited bright state decays, on the 150 fs time scale, to a dark state which is in thermal equilibrium with the bright state, that remains responsible for the emission on nanosecond time scales.

4.
Nano Lett ; 24(1): 156-164, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147652

RESUMO

Graphene nanoribbons (GNRs), quasi one-dimensional (1D) narrow strips of graphene, have shown promise for high-performance nanoelectronics due to their exceptionally high carrier mobility and structurally tunable bandgaps. However, producing chirality-uniform GNRs on insulating substrates remains a big challenge. Here, we report the successful growth of bilayer GNRs with predominantly armchair chirality and ultranarrow widths (<5 nm) on insulating hexagonal boron nitride (h-BN) substrates using chemical vapor deposition (CVD). The growth of GNRs is catalyzed by transition metal nanoparticles, including Fe, Co, and Ni, through a unique tip-growth mechanism. Notably, GNRs catalyzed by Ni exhibit a high purity (97.3%) of armchair chirality. Electron transport measurements indicate that the ultrathin bilayer armchair GNRs exhibit quasi-metallic behavior. This quasi-metallicity is further supported by density functional theory (DFT) calculations, which reveal a significantly reduced bandgap in bilayer armchair GNRs. The chirality-specific GNRs reported here offer promising advancements for the application of graphene in nanoelectronics.

5.
Small ; 20(30): e2400473, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38412424

RESUMO

Carbon-based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom-up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, or antiferromagnetic ground states, depending on the structural details that determine the coupling behavior of the spins originating from each molecule. The synthesis of these QDs and the emergence of localized states are demonstrated through high-resolution atomic force microscopy (HR-AFM), scanning tunneling microscopy (STM) imaging, and spectroscopy, and the relationship between QD atomic structure and magnetic properties is uncovered. GNR QDs provide a useful platform for controlling the spin-degree of freedom in carbon-based nanostructures.

6.
Small ; 20(21): e2308430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126626

RESUMO

Graphene nanoribbons (GNRs) are promising in nanoelectronics for their quasi-1D structures with tunable bandgaps. The methods for controllable fabrication of high-quality GNRs are still limited. Here a way to generate sub-5-nm GNRs by annealing single-walled carbon nanotubes (SWCNTs) on Cu(111) is demonstrated. The structural evolution process is characterized by low-temperature scanning tunneling microscopy. Substrate-dependent measurements on Au(111) and Ru(0001) reveal that the intermediate strong SWCNT-surface interaction plays a pivotal role in the formation of GNRs.

7.
Small ; 20(3): e2301841, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649218

RESUMO

Graphene nanoribbons (GNRs), a quasi-one-dimensional form of graphene, have gained tremendous attention due to their potential for next-generation nanoelectronic devices. The chemical unzipping of carbon nanotubes is one of the attractive fabrication methods to obtain single-layered GNRs (sGNRs) with simple and large-scale production.  The authors recently found that unzipping from double-walled carbon nanotubes (DWNTs), rather than single- or multi-walled, results in high-yield production of crystalline sGNRs. However, details of the resultant GNR structure, as well as the reaction mechanism, are not fully understood due to the necessity of nanoscale spectroscopy. In this regard, silver nanowire-based tip-enhanced Raman spectroscopy (TERS) is applied for single GNR analysis and investigated ribbon-to-ribbon heterogeneity in terms of defect density and edge structure generated through the unzipping process.  The authors found that sGNRs originated from the inner walls of DWNTs showed lower defect densities than those from the outer walls. Furthermore, TERS spectra of sGNRs exhibit a large variety in graphitic Raman parameters, indicating a large variation in edge structures. This work at the single GNR level reveals, for the first time, ribbon-to-ribbon heterogeneity that can never be observed by diffraction-limited techniques and provides deeper insights into unzipped GNR structure as well as the DWNT unzipping reaction mechanism.

8.
Nanotechnology ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374617

RESUMO

Carbon-based nanostructures have unparalleled electronic properties. At the same time, using an allotrope of carbon as the contacts can yield better device control and reproducibility. In this work, we simulate a single-electron transistor composed of a segment of a graphene nanoribbon coupled to carbon nanotubes electrodes. Using the non-equilibrium Green's function formalism we atomistically describe the electronic transport properties of the system including electron-electron interactions. Using this methodology we are able to recover experimentally observed phenomena, such as the Coulomb blockade, as well as the corresponding Coulomb diamonds. Furthermore, we are able to separate the different contributions to transport and show that incoherent effects due to the interaction play a crucial role in the transport properties depending on the region of the stability diagram being considered.

9.
Nano Lett ; 23(14): 6698-6704, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459271

RESUMO

Half-metals have been envisioned as active components in spintronic devices by virtue of their completely spin-polarized electrical currents. Actual materials hosting half-metallic phases, however, remain scarce. Here, we predict that recently fabricated heterojunctions of zigzag nanoribbons embedded in two-dimensional hexagonal boron nitride are half-semimetallic, featuring fully spin-polarized Dirac points at the Fermi level. The half-semimetallicity originates from the transfer of charges from hexagonal boron nitride to the embedded graphene nanoribbon. These charges give rise to opposite energy shifts of the states residing at the two edges, while preserving their intrinsic antiferromagnetic exchange coupling. Upon doping, an antiferromagnetic-to-ferrimagnetic phase transition occurs in these heterojunctions, with the sign of the excess charge controlling the spatial localization of the net magnetic moments. Our findings demonstrate that such heterojunctions realize tunable one-dimensional conducting channels of spin-polarized Dirac fermions seamlessly integrated into a two-dimensional insulator, thus holding promise for the development of carbon-based spintronics.

10.
Nano Lett ; 23(23): 10879-10883, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37823533

RESUMO

The physical properties of graphene nanoribbons (GNRs) are closely related to their morphology; meanwhile GNRs can easily slide on surfaces (e.g., superlubricity), which may largely affect the configuration and hence the properties. However, the morphological evolution of GNRs during sliding remain elusive. We explore the intriguing tail swing behavior of GNRs under various sliding configurations on Au substrate. Two distinct modes of tail swing emerge, characterized by regular and irregular swings, depending on the GNR width and initial position relative to the substrate. The mechanism can be explained by the moiré effect, presenting both symmetric and asymmetric patterns, resembling a mesmerizing nanomillipede. We reveal a compelling correlation between the tail swing mode and the edge wrinkle patterns of GNRs induced by the moiré effect. These findings provide fundamental understanding of how edge effects influence the tribomorphological responses of GNRs, offering valuable insights for precise manipulation and operation of GNRs.

11.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257393

RESUMO

Understanding the spin distribution in FeN4-doped graphene nanoribbons with zigzag and armchair terminations is crucial for tuning the electronic properties of graphene-supported non-platinum catalysts. Since the spin-polarized carbon and iron electronic states may act together to change the electronic properties of the doped graphene, we provide in this work a systematic evaluation using a periodic density-functional theory-based method of the variation of spin-moment distribution and electronic properties with the position and orientation of the FeN4 defects, and the edge terminations of the graphene nanoribbons. Antiferromagnetic and ferromagnetic spin ordering of the zigzag edges were considered. We reveal that the electronic structures in both zigzag and armchair geometries are very sensitive to the location of FeN4 defects, changing from semi-conducting (in-plane defect location) to half-metallic (at-edge defect location). The introduction of FeN4 defects at edge positions cancels the known dependence of the magnetic and electronic proper-ties of undoped graphene nanoribbons on their edge geometries. The implications of the reported results for catalysis are also discussed in view of the presented electronic and magnetic properties.

12.
Small ; 19(30): e2300606, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37035987

RESUMO

Solar-driven photoelectrochemical (PEC) water splitting is a promising approach toward sustainable hydrogen (H2 ) generation. However, the design and synthesis of efficient semiconductor photocatalysts via a facile method remains a significant challenge, especially p-n heterojunctions based on composite metal oxides. Herein, a MOF-on-MOF (metal-organic framework) template is employed as the precursor to synthesize In2 O3 /CuO p-n heterojunction composite. After incorporation of small amounts of graphene nanoribbons (GNRs), the optimized PEC devices exhibited a maximum current density of 1.51 mA cm-2 (at 1.6 V vs RHE) under one sun illumination (AM 1.5G, 100 mW cm-2 ), which is approximately four times higher than that of the reference device based on only In2 O3 photoanodes. The improvement in the performance of these hybrid anodes is attributed to the presence of a p-n heterojunction that enhances the separation efficiency of photogenerated electron-hole pairs and suppresses charge recombination, as well as the presence of GNRs that can increase the conductivity by offering better path for electron transport, thus reducing the charge transfer resistance. The proposed MOF-derived In2 O3 /CuO p-n heterojunction composite is used to demonstrate a high-performance PEC device for hydrogen generation.

13.
Small ; 19(29): e2300226, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37029566

RESUMO

The Coulomb explosion and field evaporation are frequently observed physical phenomena for a metallic tip under an external electric field, which can modify the structures of the tip and have broad applications, such as in the atomic-probe tomography and field ion microscopy. However, the mechanistic comprehending of how they change the structures of the tip and the differences between them are not clear. Here, dynamic observations of Coulomb explosions and field evaporations on the positively biased and charged few-layer graphene (FLG) nanoribbon inside a transmission electron microscope are reported. By combining the atomic-scale molecular dynamic simulations, it is shown that the FLG is split into several sheets under Coulomb explosion. It is also observed to break by emitting the carbon ions/segments under the field evaporation. It is further demonstrated that the split and breaking of FLG can be tuned by the shape of the nanoribbon. FLG ribbons with sharp tips have splitting and breaking occur in sequence. FLG with blunt tips break without a split. These results provide a fundamental understanding of Coulomb explosion and field evaporation in graphene nanomaterials and suggest potential methods to engineer graphene-based nanostructures.

14.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241810

RESUMO

A magnetically induced self-assembled graphene nanoribbons (GNRs) method is reported to synthesize MFe2O4/GNRs (M = Co,Ni). It is found that MFe2O4 compounds not only locate on the surface of GNRs but anchor on the interlayers of GNRs in the diameter of less than 5 nm as well. The in situ growth of MFe2O4 and magnetic aggregation at the joints of GNRs act as crosslinking agents to solder GNRs to build a nest structure. Additionally, combining GNRs with MFe2O4 helps to improve the magnetism of the MFe2O4. As an anode material for Li+ ion batteries, MFe2O4/GNRs can provide high reversible capacity and cyclic stability (1432 mAh g-1 for CoFe2O4/GNRs and 1058 mAh g-1 for NiFe2O4 at 0.1 A g-1 over 80 cycles).

15.
Angew Chem Int Ed Engl ; 62(31): e202307035, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37293835

RESUMO

π-Conjugated nanoribbons attract interest because of their unusual electronic structures and charge-transport behavior. Here, we report the synthesis of a series of fully edge-fused porphyrin-anthracene oligomeric ribbons (dimer and trimer), together with a computational study of the corresponding infinite polymer. The porphyrin dimer and trimer were synthesized in high yield, via oxidative cyclodehydrogenation of singly linked precursors, using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and trifluoromethanesulfonic acid (TfOH). The crystal structure of the dimer shows that the central π-system is flat, with a slight S-shaped wave distortion at each porphyrin terminal. The extended π-conjugation causes a dramatic red-shift in the absorption spectra: the absorption maxima of the fused dimer and trimer appear at 1188 nm and 1642 nm, respectively (for the nickel complexes dissolved in toluene). The coordinated metal in the dimer was changed from Ni to Mg, using p-tolylmagnesium bromide, providing access to free-base and Zn complexes. These results open a versatile avenue to longer π-conjugated nanoribbons with integrated metalloporphyrin units.

16.
Angew Chem Int Ed Engl ; 62(46): e202312610, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37750665

RESUMO

Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives (1 and 2) as subunits of 8-AGNR, with a width of 0.86 nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR. The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of ∼270 cm2  V-1 s-1 for the 8-AGNR.

17.
Angew Chem Int Ed Engl ; 62(41): e202310880, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37594477

RESUMO

Graphene nanoribbons (GNRs) are considered promising candidates for next-generation nanoelectronics. In particular, GNR heterojunctions have received considerable attention due to their exotic topological electronic phases at the heterointerface. However, strategies for their precision synthesis remain at a nascent stage. Here, we report a novel chain-growth polymerization strategy that allows for constructing GNR heterojunction with N=9 armchair and chevron GNRs segments (9-AGNR/cGNR). The synthesis involves a controlled Suzuki-Miyaura catalyst-transfer polymerization (SCTP) between 2-(6'-bromo-4,4''-ditetradecyl-[1,1':2',1''-terphenyl]-3'-yl) boronic ester (M1) and 2-(7-bromo-9,12-diphenyl-10,11-bis(4-tetradecylphenyl)-triphenylene-2-yl) boronic ester (M2), followed by the Scholl reaction of the obtained block copolymer (poly-M1/M2) with controlled Mn (18 kDa) and narrow D (1.45). NMR and SEC analysis of poly-M1/M2 confirm the successful block copolymerization. The solution-mediated cyclodehydrogenation of poly-M1/M2 toward 9-AGNR/cGNR is unambiguously validated by FT-IR, Raman, and UV/Vis spectroscopies. Moreover, we also demonstrate the on-surface formation of pristine 9-AGNR/cGNR from the unsubstituted copolymer precursor, which is unambiguously characterized by scanning tunneling microscopy (STM).

18.
Angew Chem Int Ed Engl ; 62(35): e202305737, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37335764

RESUMO

The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR (pGNR) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor (P1) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds (1 a, 1 b) containing the same pore size as the shortcuts of pGNR, are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the π-conjugation degree and alleviate the inter-ribbon π-π interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.

19.
Angew Chem Int Ed Engl ; 62(24): e202302534, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36929312

RESUMO

Graphene nanoribbons (GNRs) and nanographenes synthesized by on-surface reactions using tailor-made molecular precursors offer an ideal playground for a study of magnetism towards nano-spintronics. Although the zigzag edge of GNRs has been known to host magnetism, the underlying metal substrates usually veil the edge-induced Kondo effect. Here, we report the on-surface synthesis of unprecedented, π-extended 7-armchair GNRs using 7-bromo-12-(10-bromoanthracen-9-yl)tetraphene as the precursor. Characterization by scanning tunneling microscopy/spectroscopy revealed unique rearrangement reactions leading to pentagon- or pentagon/heptagon-incorporated, nonplanar zigzag termini, which demonstrated Kondo resonances even on bare Au(111). Density functional theory calculations indicate that the nonplanar structure significantly reduces the interaction between the zigzag terminus and the Au(111) surface, leading to a recovery of the spin localization of the zigzag edge. Such a distortion of planar GNR structures offers a degree of freedom to control the magnetism on metal substrates.

20.
Small ; 18(31): e2202301, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35713270

RESUMO

The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom-up fabrication based on molecular precursors. This approach offers a unique platform for all-carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5-atom wide armchair GNRs (5-AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5-AGNRs are obtained via on-surface synthesis under ultrahigh vacuum conditions from Br- and I-substituted precursors. It is shown that the use of I-substituted precursors and the optimization of the initial precursor coverage quintupled the average 5-AGNR length. This significant length increase allowed the integration of 5-AGNRs into devices and the realization of the first field-effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub-nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA