Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(3): 677-692.e20, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677512

RESUMO

RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-ß2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-ß1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-ß2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-ß2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.


Assuntos
Transporte Ativo do Núcleo Celular , Príons/química , Proteínas de Ligação a RNA/química , Receptores Citoplasmáticos e Nucleares/química , Adulto , Idoso , Animais , Citoplasma/química , Proteínas de Ligação a DNA/química , Drosophila melanogaster , Feminino , Proteínas de Fluorescência Verde/química , Células HEK293 , Células HeLa , Homeostase , Humanos , Carioferinas/química , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/química , Mutação , Doenças Neurodegenerativas/patologia , Domínios Proteicos , Proteína EWS de Ligação a RNA/química , Fatores Associados à Proteína de Ligação a TATA/química , beta Carioferinas/química
2.
Genes Dev ; 38(1-2): 11-30, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38182429

RESUMO

Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease characterized by loss of motor neurons. Human genetic studies have linked mutations in RNA-binding proteins as causative for this disease. The hnRNPA1 protein, a known pre-mRNA splicing factor, is mutated in some ALS patients. Here, two human cell models were generated to investigate how a mutation in the C-terminal low-complexity domain (LCD) of hnRNPA1 can cause splicing changes of thousands of transcripts that collectively are linked to the DNA damage response, cilium organization, and translation. We show that the hnRNPA1 D262V mutant protein binds to new binding sites on differentially spliced transcripts from genes that are linked to ALS. We demonstrate that this ALS-linked hnRNPA1 mutation alters normal RNA-dependent protein-protein interactions. Furthermore, cells expressing this hnRNPA1 mutant exhibit a cell aggregation phenotype, markedly reduced growth rates, changes in stress granule kinetics, and aberrant growth of neuronal processes. This study provides insight into how a single amino acid mutation in a splicing factor can alter RNA splicing networks of genes linked to ALS.


Assuntos
Esclerose Lateral Amiotrófica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Mutação , Splicing de RNA/genética , Fatores de Processamento de RNA/genética
3.
Genes Dev ; 32(15-16): 1060-1074, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30042133

RESUMO

Alternative premessenger RNA (pre-mRNA) splicing is a post-transcriptional mechanism for controlling gene expression. Splicing patterns are determined by both RNA-binding proteins and nuclear pre-mRNA structure. Here, we analyzed pre-mRNA splicing patterns, RNA-binding sites, and RNA structures near these binding sites coordinately controlled by two splicing factors: the heterogeneous nuclear ribonucleoprotein hnRNPA1 and the RNA helicase DDX5. We identified thousands of alternative pre-mRNA splicing events controlled by these factors by RNA sequencing (RNA-seq) following RNAi. Enhanced cross-linking and immunoprecipitation (eCLIP) on nuclear extracts was used to identify protein-RNA-binding sites for both proteins in the nuclear transcriptome. We found a significant overlap between hnRNPA1 and DDX5 splicing targets and that they share many closely linked binding sites as determined by eCLIP analysis. In vivo SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemical RNA structure probing data were used to model RNA structures near several exons controlled and bound by both proteins. Both sequence motifs and in vivo UV cross-linking sites for hnRNPA1 and DDX5 were used to map binding sites in their RNA targets, and often these sites flanked regions of higher chemical reactivity, suggesting an organized nature of nuclear pre-mRNPs. This work provides a first glimpse into the possible RNA structures surrounding pre-mRNA splicing factor-binding sites.


Assuntos
Processamento Alternativo , RNA Helicases DEAD-box/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Precursores de RNA/química , RNA Mensageiro/química , Sítios de Ligação , Núcleo Celular/genética , Núcleo Celular/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo
4.
J Biol Chem ; 300(7): 107414, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810697

RESUMO

Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase family and has the ability to catalyze the cross-linking of extracellular matrix collagen and elastin. High expression of LOXL2 is related to tumor cell proliferation, invasion, and metastasis. LOXL2 contains 14 exons. Previous studies have found that LOXL2 has abnormal alternative splicing and exon skipping in a variety of tissues and cells, resulting in a new alternatively spliced isoform denoted LOXL2Δ13. LOXL2Δ13 lacks LOXL2WT exon 13, but its encoded protein has greater ability to induce tumor cell proliferation, invasion, and metastasis. However, the molecular events that produce LOXL2Δ13 are still unclear. In this study, we found that overexpression of the splicing factor hnRNPA1 in cells can regulate the alternative splicing of LOXL2 and increase the expression of LOXL2Δ13. The exonic splicing silencer exists at the 3' splice site and 5' splice site of LOXL2 exon 13. HnRNPA1 can bind to the exonic splicing silencer and inhibit the inclusion of exon 13. The RRM domain of hnRNPA1 and phosphorylation of hnRNPA1 at S91 and S95 are important for the regulation of LOXL2 alternative splicing. These results show that hnRNPA1 is a splicing factor that enhances the production of LOXL2Δ13.


Assuntos
Processamento Alternativo , Aminoácido Oxirredutases , Éxons , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Humanos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
EMBO J ; 40(2): e106696, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33346941

RESUMO

Eukaryotic transfer RNAs can become selectively fragmented upon various stresses, generating tRNA-derived small RNA fragments. Such fragmentation has been reported to impact a small fraction of the tRNA pool and thus presumed to not directly impact translation. We report that oxidative stress can rapidly generate tyrosine-tRNAGUA fragments in human cells-causing significant depletion of the precursor tRNA. Tyrosine-tRNAGUA depletion impaired translation of growth and metabolic genes enriched in cognate tyrosine codons. Depletion of tyrosine tRNAGUA or its translationally regulated targets USP3 and SCD repressed proliferation-revealing a dedicated tRNA-regulated growth-suppressive pathway for oxidative stress response. Tyrosine fragments are generated in a DIS3L2 exoribonuclease-dependent manner and inhibit hnRNPA1-mediated transcript destabilization. Moreover, tyrosine fragmentation is conserved in C. elegans. Thus, tRNA fragmentation can coordinately generate trans-acting small RNAs and functionally deplete a tRNA. Our findings reveal the existence of an underlying adaptive codon-based regulatory response inherent to the genetic code.


Assuntos
Códon/genética , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Tirosina/genética , Animais , Caenorhabditis elegans/genética , Linhagem Celular , Proliferação de Células/genética , Células HEK293 , Humanos , Estresse Oxidativo/genética , Proteases Específicas de Ubiquitina/genética
6.
Stem Cells ; 42(6): 540-553, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38393342

RESUMO

Exploring the mechanism of self-renewal and pluripotency maintenance of human embryonic stem cells (hESCs) is of great significance in basic research and clinical applications, but it has not been fully elucidated. Long non-coding RNAs (lncRNAs) have been shown to play a key role in the self-renewal and pluripotency maintenance of hESCs. We previously reported that the lncRNA ESRG, which is highly expressed in undifferentiated hESCs, can maintain the self-renewal and pluripotency of hPSCs. RNA pull-down mass spectrometry showed that ESRG could bind to other proteins, among which heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) attracted our attention. In this study, we showed that HNRNPA1 can maintain self-renewal and pluripotency of hESCs. ESRG bound to and stabilized HNRNPA1 protein through the ubiquitin-proteasome pathway. In addition, knockdown of ESRG or HNRNPA1 resulted in alternative splicing of TCF3, which originally and primarily encoded E12, to mainly encode E47 and inhibit CDH1 expression. HNRNPA1 could rescue the biological function changes of hESCs caused by ESRG knockdown or overexpression. Our results suggest that ESRG regulates the alternative splicing of TCF3 to affect CDH1 expression and maintain hESCs self-renewal and pluripotency by binding and stabilizing HNRNPA1 protein. This study lays a good foundation for exploring the new molecular regulatory mechanism by which ESRG maintains hESCs self-renewal and pluripotency.


Assuntos
Processamento Alternativo , Ribonucleoproteína Nuclear Heterogênea A1 , Células-Tronco Embrionárias Humanas , RNA Longo não Codificante , Humanos , Processamento Alternativo/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Autorrenovação Celular/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Diferenciação Celular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
7.
Cancer Sci ; 115(7): 2269-2285, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38720175

RESUMO

Dysregulation of long noncoding RNA (lncRNA) expression plays a pivotal role in the initiation and progression of gastric cancer (GC). However, the regulation of lncRNA SNHG15 in GC has not been well studied. Mechanisms for ferroptosis by SNHG15 have not been revealed. Here, we aimed to explore SNHG15-mediated biological functions and underlying molecular mechanisms in GC. The novel SNHG15 was identified by analyzing RNA-sequencing (RNA-seq) data of GC tissues from our cohort and TCGA dataset, and further validated by qRT-PCR in GC cells and tissues. Gain- and loss-of-function assays were performed to examine the role of SNHG15 on GC both in vitro and in vivo. SNHG15 was highly expressed in GC. The enhanced SNHG15 was positively correlated with malignant stage and poor prognosis in GC patients. Gain- and loss-of-function studies showed that SNHG15 was required to affect GC cell growth, migration and invasion both in vitro and in vivo. Mechanistically, the oncogenic transcription factors E2F1 and MYC could bind to the SNHG15 promoter and enhance its expression. Meanwhile, SNHG15 increased E2F1 and MYC mRNA expression by sponging miR-24-3p. Notably, SNHG15 could also enhance the stability of SLC7A11 in the cytoplasm by competitively binding HNRNPA1. In addition, SNHG15 inhibited ferroptosis through an HNRNPA1-dependent regulation of SLC7A11/GPX4 axis. Our results support a novel model in which E2F1- and MYC-activated SNHG15 regulates ferroptosis via an HNRNPA1-dependent modulation of the SLC7A11/GPX4 axis, which serves as the critical effectors in GC progression, and provides a new therapeutic direction in the treatment of GC.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Progressão da Doença , Ferroptose , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea A1 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , RNA Longo não Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Animais , Linhagem Celular Tumoral , Camundongos , Ferroptose/genética , Masculino , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Feminino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Proliferação de Células/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Movimento Celular/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Pessoa de Meia-Idade , Prognóstico , Camundongos Nus , Transdução de Sinais/genética , Retroalimentação Fisiológica
8.
Mol Med ; 30(1): 85, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867190

RESUMO

BACKGROUND: Immunotherapies effectively treat human malignancies, but the low response and resistance are major obstacles. Neoantigen is an emerging target for tumor immunotherapy that can enhance anti-tumor immunity and improve immunotherapy. Aberrant alternative splicing is an important source of neoantigens. HNRNPA1, an RNA splicing factor, was found to be upregulated in the majority of tumors and play an important role in the tumor immunosuppressive microenvironment. METHODS: Whole transcriptome sequencing was performed on shHNRNPA1 SKOV3 cells and transcriptomic data of shHNRNPA1 HepG2, MCF-7M, K562, and B-LL cells were downloaded from the GEO database. Enrichment analysis was performed to elucidate the mechanisms underlying the activation of anti-tumor immunity induced by HNRNPA1 knockdown. mRNA alternative splicing was analyzed and neoantigens were predicted by JCAST v.0.3.5 and Immune epitope database. The immunogenicity of candidate neoantigens was calculated by Class I pMHC Immunogenicity and validated by the IFN-γ ELISpot assay. The effect of shHNRNPA1 on tumor growth and immune cells in vivo was evaluated by xenograft model combined with immunohistochemistry. RESULTS: HNRNPA1 was upregulated in a majority of malignancies and correlated with immunosuppressive status of the tumor immune microenvironment. Downregulation of HNRNPA1 could induce the activation of immune-related pathways and biological processes. Disruption of HNRNPA1 resulted in aberrant alternative splicing events and generation of immunogenic neoantigens. Downregulation of HNRNPA1 inhibited tumor growth and increased CD8+ T cell infiltration in vivo. CONCLUSION: Our study demonstrated that targeting HNRNPA1 could produce immunogenic neoantigens that elicit anti-tumor immunity by inducing abnormal mRNA splicing. It suggests that HNRNPA1 may be a potential target for immunotherapy.


Assuntos
Processamento Alternativo , Antígenos de Neoplasias , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/imunologia , Humanos , Animais , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Camundongos , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação para Baixo , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo
9.
Muscle Nerve ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39072769

RESUMO

INTRODUCTION/AIMS: Heterogeneous nuclear ribonucleoprotein A1 is involved in nucleic acid homeostatic functions. The encoding gene HNRNPA1 has been associated with several neuromuscular disorders including an amyotrophic lateral sclerosis-like phenotype, distal hereditary motor neuropathy, multisystem proteinopathy, and various myopathies. We report two unrelated individuals with monoallelic stop loss variants affecting the same codon of HNRNPA1. METHODS: Two individuals with unsolved juvenile-onset myopathy were enrolled under approved institutional protocols. Phenotype data were collected and genetic analyses were performed, including whole-exome sequencing (WES). RESULTS: The two probands (MNOT002-01 and K1440-01) showed a similar onset of slowly progressive extremity and facial weakness in early adolescence. K1440-01 presented with facial weakness, winged scapula, elevated serum creatine kinase (CK) levels, and mild neck weakness. MNOT002-01 also exhibited elevated CK levels along with facial weakness, cardiomyopathy, respiratory dysfunction, pectus excavatum, a mildly rigid spine, and loss of ambulation. On quadriceps muscle biopsy, K1440-01 displayed rounded myofibers, mild variation in fiber diameter, and type 2 fiber hypertrophy, while MNOT002-01 displayed rimmed vacuoles. Monoallelic stop-loss variants in HNRNPA1 were identified for both probands: c.1119A>C p.*373Tyrext*6 (K1440-01) and c.1118A>C p.*373Serext*6 (MNOT002-01) affect the same codon and are both predicted to lead to the addition of six amino acids before termination at an alternative stop codon. DISCUSSION: Both stop-loss variants in our probands are likely pathogenic. Our findings contribute to the disease characterization of pathogenic variants in HNRNPA1. This gene should be screened in clinical diagnostic testing of unsolved cases of sporadic or dominant juvenile-onset myopathy.

10.
Circ Res ; 131(10): 807-824, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36200440

RESUMO

BACKGROUND: Phenotypic transition of vascular smooth muscle cells (VSMCs) accounts for the pathogenesis of a variety of vascular diseases during the early stage. Recent studies indicate the metabolic reprogramming may be involved in VSMC phenotypic transition. However, the definite molecules that link energy metabolism to distinct VSMC phenotype remain elusive. METHODS: A carotid artery injury model was used to study postinjury neointima formation as well as VSMC phenotypic transition in vivo. RNA-seq analysis, cell migration assay, collagen gel contraction assay, wire myography assay, immunoblotting, protein interactome analysis, co-immunoprecipitation, and mammalian 2-hybrid assay were performed to clarify the phenotype and elucidate the molecular mechanisms. RESULTS: We collected cell energy-regulating genes by using Gene Ontology annotation and applied RNA-Seq analysis of transforming growth factor-ß or platelet-derived growth factor BB stimulated VSMCs. Six candidate genes were overlapped from energy metabolism-related genes and genes reciprocally upregulated by transforming growth factor-ß and downregulated by platelet-derived growth factor BB. Among them, prohibitin 2 has been reported to regulate mitochondrial oxidative phosphorylation. Indeed, prohibitin 2-deficient VSMCs lost the contractile phenotype as evidenced by reduced contractile proteins. Consistently, Phb2SMCKO mice were more susceptible to postinjury VSMC proliferation and neointima formation compared with Phb2flox/flox mice. Further protein interactome analysis, co-immunoprecipitation, and mammalian 2-hybrid assay revealed that prohibitin 2, through its C-terminus, directly interacts with hnRNPA1, a key modulator of pyruvate kinase M1/2 (PKM) mRNA splicing that promotes PKM2 expression and glycolysis. Prohibitin 2 deficiency facilitated PKM1/2 mRNA splicing and reversion from PKM1 to PKM2, and enhanced glycolysis in VSMCs. Blocking prohibitin 2-hnRNPA1 interaction resulted in increased PKM2 expression, enhanced glycolysis, repressed contractile marker genes expression in VSMCs, as well as aggravated postinjury neointima formation in vivo. CONCLUSIONS: Prohibitin 2 maintains VSMC contractile phenotype by interacting with hnRNPA1 to counteract hnRNPA1-mediated PKM alternative splicing and glucose metabolic reprogramming.


Assuntos
Músculo Liso Vascular , Neointima , Animais , Camundongos , Becaplermina/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Mamíferos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Fenótipo , RNA Mensageiro/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Proibitinas/genética
11.
Gastric Cancer ; 27(1): 49-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897508

RESUMO

BACKGROUND: Opa-interacting protein 5 antisense transcript 1 (OIP5-AS1) has been demonstrated to play vital roles in development and progression of tumors such as gastric cancer (GC). However, the detailed molecular mechanism of OIP5-AS1 has not been completely elucidated. Our study aimed to investigate the role and the epigenetic regulation mechanism of OIP5-AS1 in GC. METHODS: OIP5-AS1 expression in GC tissues was detected by RT-qPCR. Loss- and gain-of-function experiments were conducted to assess the biological function of OIP5-AS1 in vitro and in vivo. The interaction of OIP5-AS1 with insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) or heterogeneous nuclear nucleoprotein A1 (hnRNPA1) was verified by bioinformatics analysis, RNA pull-down assays, and RNA immunoprecipitation assays. RESULTS: In this study, we identified that OIP5-AS1 is specifically overexpressed in GC tumor tissues and cell lines and correlated with a poor prognosis. The loss of OIP5-AS1 suppressed the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and glycolysis of GC cells, but the ectopic expression of OIP5-AS1 had the opposite impact. Meanwhile, knockdown of OIP5-AS1 inhibited tumor growth in patient-derived xenograft models, as well as repressed tumor metastasis. Mechanistically, IGF2BP3 could bind to OIP5-AS1 by N6-methyladenosine (m6A) modification sites on OIP5-AS1, thereby stabilizing OIP5-AS1. Moreover, OIP5-AS1 prevented Trim21-mediated ubiquitination and degradation of hnRNPA1, stabilizing hnRNPA1 protein and promoting the malignant progression of GC by regulating PKM2 signaling pathway. CONCLUSIONS: In conclusion, this study highlighted that OIP5-AS1 is an oncogenic m6A-modified long non-coding RNA (lncRNA) in GC and that IGF2BP3/OIP5-AS1/hnRNPA1 axis may provide a potential diagnostic or prognostic target for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glicólise , MicroRNAs/genética , Neoplasias Gástricas/genética
12.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999934

RESUMO

Biomolecular condensates (BMCs) exhibit physiological and pathological relevance in biological systems. Both liquid and solid condensates play significant roles in the spatiotemporal regulation and organization of macromolecules and their biological activities. Some pathological solid condensates, such as Lewy Bodies and other fibrillar aggregates, have been hypothesized to originate from liquid condensates. With the prevalence of BMCs having functional and dysfunctional roles, it is imperative to understand the mechanism of biomolecular condensate formation and initiation. Using the low-complexity domain (LCD) of heterogenous ribonuclear protein A1 (hnRNPA1) as our model, we monitored initial assembly events using dynamic light scattering (DLS) while modulating pH and salt conditions to perturb macromolecule and condensate properties. We observed the formation of nanometer-sized BMCs (nano-condensates) distinct from protein monomers and micron-sized condensates. We also observed that conditions that solubilize micron-sized protein condensates do not solubilize nano-condensates, indicating that the balance of forces that stabilize nano-condensates and micron-sized condensates are distinct. These findings provide insight into the forces that drive protein phase separation and potential nucleation structures of macromolecular condensation.


Assuntos
Difusão Dinâmica da Luz , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/química , Domínios Proteicos , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Concentração de Íons de Hidrogênio
13.
J Gene Med ; 25(8): e3506, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36994700

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play a critical role in regulating various human diseases including cancer. In colorectal cancer (CRC), there are still some undervalued lncRNAs with potential functions and mechanisms that need to be clarified. The present study aimed to investigate the role of linc02231 in the progression of CRC. METHODS: The proliferation of CRC cells was evaluated using Cell Counting Kit-8, colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell migration was examined through wound healing and Transwell analyses. The impact of linc02231 on angiogenesis was determined through a tube formation assay. Western blotting was used to detect the expression of specific proteins. A mouse xenograft model is established to observe the effect of linc02231 on the in vivo growth of CRC cells. Target genes of linc02231 are screened using high-throughput sequencing. The transcriptional activity of STAT2 on linc02231 and the binding activity between linc02231/miR-939-5p/hnRNPA1 were analyzed by a luciferase assay. RESULTS: Based on public databases and comprehensive bioinformatics analysis, we found that lncRNA linc02231 was upregulated in CRC tumor tissues, which is consistent with our clinical results. linc02231 promoted the proliferation and migration of CRC cells in vitro and their tumorigenicity in vivo. Furthermore, linc02231 promotes the angiogenic ability of human umbilical vein endothelial cells. Mechanistically, the transcription factor STAT2 binds to the promoter region of linc02231 and activates its transcription. linc02231 also competes with miR-939-5p for binding to the pro-oncogenic target gene hnRNPA1, preventing its degradation. hnRNPA1 prevents the maturation of angiopoietin-like protein 4 (ANGPTL4) messenger RNA, leading to impaired tumor angiogenesis and increased metastasis of CRC. CONCLUSIONS: The expression of linc02231, which is induced by STAT2, has been found to enhance the proliferation, metastasis, and angiogenesis of CRC by binding to miR-939-5p and increasing the expression of hnNRPA1 at the same time as suppressing ANGPTL4. These findings suggest that linc02231 could serve as a potential biomarker and therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
14.
Pharmacol Res ; 193: 106808, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268177

RESUMO

Hepatic fibrosis is caused by liver damage as a consequence of wound healing response. Recent studies have shown that hepatic fibrosis could be effectively reversed, partly through regression of activated hepatic stellate cells (HSCs). Transcription factor 21 (TCF21), a member of the basic helix-loop-helix (bHLH) transcription factor, is involved in epithelial-mesenchymal transformation in various diseases. However, the mechanism by which TCF21 regulates epithelial-mesenchymal transformation in hepatic fibrosis has not been elucidated. In this research, we found that hnRNPA1, the downstream binding protein of TCF21, accelerates hepatic fibrosis reversal by inhibiting the NF-κB signaling pathway. Furthermore, the combination of DNMT3a with TCF21 promoter results in TCF21 hypermethylation. Our results suggest that DNMT3a regulation of TCF21 is a significant event in reversing hepatic fibrosis. In conclusion, this research identifies a novel signaling axis, DNMT3a-TCF21-hnRNPA1, that regulates HSCs activation and hepatic fibrosis reversal, providing a novel treatment strategy for hepatic fibrosis. The clinical trial was registered in the Research Registry (researchregistry9079).


Assuntos
Cirrose Hepática , NF-kappa B , Humanos , NF-kappa B/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Transdução de Sinais , Células Estreladas do Fígado/metabolismo , Metilação de DNA , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
15.
Metab Brain Dis ; 38(3): 1097-1113, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36648699

RESUMO

Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is one of the most common complications following carbon monoxide intoxication. Long noncoding RNAs (lncRNAs) exert critical functions in numerous neurological disorders. We intended to investigate the role of CRNDE in DEACMP. The DEACMP model in rats and the oxygen-glucose deprivation/reoxygenation (OGD/R) model in PC-12 cells were established. Brain and cell injuries were assessed with H&E staining, Nissl staining, TUNEL and CCK8 assays, respectively. Related proteins and RNAs were quantified with western blot and qRT-PCR. The N6-methyladenosine (m6A) level was determined using MeRIP-qPCR and immunofluorescence. Loss and gain function studies were performed to investigate the biological function of CRNDE. The potential mechanisms between each factor were explored using RNA immunoprecipitation, RNA-pull down and co-immunoprecipitation. CRNDE was increased in the hippocampal tissues of DEACMP rats and in OGD/R-treated PC-12 cells, which was positively correlated to m6A modification. Knockdown of CRNDE reduced cell damage and elevated UCHL5 and SMO expressions in OGD/R-treated PC-12 cells. hnRNPA1 was upregulated in DEACMP. In addition, inhibiting hnRNPA1 prevented apoptosis in PC-12 cells subjected to OGD/R. hnRNPA1 bound to CRNDE and remained in the nucleus, which inhibited UCHL5 expression through the formation of CRNDE-hnRNPA1-mRNA complex. UCHL5 could inhibit SMO ubiquitination and suppress PC-12 cell apoptosis during OGD/R. CRNDE silencing blocked brain injury in DEACMP, while knocking down UCHL5 reversed these effects. CRNDE interacted with hnRNPA1 to facilitate DEACMP via inhibition of UCHL5-mediated SMO deubiquitination. CRNDE might be a latent therapeutic target for treating DEACMP.


Assuntos
Encefalopatias , Intoxicação por Monóxido de Carbono , RNA Longo não Codificante , Ratos , Animais , Intoxicação por Monóxido de Carbono/complicações , RNA Longo não Codificante/genética , Oxigênio , Encefalopatias/complicações
16.
Proc Natl Acad Sci U S A ; 117(10): 5472-5477, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32086392

RESUMO

Studies on myotonic dystrophy type 1 (DM1) have led to the RNA-mediated disease model for hereditary disorders caused by noncoding microsatellite expansions. This model proposes that DM1 disease manifestations are caused by a reversion to fetal RNA processing patterns in adult tissues due to the expression of toxic CUG RNA expansions (CUGexp) leading to decreased muscleblind-like, but increased CUGBP1/ETR3-like factor 1 (CELF1), alternative splicing activities. Here, we test this model in vivo, using the mouse HSALR poly(CUG) model for DM1 and recombinant adeno-associated virus (rAAV)-mediated transduction of specific splicing factors. Surprisingly, systemic overexpression of HNRNPA1, not previously linked to DM1, also shifted DM1-relevant splicing targets to fetal isoforms, resulting in more severe muscle weakness/myopathy as early as 4 to 6 wk posttransduction, whereas rAAV controls were unaffected. Overexpression of HNRNPA1 promotes fetal exon inclusion of representative DM1-relevant splicing targets in differentiated myoblasts, and HITS-CLIP of rAAV-mycHnrnpa1-injected muscle revealed direct interactions of HNRNPA1 with these targets in vivo. Similar to CELF1, HNRNPA1 protein levels decrease during postnatal development, but are elevated in both regenerating mouse muscle and DM1 skeletal muscle. Our studies suggest that CUGexp RNA triggers abnormal expression of multiple nuclear RNA binding proteins, including CELF1 and HNRNPA1, that antagonize MBNL activity to promote fetal splicing patterns.


Assuntos
Processamento Alternativo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Distrofia Miotônica/genética , Animais , Proteínas CELF1/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feto , Humanos , Camundongos , Camundongos Transgênicos , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Proteínas de Ligação a RNA/metabolismo
17.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003404

RESUMO

A dominant mutation in hnRNPA1 causes amyotrophic lateral sclerosis (ALS), but it is not known whether this mutation leads to motor neuron death through increased or decreased function. To elucidate the relationship between pathogenic hnRNPA1 mutation and its native function, we created novel transgenic rats that overexpressed wildtype rat hnRNPA1 exclusively in motor neurons. This targeted expression of wildtype hnRNPA1 caused severe motor neuron loss and subsequent denervation muscle atrophy in transgenic rats that recapitulated the characteristics of ALS. These findings demonstrate that the augmentation of hnRNPA1 expression suffices to trigger motor neuron degeneration and the manifestation of ALS-like phenotypes. It is reasonable to infer that an amplification of an as-yet undetermined hnRNPA1 function plays a pivotal role in the pathogenesis of familial ALS caused by pathogenic hnRNPA1 mutation.


Assuntos
Esclerose Lateral Amiotrófica , Ratos , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Ratos Transgênicos , Neurônios Motores/metabolismo , Fenótipo , Mutação , Camundongos Transgênicos , Modelos Animais de Doenças , Superóxido Dismutase-1/genética
18.
Toxicol Appl Pharmacol ; 434: 115810, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822839

RESUMO

Recent evidence suggests potential benefits of applying local anesthetics in cancer patients. Specifically, tetracaine has a potent antitumor effect in diverse cancers, including neuroblastoma, breast cancer, and melanoma; however, the underlying molecular mechanisms remain unclear. Here, we reported that tetracaine hydrochloride inhibited the growth of melanoma cells and arrested melanoma cells in the G0/G1 phase. Tetracaine hydrochloride treatment resulted in translocation of hnRNPA1 from the nucleoplasm to the nuclear envelope and reduced the protein stability of hnRNPA1 possibly by disrupting the dynamic balance of ubiquitination and neddylation. Elevated hnRNPA1 upregulated cyclin D1 to promote cell cycle in melanoma. The hnRNPA1 overexpression attenuated the effect of tetracaine hydrochloride on melanoma cell growth suppression and cell cycle arrest. Furthermore, melanoma homograft experiments demonstrated that tetracaine hydrochloride suppressed melanoma growth, while hnRNPA1 overexpression alleviated tetracaine's antitumor effect on melanoma. Taken together, our findings suggest that tetracaine hydrochloride exerts a potent antitumor effect on melanoma both in vitro and in vivo, and the effect involves cell cycle arrest induction via downregulation of hnRNPA1.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Melanoma/tratamento farmacológico , Tetracaína/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ribonucleoproteína Nuclear Heterogênea A1/genética , Humanos , Masculino , Camundongos , Tetracaína/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
19.
FASEB J ; 35(2): e21235, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33417283

RESUMO

Despite significant evidence that Rac1 is localized to the nucleus, little is known regarding the function and biological significance of nuclear Rac1. Here, we showed that in response to EGF Rac1 was translocated to nuclear speckles and co-localized with the nuclear speckle marker Serine/arginine-rich splicing factor 2 (SRSF2) in Cos-7 cells. We also showed that the nuclear speckle localization of Rac1 was dependent on its T108 phosphorylation and facilitated by Rac1 polybasic region (PBR) that contains a nuclear localization signal and Rac1 GTPase activity. To gain insight into the function of Rac1 in nuclear speckles, we searched for Rac1 binding proteins in the nucleus. We isolated nuclear fraction of HEK 293 cells and incubated with GST-Rac1 and the phosphomimetic GST-Rac1T108E. We identified 463 proteins that were associated with GST-Rac1T108E, but not with GST-Rac1 by LC-MS/MS. Three notable groups of these proteins are: the heterogeneous nuclear ribonucleoproteins (hnRNPs), small nuclear ribonucleoproteins (snRNPs), and SRSFs, all of which are involved in pre-mRNA splicing and associated with nuclear speckles. We further showed by co-immunoprecipitation that Rac1 interacts with SRSF2, hnRNPA1, and U2A' in response to EGF. The interaction is dependent on T108 phosphorylation and facilitated by Rac1 PBR and GTPase activity. We showed that hnRNPA1 translocated in and out of nucleus in response to EGF in a similar pattern to Rac1. Rac1 only partially colocalized with U2A' that localizes to the actual splicing sites adjacent to nuclear speckle. Finally, we showed that Rac1 regulated EGF-induced pre-mRNA splicing and this is mediated by T108 phosphorylation. We conclude that in response to EGF, T108 phosphorylated Rac1 is targeted to nuclear speckles, interacts with multiple groups of proteins involved in pre-mRNA splicing, and regulates EGF-induced pre-mRNA splicing.


Assuntos
Núcleo Celular/metabolismo , Sinais de Localização Nuclear , Proteínas rac1 de Ligação ao GTP/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Ligação Proteica , Splicing de RNA , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/genética
20.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35409296

RESUMO

Spinal muscular atrophy (SMA) is a severe, debilitating neuromuscular condition characterised by loss of motor neurons and progressive muscle wasting. SMA is caused by a loss of expression of SMN1 that encodes the survival motor neuron (SMN) protein necessary for the survival of motor neurons. Restoration of SMN expression through increased inclusion of SMN2 exon 7 is known to ameliorate symptoms in SMA patients. As a consequence, regulation of pre-mRNA splicing of SMN2 could provide a potential molecular therapy for SMA. In this study, we explored if splice switching antisense oligonucleotides could redirect the splicing repressor hnRNPA1 to the hnRNPA1b isoform and restore SMN expression in fibroblasts from a type I SMA patient. Antisense oligonucleotides (AOs) were designed to promote exon 7b retention in the mature mRNA and induce the hnRNPA1b isoform. RT-PCR and western blot analysis were used to assess and monitor the efficiency of different AO combinations. A combination of AOs targeting multiple silencing motifs in hnRNPA1 pre-mRNA led to robust hnRNPA1b induction, which, in turn, significantly increased expression of full-length SMN (FL-SMN) protein. A combination of PMOs targeting the same motifs also strongly induced hnRNPA1b isoform, but surprisingly SMN2 exon 5 skipping was detected, and the PMO cocktail did not lead to a significant increase in expression of FL-SMN protein. We further performed RNA sequencing to assess the genome-wide effects of hnRNPA1b induction. Some 3244 genes were differentially expressed between the hnRNPA1b-induced and untreated SMA fibroblasts, which are functionally enriched in cell cycle and chromosome segregation processes. RT-PCR analysis demonstrated that expression of the master regulator of these enrichment pathways, MYBL2 and FOXM1B, were reduced in response to PMO treatment. These findings suggested that induction of hnRNPA1b can promote SMN protein expression, but not at sufficient levels to be clinically relevant.


Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Fibroblastos/metabolismo , Humanos , Atrofia Muscular Espinal/metabolismo , Oligonucleotídeos/farmacologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Isoformas de Proteínas/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA