Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.662
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(20): 4289-4309.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37683635

RESUMO

Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.


Assuntos
Formigas , Animais , Formigas/fisiologia , Barreira Hematoencefálica , Encéfalo/metabolismo , Drosophila , Comportamento Social , Comportamento Animal
2.
Annu Rev Neurosci ; 47(1): 167-185, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38603564

RESUMO

Ant physiology has been fashioned by 100 million years of social evolution. Ants perform many sophisticated social and collective behaviors yet possess nervous systems similar in schematic and scale to that of the fruit fly Drosophila melanogaster, a popular solitary model organism. Ants are thus attractive complementary subjects to investigate adaptations pertaining to complex social behaviors that are absent in flies. Despite research interest in ant behavior and the neurobiological foundations of sociality more broadly, our understanding of the ant nervous system is incomplete. Recent technical advances have enabled cutting-edge investigations of the nervous system in a fashion that is less dependent on model choice, opening the door for mechanistic social insect neuroscience. In this review, we revisit important aspects of what is known about the ant nervous system and behavior, and we look forward to how functional circuit neuroscience in ants will help us understand what distinguishes solitary animals from highly social ones.


Assuntos
Formigas , Comportamento Animal , Comportamento Social , Animais , Formigas/fisiologia , Comportamento Animal/fisiologia , Neurociências , Encéfalo/fisiologia
3.
Mol Cell ; 77(2): 338-351.e6, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31732456

RESUMO

Ants acquire distinct morphological and behavioral phenotypes arising from a common genome, underscoring the importance of epigenetic regulation. In Camponotus floridanus, "Major" workers defend the colony, but can be epigenetically reprogrammed to forage for food analogously to "Minor" workers. Here, we utilize reprogramming to investigate natural behavioral specification. Reprogramming of Majors upregulates Minor-biased genes and downregulates Major-biased genes, engaging molecular pathways fundamental to foraging behavior. We discover the neuronal corepressor for element-1-silencing transcription factor (CoREST) is upregulated upon reprogramming and required for the epigenetic switch to foraging. Genome-wide profiling during reprogramming reveals CoREST represses expression of enzymes that degrade juvenile hormone (JH), a hormone elevated upon reprogramming. High CoREST, low JH-degrader expression, and high JH levels are mirrored in natural Minors, revealing parallel mechanisms of natural and reprogrammed foraging. These results unveil chromatin regulation via CoREST as central to programming of ant social behavior, with potential far-reaching implications for behavioral epigenetics.


Assuntos
Formigas/genética , Formigas/fisiologia , Comportamento Animal/fisiologia , Proteínas Correpressoras/genética , Epigênese Genética/genética , Proteínas de Insetos/genética , Animais , Cromatina/genética , Genoma/genética , Hormônios Juvenis/genética , Neurônios/fisiologia , Comportamento Social
4.
Trends Genet ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39341686

RESUMO

In many multicellular eukaryotes, heteromorphic sex chromosomes are responsible for determining the sexual characteristics and reproductive functions of individuals. Sex chromosomes can cause a dosage imbalance between sexes, which in some species is re-equilibrated by dosage compensation (DC). Recent genomic advances have extended our understanding of DC mechanisms in insects beyond model organisms such as Drosophila melanogaster. We review current knowledge of insect DC, focusing on its conservation and divergence across orders, the evolutionary dynamics of neo-sex chromosomes, and the diversity of molecular mechanisms. We propose a framework to uncover DC regulators in non-model insects that relies on integrating evolutionary, genomic, and functional approaches. This comprehensive approach will facilitate a deeper understanding of the evolution and essentiality of gene regulatory mechanisms.

5.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39324209

RESUMO

The evolution of insects has been marked by the appearance of key body plan innovations that promoted the outstanding ability of this lineage to adapt to new habitats, boosting the most successful radiation in animals. To understand the evolution of these new structures, it is essential to investigate which genes and gene regulatory networks participate during the embryonic development of insects. Great efforts have been made to fully understand gene expression and gene regulation during the development of holometabolous insects, in particular Drosophila melanogaster. Conversely, functional genomics resources and databases in other insect lineages are scarce. To provide a new platform to study gene regulation in insects, we generated ATAC-seq for the first time during the development of the mayfly Cloeon dipterum, which belongs to Paleoptera, the sister group to all other winged insects. With these comprehensive datasets along six developmental stages, we characterized pronounced changes in accessible chromatin between early and late embryogenesis. The application of ATAC-seq in mayflies provides a fundamental resource to understand the evolution of gene regulation in insects.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Animais , Desenvolvimento Embrionário/genética , Cromatina/metabolismo , Cromatina/genética , Insetos/genética , Ephemeroptera/genética
6.
Proc Natl Acad Sci U S A ; 121(5): e2315667121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252829

RESUMO

Water striders are abundant in areas with high humidity and rainfall. Raindrops can weigh more than 40 times the adult water strider and some pelagic species spend their entire lives at sea, never contacting ground. Until now, researchers have not systematically investigated the survival of water striders when impacted by raindrops. In this experimental study, we use high-speed videography to film drop impacts on water striders. Drops force the insects subsurface upon direct contact. As the ensuing crater rebounds upward, the water strider is propelled airborne by a Worthington jet, herein called the first jet. We show the water strider's locomotive responses, low density, resistance to wetting when briefly submerged, and ability to regain a super-surface rest state, rendering it impervious to the initial impact. When pulled subsurface during a second crater formation caused by the collapsing first jet, water striders face the possibility of ejection above the surface or submersion below the surface, a fate determined by their position in the second crater. We identify a critical crater collapse acceleration threshold ∼ 5.7 gravities for the collapsing second crater which determines the ejection and submersion of passive water striders. Entrapment by submersion makes the water strider poised to penetrate the air-water interface from below, which appears impossible without the aid of a plastron and proper locomotive techniques. Our study is likely the first to consider second crater dynamics and our results translate to the submersion dynamics of other passively floating particles such as millimetric microplastics atop the world's oceans.

7.
Proc Natl Acad Sci U S A ; 121(25): e2401802121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865264

RESUMO

The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota.


Assuntos
Peptídeos Antimicrobianos , Microbioma Gastrointestinal , Simbiose , Animais , Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/farmacologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Trato Gastrointestinal/microbiologia
8.
Proc Natl Acad Sci U S A ; 121(33): e2402179121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39110731

RESUMO

Eusocial organisms typically live in colonies with one reproductive queen supported by thousands of sterile workers. It is widely believed that monogamous mating is a precondition for the evolution of eusociality. Here, we present a theoretical model that simulates a realistic scenario for the evolution of eusociality. In the model, mothers can evolve control over resource allocation to offspring, affecting offspring's body size. The offspring can evolve body-size-dependent dispersal, by which they disperse to breed or stay at the nest as helpers. We demonstrate that eusociality can evolve even if mothers are not strictly monogamous, provided that they can constrain their offspring's reproduction through manipulation. We also observe the evolution of social polymorphism with small individuals that help and larger individuals that disperse to breed. Our model unifies the traditional kin selection and maternal manipulation explanations for the evolution of eusociality and demonstrates that-contrary to current consensus belief-eusociality can evolve despite highly promiscuous mating.


Assuntos
Evolução Biológica , Tamanho Corporal , Reprodução , Comportamento Sexual Animal , Comportamento Social , Animais , Feminino , Comportamento Sexual Animal/fisiologia , Reprodução/fisiologia , Masculino , Modelos Biológicos , Comportamento Animal/fisiologia
9.
Proc Natl Acad Sci U S A ; 121(14): e2317254121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551840

RESUMO

Pv11 is the only animal cell line that, when preconditioned with a high concentration of trehalose, can be preserved in the dry state at room temperature for more than one year while retaining the ability to resume proliferation. This extreme desiccation tolerance is referred to as anhydrobiosis. Here, we identified a transporter that contributes to the recovery of Pv11 cells from anhydrobiosis. In general, the solute carrier 5 (SLC5)-type secondary active transporters cotransport Na+ and carbohydrates including glucose. The heterologous expression systems showed that the transporter belonging to the SLC5 family, whose expression increases upon rehydration, exhibits Na+-dependent trehalose transport activity. Therefore, we named it STRT1 (sodium-ion trehalose transporter 1). We report an SLC5 family member that transports a naturally occurring disaccharide, such as trehalose. Knockout of the Strt1 gene significantly reduced the viability of Pv11 cells upon rehydration after desiccation. During rehydration, when intracellular trehalose is no longer needed, Strt1-knockout cells released the disaccharide more slowly than the parental cell line. During rehydration, Pv11 cells became roughly spherical due to osmotic pressure changes, but then returned to their original spindle shape after about 30 min. Strt1-knockout cells, however, required about 50 min to adopt their normal morphology. STRT1 probably regulates intracellular osmolality by releasing unwanted intracellular trehalose with Na+, thereby facilitating the recovery of normal cell morphology during rehydration. STRT1 likely improves the viability of dried Pv11 cells by rapidly alleviating the significant physical stresses that arise during rehydration.


Assuntos
Chironomidae , Dessecação , Animais , Trealose/metabolismo , Larva/metabolismo , Chironomidae/genética , Insetos/metabolismo , Linhagem Celular
10.
Proc Natl Acad Sci U S A ; 121(42): e2412165121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39392666

RESUMO

Lepidopterans commonly feed on plant material, being the most significant insect herbivores in nature. Despite plant resistance to herbivory, such as producing toxic secondary metabolites, herbivores have developed mechanisms encoded in their genomes to tolerate or detoxify plant defensive compounds. Recent studies also highlight the role of gut microbiota in mediating detoxification in herbivores; however, convincing evidence supporting the significant contribution of gut symbionts is rare in Lepidoptera. Here, we show that the growth of various lepidopteran species was inhibited by a mulberry-derived secondary metabolite, 1-deoxynojirimycin (DNJ); as expected, the specialist silkworm Bombyx mori grew well, but interestingly, gut microbiota of early-instar silkworms was affected by the DNJ level, and several bacterial species responded positively to enriched DNJ. Among these, a bacterial strain isolated from the silkworm gut (Pseudomonas fulva ZJU1) can degrade and utilize DNJ as the sole energy source, and after inoculation into nonspecialists (e.g., beet armyworm Spodoptera exigua), P. fulva ZJU1 increased host resistance to DNJ and significantly promoted growth. We used genomic and transcriptomic analyses to identify genes potentially involved in DNJ degradation, and CRISPR-Cas9-mediated mutagenesis verified the function of ilvB, a key binding protein, in metabolizing DNJ. Furthermore, the ilvB deletion mutant, exhibiting normal bacterial growth, could no longer enhance nonspecialist performance, supporting a role in DNJ degradation in vivo. Therefore, our study demonstrated causality between the gut microbiome and detoxification of plant chemical defense in Lepidoptera, facilitating a mechanistic understanding of host-microbe relationships across this complex, abundant insect group.


Assuntos
Microbioma Gastrointestinal , Herbivoria , Animais , Microbioma Gastrointestinal/fisiologia , Bombyx/metabolismo , Bombyx/microbiologia , Morus , Simbiose , Lepidópteros/microbiologia , Spodoptera/microbiologia , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Digestão
11.
Trends Biochem Sci ; 47(4): 284-286, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34922796

RESUMO

In a landmark paper, del Mármol et al. describe cryo-electron microscopy (cryo-EM) structures of an insect olfactory receptor (OR) ion channel, detailing the mechanism by which odorants can directly gate ion flow and providing insights into how this incredibly diverse family of receptors have evolved to support insects navigating complex olfactory landscapes.


Assuntos
Receptores Odorantes , Olfato , Animais , Microscopia Crioeletrônica , Insetos , Odorantes , Receptores Odorantes/química
12.
Trends Genet ; 39(7): 531-544, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36907721

RESUMO

Insects are crucial for ecosystem health but climate change and pesticide use are driving massive insect decline. To mitigate this loss, we need new and effective monitoring techniques. Over the past decade there has been a shift to DNA-based techniques. We describe key emerging techniques for sample collection. We suggest that the selection of tools should be broadened, and that DNA-based insect monitoring data need to be integrated more rapidly into policymaking. We argue that there are four key areas for advancement, including the generation of more complete DNA barcode databases to interpret molecular data, standardisation of molecular methods, scaling up of monitoring efforts, and integrating molecular tools with other technologies that allow continuous, passive monitoring based on images and/or laser imaging, detection, and ranging (LIDAR).


Assuntos
Biodiversidade , Ecossistema , Animais , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Insetos/genética
13.
Bioessays ; 46(5): e2300240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593308

RESUMO

The compound eyes of insects exhibit stunning variation in size, structure, and function, which has allowed these animals to use their vision to adapt to a huge range of different environments and lifestyles, and evolve complex behaviors. Much of our knowledge of eye development has been learned from Drosophila, while visual adaptations and behaviors are often more striking and better understood from studies of other insects. However, recent studies in Drosophila and other insects, including bees, beetles, and butterflies, have begun to address this gap by revealing the genetic and developmental bases of differences in eye morphology and key new aspects of compound eye structure and function. Furthermore, technical advances have facilitated the generation of high-resolution connectomic data from different insect species that enhances our understanding of visual information processing, and the impact of changes in these processes on the evolution of vision and behavior. Here, we review these recent breakthroughs and propose that future integrated research from the development to function of visual systems within and among insect species represents a great opportunity to understand the remarkable diversification of insect eyes and vision.


Assuntos
Evolução Biológica , Insetos , Visão Ocular , Animais , Visão Ocular/fisiologia , Insetos/fisiologia , Insetos/genética , Olho/anatomia & histologia , Olho Composto de Artrópodes/fisiologia , Olho Composto de Artrópodes/anatomia & histologia
14.
Proc Natl Acad Sci U S A ; 120(18): e2221528120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094147

RESUMO

Arthropod silk is vital to the evolutionary success of hundreds of thousands of species. The primary proteins in silks are often encoded by long, repetitive gene sequences. Until recently, sequencing and assembling these complex gene sequences has proven intractable given their repetitive structure. Here, using high-quality long-read sequencing, we show that there is extensive variation-both in terms of length and repeat motif order-between alleles of silk genes within individual arthropods. Further, this variation exists across two deep, independent origins of silk which diverged more than 500 Mya: the insect clade containing caddisflies and butterflies and spiders. This remarkable convergence in previously overlooked patterns of allelic variation across multiple origins of silk suggests common mechanisms for the generation and maintenance of structural protein-coding genes. Future genomic efforts to connect genotypes to phenotypes should account for such allelic variation.


Assuntos
Borboletas , Fibroínas , Aranhas , Animais , Seda/química , Sequência de Aminoácidos , Fibroínas/química , Alelos , Insetos/genética , Borboletas/genética , Variação Genética , Aranhas/genética , Proteínas de Insetos/genética , Filogenia
15.
Proc Natl Acad Sci U S A ; 120(37): e2217973120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639613

RESUMO

In social animals, success can depend on the outcome of group battles. Theoretical models of warfare predict that group fighting ability is proportional to two key factors: the strength of each soldier in the group and group size. The relative importance of these factors is predicted to vary across environments [F. W. Lanchester, Aircraft in Warfare, the Dawn of the Fourth Arm (1916)]. Here, we provide an empirical validation of the theoretical prediction that open environments should favor superior numbers, whereas complex environments should favor stronger soldiers [R. N. Franks, L. W. Partridge, Anim. Behav. 45, 197-199 (1993)]. We first demonstrate this pattern using simulated battles between relatively strong and weak soldiers in a computer-driven algorithm. We then validate this result in real animals using an ant model system: In battles in which the number of strong native meat ant Iridomyrmex purpureus workers is constant while the number of weak non-native invasive Argentine ant Linepithema humile workers increases across treatments, fatalities of I. purpureus are lower in complex than in simple arenas. Our results provide controlled experimental evidence that investing in stronger soldiers is more effective in complex environments. This is a significant advance in the empirical study of nonhuman warfare and is important for understanding the competitive balance among native and non-native invasive ant species.


Assuntos
Aeronaves , Formigas , Animais , Algoritmos , Pesquisa Empírica , Espécies Introduzidas
16.
Proc Natl Acad Sci U S A ; 120(10): e2216922120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848561

RESUMO

Plants generate energy flows through natural food webs, driven by competition for resources among organisms, which are part of a complex network of multitrophic interactions. Here, we demonstrate that the interaction between tomato plants and a phytophagous insect is driven by a hidden interplay between their respective microbiotas. Tomato plants colonized by the soil fungus Trichoderma afroharzianum, a beneficial microorganism widely used in agriculture as a biocontrol agent, negatively affects the development and survival of the lepidopteran pest Spodoptera littoralis by altering the larval gut microbiota and its nutritional support to the host. Indeed, experiments aimed to restore the functional microbial community in the gut allow a complete rescue. Our results shed light on a novel role played by a soil microorganism in the modulation of plant-insect interaction, setting the stage for a more comprehensive analysis of the impact that biocontrol agents may have on ecological sustainability of agricultural systems.


Assuntos
Microbioma Gastrointestinal , Microbiota , Solanum lycopersicum , Animais , Solo , Insetos , Agricultura
17.
Proc Natl Acad Sci U S A ; 120(24): e2221826120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276425

RESUMO

Thousands of insect species have been introduced outside of their native ranges, and some of them strongly impact ecosystems and human societies. Because a large fraction of insects feed on or are associated with plants, nonnative plants provide habitat and resources for invading insects, thereby facilitating their establishment. Furthermore, plant imports represent one of the main pathways for accidental nonnative insect introductions. Here, we tested the hypothesis that plant invasions precede and promote insect invasions. We found that geographical variation in current nonnative insect flows was best explained by nonnative plant flows dating back to 1900 rather than by more recent plant flows. Interestingly, nonnative plant flows were a better predictor of insect invasions than potentially confounding socioeconomic variables. Based on the observed time lag between plant and insect invasions, we estimated that the global insect invasion debt consists of 3,442 region-level introductions, representing a potential increase of 35% of insect invasions. This debt was most important in the Afrotropics, the Neotropics, and Indomalaya, where we expect a 10 to 20-fold increase in discoveries of new nonnative insect species. Overall, our results highlight the strong link between plant and insect invasions and show that limiting the spread of nonnative plants might be key to preventing future invasions of both plants and insects.


Assuntos
Insetos , Espécies Introduzidas , Animais , Plantas
18.
Plant J ; 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39395022

RESUMO

Mature inflorescences of sunflowers (Helianthus annuus) orient constantly on average to the geographical east. According to one of the explanations of this phenomenon, the eastward orientation of sunflower inflorescences increases the number of attracted insect pollinators. We tested this hypothesis in three field experiments performed in flowering sunflower plantations. In experiments 1 and 2 we measured the number of insects trapped by the vertical walls of sticky sunflower models facing north, east, south, and west. In experiment 3 we counted the pollinators' landings on real sunflower inflorescences facing naturally east or turned artificially toward north, south, and west. We found that the all-day number of pollinators (predominantly bees) attracted to model and real sunflowers in H. annuus plantations is independent of the azimuth direction of sunflower heads, and after 10 h in the morning, the average number of pollinators counted every 20 min is practically constant in the rest of the day.

19.
Bioessays ; 45(9): e2300011, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37327252

RESUMO

Osmoregulation in insects is an essential process whereby changes in hemolymph osmotic pressure induce the release of diuretic or antidiuretic hormones to recruit individual osmoregulatory responses in a manner that optimizes overall homeostasis. However, the mechanisms by which different osmoregulatory circuits interact with other homeostatic networks to implement the correct homeostatic program remain largely unexplored. Surprisingly, recent advances in insect genetics have revealed several important metabolic functions are regulated by classic osmoregulatory pathways, suggesting that internal cues related to osmotic and metabolic perturbations are integrated by the same hormonal networks. Here, we review our current knowledge on the network mechanisms that underpin systemic osmoregulation and discuss the remarkable parallels between the hormonal networks that regulate body fluid balance and those involved in energy homeostasis to provide a framework for understanding the polymodal optimization of homeostasis in insects.


Assuntos
Osmorregulação , Equilíbrio Hidroeletrolítico , Animais , Equilíbrio Hidroeletrolítico/fisiologia , Homeostase , Pressão Osmótica , Insetos
20.
Proc Natl Acad Sci U S A ; 119(31): e2205821119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881793

RESUMO

Insects are traditionally thought to respond to noxious stimuli in an inflexible manner, without the ability to modulate their behavior according to context. We investigated whether bumblebees' attraction to high sucrose solution concentrations reduces their avoidance of noxious heat. Bees were given the choice between either unheated or noxiously heated (55 °C) feeders with different sucrose concentrations and marked by different colors. Bees avoided noxious feeders when the unheated feeders contained high sucrose concentrations, but progressively increased feeding from noxious feeders when the sucrose concentration at unheated feeders decreased. This shows a motivational trade-off of nociceptive responses. Bees used learned color cues for their decisions, and thus the trade-off was based on processing in the brain, rather than just peripheral processing. Therefore, bees can use contextual information to modulate nociceptive behavior. This ability is consistent with a capacity for pain experiences in insects.


Assuntos
Abelhas , Comportamento Alimentar , Nociceptividade , Animais , Abelhas/fisiologia , Sinais (Psicologia) , Motivação , Soluções , Sacarose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA