Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(5): 2153-2161, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193310

RESUMO

PURPOSE: Improving the quality and maintaining the fidelity of large coverage abdominal hyperpolarized (HP) 13 C MRI studies with a patch based global-local higher-order singular value decomposition (GL-HOVSD) spatiotemporal denoising approach. METHODS: Denoising performance was first evaluated using the simulated [1-13 C]pyruvate dynamics at different noise levels to determine optimal kglobal and klocal parameters. The GL-HOSVD spatiotemporal denoising method with the optimized parameters was then applied to two HP [1-13 C]pyruvate EPI abdominal human cohorts (n = 7 healthy volunteers and n = 8 pancreatic cancer patients). RESULTS: The parameterization of kglobal = 0.2 and klocal = 0.9 denoises abdominal HP data while retaining image fidelity when evaluated by RMSE. The kPX (conversion rate of pyruvate-to-metabolite, X = lactate or alanine) difference was shown to be <20% with respect to ground-truth metabolic conversion rates when there is adequate SNR (SNRAUC > 5) for downstream metabolites. In both human cohorts, there was a greater than nine-fold gain in peak [1-13 C]pyruvate, [1-13 C]lactate, and [1-13 C]alanine apparent SNRAUC . The improvement in metabolite SNR enabled a more robust quantification of kPL and kPA . After denoising, we observed a 2.1 ± 0.4 and 4.8 ± 2.5-fold increase in the number of voxels reliably fit across abdominal FOVs for kPL and kPA quantification maps. CONCLUSION: Spatiotemporal denoising greatly improves visualization of low SNR metabolites particularly [1-13 C]alanine and quantification of [1-13 C]pyruvate metabolism in large FOV HP 13 C MRI studies of the human abdomen.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Abdome/diagnóstico por imagem , Lactatos , Alanina , Isótopos de Carbono/metabolismo
2.
Network ; : 1-25, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989778

RESUMO

Demosaicking is a popular scientific area that is being explored by a vast number of scientists. Current digital imaging technologies capture colour images with a single monochrome sensor. In addition, the colour images were captured using a sensor coupled with a Colour Filter Array (CFA). Furthermore, the demosaicking procedure is required to obtain a full-colour image. Image denoising and image demosaicking are the two important image restoration techniques, which have increased popularity in recent years. Finding a suitable strategy for multiple image restoration is critical for researchers. Hence, a deep learning (DL) based image denoising and image demosaicking is developed in this research. Moreover, the Autoregressive Circle Wave Optimization (ACWO) based Demosaicking Convolutional Neural Network (DMCNN) is designed for image demosaicking. The Quantum Wavelet Transform (QWT) is used in the image denoising process. Similarly, Quantum Wavelet Transform (QWT) is used to analyse the abrupt changes in the input image with noise. The transformed image is then subjected to a thresholding technique, which determines an appropriate threshold range. Once the threshold range has been determined, soft thresholding is applied to the resulting wavelet coefficients. After that, the extraction and reconstruction of the original image is carried out using the Inverse Quantum Wavelet Transform (IQWT). Finally, the fused image is created by combining the results of both processes using a weighted average. The denoised and demosaicked images are combined using the weighted average technique. Furthermore, the proposed QWT+DMCNN-ACWO model provided the ideal values of Peak signal-to-noise ratio (PSNR), Second derivative like measure of enhancement (SDME), Structural Similarity Index (SSIM), Figure of Merit (FOM) of 0.890, and computational time of 49.549 dB, 59.53 dB, 0.963, 0.890, and 0.571, respectively.

3.
Network ; : 1-34, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743436

RESUMO

Image denoising is one of the significant approaches for extracting valuable information in the required images without any errors. During the process of image transmission in the wireless medium, a wide variety of noise is presented to affect the image quality. For efficient analysis, an effective denoising approach is needed to enhance the quality of the images. The main scope of this research paper is to correct errors and remove the effects of channel degradation. A corrupted image denoising approach is developed in wireless channels to eliminate the bugs. The required images are gathered from wireless channels at the receiver end. Initially, the collected images are decomposed into several regions using Adaptive Lifting Wavelet Transform (ALWT) and then the "Symmetric Convolution-based Residual Attention Network (SC-RAN)" is employed, where the residual images are obtained by separating the clean image from the noisy images. The parameters present are optimized using Hybrid Energy Golden Tortoise Beetle Optimizer (HEGTBO) to maximize efficiency. The image denoising is performed over the obtained residual images and noisy images to get the final denoised images. The numerical findings of the developed model attain 31.69% regarding PSNR metrics. Thus, the analysis of the developed model shows significant improvement.

4.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732957

RESUMO

Probe-based confocal laser endoscopy (pCLE) has emerged as a powerful tool for disease diagnosis, yet it faces challenges such as the formation of hexagonal patterns in images due to the inherent characteristics of fiber bundles. Recent advancements in deep learning offer promise in image denoising, but the acquisition of clean-noisy image pairs for training networks across all potential scenarios can be prohibitively costly. Few studies have explored training denoising networks on such pairs. Here, we propose an innovative self-supervised denoising method. Our approach integrates noise prediction networks, image quality assessment networks, and denoising networks in a collaborative, jointly trained manner. Compared to prior self-supervised denoising methods, our approach yields superior results on pCLE images and fluorescence microscopy images. In summary, our novel self-supervised denoising technique enhances image quality in pCLE diagnosis by leveraging the synergy of noise prediction, image quality assessment, and denoising networks, surpassing previous methods on both pCLE and fluorescence microscopy images.

5.
Sensors (Basel) ; 24(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38894398

RESUMO

Image denoising is regarded as an ill-posed problem in computer vision tasks that removes additive noise from imaging sensors. Recently, several convolution neural network-based image-denoising methods have achieved remarkable advances. However, it is difficult for a simple denoising network to recover aesthetically pleasing images owing to the complexity of image content. Therefore, this study proposes a multi-branch network to improve the performance of the denoising method. First, the proposed network is designed based on a conventional autoencoder to learn multi-level contextual features from input images. Subsequently, we integrate two modules into the network, including the Pyramid Context Module (PCM) and the Residual Bottleneck Attention Module (RBAM), to extract salient information for the training process. More specifically, PCM is applied at the beginning of the network to enlarge the receptive field and successfully address the loss of global information using dilated convolution. Meanwhile, RBAM is inserted into the middle of the encoder and decoder to eliminate degraded features and reduce undesired artifacts. Finally, extensive experimental results prove the superiority of the proposed method over state-of-the-art deep-learning methods in terms of objective and subjective performances.

6.
Sensors (Basel) ; 24(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065972

RESUMO

Recently, the low-rank representation (LRR) model has been widely used in the field of remote sensing image denoising due to its excellent noise suppression capability. However, those low-rank-based methods always discard important edge details as residuals, leading to a common issue of blurred edges in denoised results. To address this problem, we take a new look at low-rank residuals and try to extract edge information from them. Therefore, a hierarchical denoising framework was combined with a low-rank model to extract edge information from low-rank residuals within the edge subspace. A prior knowledge matrix was designed to enable the model to learn necessary structural information rather than noise. Also, such traditional model-driven approaches require multiple iterations, and the solutions may be very complex and computationally intensive. To further enhance the noise suppression performance and computing efficiency, a hierarchical low-rank denoising model based on deep unrolling (HLR-DUR) was proposed, integrating deep neural networks into the hierarchical low-rank denoising framework to expand the information capture and representation capabilities of the proposed shallow model. Sufficient experiments on optical images, hyperspectral images (HSI), and synthetic aperture radar (SAR) images showed that HLR-DUR achieved state-of-the-art (SOTA) denoising results.

7.
Sensors (Basel) ; 24(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065980

RESUMO

During underwater image processing, image quality is affected by the absorption and scattering of light in water, thus causing problems such as blurring and noise. As a result, poor image quality is unavoidable. To achieve overall satisfying research results, underwater image denoising is vital. This paper presents an underwater image denoising method, named HHDNet, designed to address noise issues arising from environmental interference and technical limitations during underwater robot photography. The method leverages a dual-branch network architecture to handle both high and low frequencies, incorporating a hybrid attention module specifically designed for the removal of high-frequency abrupt noise in underwater images. Input images are decomposed into high-frequency and low-frequency components using a Gaussian kernel. For the high-frequency part, a Global Context Extractor (GCE) module with a hybrid attention mechanism focuses on removing high-frequency abrupt signals by capturing local details and global dependencies simultaneously. For the low-frequency part, efficient residual convolutional units are used in consideration of less noise information. Experimental results demonstrate that HHDNet effectively achieves underwater image denoising tasks, surpassing other existing methods not only in denoising effectiveness but also in maintaining computational efficiency, and thus HHDNet provides more flexibility in underwater image noise removal.

8.
J Xray Sci Technol ; 32(3): 493-512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189738

RESUMO

In the medical field, computed tomography (CT) is a commonly used examination method, but the radiation generated increases the risk of illness in patients. Therefore, low-dose scanning schemes have attracted attention, in which noise reduction is essential. We propose a purposeful and interpretable decomposition iterative network (DISN) for low-dose CT denoising. This method aims to make the network design interpretable and improve the fidelity of details, rather than blindly designing or using deep CNN architecture. The experiment is trained and tested on multiple data sets. The results show that the DISN method can restore the low-dose CT image structure and improve the diagnostic performance when the image details are limited. Compared with other algorithms, DISN has better quantitative and visual performance, and has potential clinical application prospects.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Doses de Radiação , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Imagens de Fantasmas
9.
Sensors (Basel) ; 24(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202904

RESUMO

Removing noise from acquired images is a crucial step in various image processing and computer vision tasks. However, the existing methods primarily focus on removing specific noise and ignore the ability to work across modalities, resulting in limited generalization performance. Inspired by the iterative procedure of image processing used by professionals, we propose a pixel-wise crossmodal image-denoising method based on deep reinforcement learning to effectively handle noise across modalities. We proposed a similarity reward to help teach an optimal action sequence to model the step-wise nature of the human processing process explicitly. In addition, We designed an action set capable of handling multiple types of noise to construct the action space, thereby achieving successful crossmodal denoising. Extensive experiments against state-of-the-art methods on publicly available RGB, infrared, and terahertz datasets demonstrate the superiority of our method in crossmodal image denoising.

10.
Radiol Artif Intell ; 6(2): e230153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416035

RESUMO

Coronary CT angiography is increasingly used for cardiac diagnosis. Dose modulation techniques can reduce radiation dose, but resulting functional images are noisy and challenging for functional analysis. This retrospective study describes and evaluates a deep learning method for denoising functional cardiac imaging, taking advantage of multiphase information in a three-dimensional convolutional neural network. Coronary CT angiograms (n = 566) were used to derive synthetic data for training. Deep learning-based image denoising was compared with unprocessed images and a standard noise reduction algorithm (block-matching and three-dimensional filtering [BM3D]). Noise and signal-to-noise ratio measurements, as well as expert evaluation of image quality, were performed. To validate the use of the denoised images for cardiac quantification, threshold-based segmentation was performed, and results were compared with manual measurements on unprocessed images. Deep learning-based denoised images showed significantly improved noise compared with standard denoising-based images (SD of left ventricular blood pool, 20.3 HU ± 42.5 [SD] vs 33.4 HU ± 39.8 for deep learning-based image denoising vs BM3D; P < .0001). Expert evaluations of image quality were significantly higher in deep learning-based denoised images compared with standard denoising. Semiautomatic left ventricular size measurements on deep learning-based denoised images showed excellent correlation with expert quantification on unprocessed images (intraclass correlation coefficient, 0.97). Deep learning-based denoising using a three-dimensional approach resulted in excellent denoising performance and facilitated valid automatic processing of cardiac functional imaging. Keywords: Cardiac CT Angiography, Deep Learning, Image Denoising Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Angiografia por Tomografia Computadorizada , Aprendizado Profundo , Angiografia por Tomografia Computadorizada/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Angiografia Coronária
11.
Quant Imaging Med Surg ; 14(5): 3557-3571, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38720841

RESUMO

Background: The presence of noise in medical ultrasound images significantly degrades image quality and affects the accuracy of disease diagnosis. The convolutional neural network-denoising autoencoder (CNN-DAE) model extracts feature information by stacking regularly sized kernels. This results in the loss of texture detail, the over-smoothing of the image, and a lack of generalizability for speckle noise. Methods: A lightweight attention denoise-convolutional neural network (LAD-CNN) is proposed in the present study. Two different lightweight attention blocks (i.e., the lightweight channel attention (LCA) block and the lightweight large-kernel attention (LLA) block are concatenated into the downsampling stage and the upsampling stage, respectively. A skip connection is included before the upsampling layer to alleviate the problem of gradient vanishing during backpropagation. The effectiveness of our model was evaluated using both subjective visual effects and objective evaluation metrics. Results: With the highest peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) values at all noise levels, the proposed model outperformed the other models. In the test of brachial plexus ultrasound images, the average PSNR of our model was 0.15 higher at low noise levels and 0.33 higher at high noise levels than the suboptimal model. In the test of fetal ultrasound images, the average PSNR of our model was 0.23 higher at low noise levels and 0.20 higher at high noise levels than the suboptimal model. The statistical analysis showed that the p values were less than 0.05, which indicated a statistically significant difference between our model and the other models. Conclusions: The results of this study suggest that the proposed LAD-CNN model is more efficient in denoising and preserving image details than both conventional denoising algorithms and existing deep-learning algorithms.

12.
J Comput Biol ; 31(6): 564-575, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805340

RESUMO

Cryo-electron microscopy (cryo-EM) has emerged as a potent technique for determining the structure and functionality of biological macromolecules. However, limited by the physical imaging conditions, such as low electron beam dose, micrographs in cryo-EM typically contend with an extremely low signal-to-noise ratio (SNR), impeding the efficiency and efficacy of subsequent analyses. Therefore, there is a growing demand for an efficient denoising algorithm designed for cryo-EM micrographs, aiming to enhance the quality of macromolecular analysis. However, owing to the absence of a comprehensive and well-defined dataset with ground truth images, supervised image denoising methods exhibit limited generalization when applied to experimental micrographs. To tackle this challenge, we introduce a simulation-aware image denoising (SaID) pretrained model designed to enhance the SNR of cryo-EM micrographs where the training is solely based on an accurately simulated dataset. First, we propose a parameter calibration algorithm for simulated dataset generation, aiming to align simulation parameters with those of experimental micrographs. Second, leveraging the accurately simulated dataset, we propose to train a deep general denoising model that can well generalize to real experimental cryo-EM micrographs. Comprehensive experimental results demonstrate that our pretrained denoising model achieves excellent denoising performance on experimental cryo-EM micrographs, significantly streamlining downstream analysis.


Assuntos
Algoritmos , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Simulação por Computador
13.
ArXiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38947935

RESUMO

Background noise in many fields such as medical imaging poses significant challenges for accurate diagnosis, prompting the development of denoising algorithms. Traditional methodologies, however, often struggle to address the complexities of noisy environments in high dimensional imaging systems. This paper introduces a novel quantum-inspired approach for image denoising, drawing upon principles of quantum and condensed matter physics. Our approach views medical images as amorphous structures akin to those found in condensed matter physics and we propose an algorithm that incorporates the concept of mode resolved localization directly into the denoising process. Notably, our approach eliminates the need for hyperparameter tuning. The proposed method is a standalone algorithm with minimal manual intervention, demonstrating its potential to use quantum-based techniques in classical signal denoising. Through numerical validation, we showcase the effectiveness of our approach in addressing noise-related challenges in imaging and especially medical imaging, underscoring its relevance for possible quantum computing applications.

14.
Neural Netw ; 177: 106378, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38761414

RESUMO

Transformer-based image denoising methods have shown remarkable potential but suffer from high computational cost and large memory footprint due to their linear operations for capturing long-range dependencies. In this work, we aim to develop a more resource-efficient Transformer-based image denoising method that maintains high performance. To this end, we propose an Efficient Wavelet Transformer (EWT), which incorporates a Frequency-domain Conversion Pipeline (FCP) to reduce image resolution without losing critical features, and a Multi-level Feature Aggregation Module (MFAM) with a Dual-stream Feature Extraction Block (DFEB) to harness hierarchical features effectively. EWT achieves a faster processing speed by over 80% and reduces GPU memory usage by more than 60% compared to the original Transformer, while still delivering denoising performance on par with state-of-the-art methods. Extensive experiments show that EWT significantly improves the efficiency of Transformer-based image denoising, providing a more balanced approach between performance and resource consumption.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Análise de Ondaletas , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Humanos
15.
Comput Biol Med ; 179: 108914, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053331

RESUMO

BACKGROUND: When multiple tasks are learned consecutively, the old model parameters may be overwritten by the new data, resulting in the phenomenon that the new task is learned and the old task is forgotten, which leads to catastrophic forgetting. Moreover, continual learning has no mature solution for image denoising tasks. METHODS: Therefore, in order to solve the problem of catastrophic forgetting caused by learning multiple denoising tasks, we propose a Triplet Neural-networks Collaboration-continuity DeNosing (TNCDN) model. Use triplet neural networks to update each other cooperatively. The knowledge from two denoising networks that maintain continual learning capability is transferred to the main-denoising network. The main-denoising network has new knowledge and can consolidate old knowledge. A co-training mechanism is designed. The main-denoising network updates the other two denoising networks with different thresholds to maintain memory reinforcement capability and knowledge extension capability. RESULTS: The experimental results show that our method effectively alleviates catastrophic forgetting. In GS, CT and ADNI datasets, compared with ANCL, the TNCDN(PromptIR) method reduced the average degree of forgetting on the evaluation index PSNR by 2.38 (39%) and RMSE by 1.63 (55%). CONCLUSION: This study aims to solve the problem of catastrophic forgetting caused by learning multiple denoising tasks. Although the experimental results are promising, extending the basic denoising model to more data sets and tasks will enhance its application. Nevertheless, this study is a starting point, which can provide reference and support for the further development of continuous learning image denoising task.


Assuntos
Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Razão Sinal-Ruído
16.
Res Sq ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39070639

RESUMO

Background noise in many fields such as medical imaging poses significant challenges for accurate diagnosis, prompting the development of denoising algorithms. Traditional methodologies, however, often struggle to address the complexities of noisy environments in high dimensional imaging systems. This paper introduces a novel quantum-inspired approach for image denoising, drawing upon principles of quantum and condensed matter physics. Our approach views medical images as amorphous structures akin to those found in condensed matter physics and we propose an algorithm that incorporates the concept of mode resolved localization directly into the denoising process. Notably, our approach eliminates the need for hyperparameter tuning. The proposed method is a standalone algorithm with minimal manual intervention, demonstrating its potential to use quantum-based techniques in classical signal denoising. Through numerical validation, we showcase the effectiveness of our approach in addressing noise-related challenges in imaging and especially medical imaging, underscoring its relevance for possible quantum computing applications.

17.
Phys Med Biol ; 69(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38417180

RESUMO

Objective.Positron emission tomography (PET) is essential for non-invasive imaging of metabolic processes in healthcare applications. However, the use of radiolabeled tracers exposes patients to ionizing radiation, raising concerns about carcinogenic potential, and warranting efforts to minimize doses without sacrificing diagnostic quality.Approach.In this work, we present a novel neural network architecture, PETformer, designed for denoising ultra-low-dose PET images without requiring structural priors such as computed tomography (CT) or magnetic resonance imaging. The architecture utilizes a U-net backbone, synergistically combining multi-headed transposed attention blocks with kernel-basis attention and channel attention mechanisms for both short- and long-range dependencies and enhanced feature extraction. PETformer is trained and validated on a dataset of 317 patients imaged on a total-body uEXPLORER PET/CT scanner.Main results.Quantitative evaluations using structural similarity index measure and liver signal-to-noise ratio showed PETformer's significant superiority over other established denoising algorithms across different dose-reduction factors.Significance.Its ability to identify and recover intrinsic anatomical details from background noise with dose reductions as low as 2% and its capacity in maintaining high target-to-background ratios while preserving the integrity of uptake values of small lesions enables PET-only fast and accurate disease diagnosis. Furthermore, PETformer exhibits computational efficiency with only 37 M trainable parameters, making it well-suited for commercial integration.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Algoritmos , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador/métodos
18.
medRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496517

RESUMO

Multi-delay arterial spin labeling (MDASL) can quantitatively measure cerebral blood flow (CBF) and arterial transit time (ATT), which is particularly suitable for pediatric perfusion imaging. Here we present a high resolution (iso-2mm) MDASL protocol and performed test-retest scans on 21 typically developing children aged 8 to 17 years. We further proposed a Transformer-based deep learning (DL) model with k-space weighted image average (KWIA) denoised images as reference for training the model. The performance of the model was evaluated by the SNR of perfusion images, as well as the SNR, bias and repeatability of the fitted CBF and ATT maps. The proposed method was compared to several benchmark methods including KWIA, joint denoising and reconstruction with total generalized variation (TGV) regularization, as well as directly applying a pretrained Transformer model on a larger dataset. The results show that the proposed Transformer model with KWIA reference can effectively denoise multi-delay ASL images, not only improving the SNR for perfusion images of each delay, but also improving the SNR for the fitted CBF and ATT maps. The proposed method also improved test-retest repeatability of whole-brain perfusion measurements. This may facilitate the use of MDASL in neurodevelopmental studies to characterize typical and aberrant brain development.

19.
Neural Netw ; 174: 106218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518709

RESUMO

In image watermark removal, popular methods depend on given reference non-watermark images in a supervised way to remove watermarks. However, reference non-watermark images are difficult to be obtained in the real world. At the same time, they often suffer from the influence of noise when captured by digital devices. To resolve these issues, in this paper, we present a self-supervised network for image denoising and watermark removal (SSNet). SSNet uses a parallel network in a self-supervised learning way to remove noise and watermarks. Specifically, each sub-network contains two sub-blocks. The upper sub-network uses the first sub-block to remove noise, according to noise-to-noise. Then, the second sub-block in the upper sub-network is used to remove watermarks, according to the distributions of watermarks. To prevent the loss of important information, the lower sub-network is used to simultaneously learn noise and watermarks in a self-supervised learning way. Moreover, two sub-networks interact via attention to extract more complementary salient information. The proposed method does not depend on paired images to learn a blind denoising and watermark removal model, which is very meaningful for real applications. Also, it is more effective than the popular image watermark removal methods in public datasets. Codes can be found at https://github.com/hellloxiaotian/SSNet.

20.
J Med Imaging (Bellingham) ; 11(3): 034008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38694626

RESUMO

Purpose: Optical coherence tomography (OCT) is an emerging imaging tool in healthcare with common applications in ophthalmology for detection of retinal diseases, as well as other medical domains. The noise in OCT images presents a great challenge as it hinders the clinician's ability to diagnosis in extensive detail. Approach: In this work, a region-based, deep-learning, denoising framework is proposed for adaptive cleaning of noisy OCT-acquired images. The core of the framework is a hybrid deep-learning model named transformer enhanced autoencoder rendering (TEAR). Attention gates are utilized to ensure focus on denoising the foreground and to remove the background. TEAR is designed to remove the different types of noise artifacts commonly present in OCT images and to enhance the visual quality. Results: Extensive quantitative evaluations are performed to evaluate the performance of TEAR and compare it against both deep-learning and traditional state-of-the-art denoising algorithms. The proposed method improved the peak signal-to-noise ratio to 27.9 dB, CNR to 6.3 dB, SSIM to 0.9, and equivalent number of looks to 120.8 dB for a dental dataset. For a retinal dataset, the performance metrics in the same sequence are: 24.6, 14.2, 0.64, and 1038.7 dB, respectively. Conclusions: The results show that the approach verifiably removes speckle noise and achieves superior quality over several well-known denoisers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA