Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Philos Trans A Math Phys Eng Sci ; 382(2269): 20230057, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342213

RESUMO

Improving models of species' distributions is essential for conservation, especially in light of global change. Species distribution models (SDMs) often rely on mean environmental conditions, yet species distributions are also a function of environmental heterogeneity and filtering acting at multiple spatial scales. Geodiversity, which we define as the variation of abiotic features and processes of Earth's entire geosphere (inclusive of climate), has potential to improve SDMs and conservation assessments, as they capture multiple abiotic dimensions of species niches, however they have not been sufficiently tested in SDMs. We tested a range of geodiversity variables computed at varying scales using climate and elevation data. We compared predictive performance of MaxEnt SDMs generated using CHELSA bioclimatic variables to those also including geodiversity variables for 31 mammalian species in Colombia. Results show the spatial grain of geodiversity variables affects SDM performance. Some variables consistently exhibited an increasing or decreasing trend in variable importance with spatial grain, showing slight scale-dependence and indicating that some geodiversity variables are more relevant at particular scales for some species. Incorporating geodiversity variables into SDMs, and doing so at the appropriate spatial scales, enhances the ability to model species-environment relationships, thereby contributing to the conservation and management of biodiversity. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.


Assuntos
Biodiversidade , Mudança Climática , Animais , Clima , Ecossistema , Mamíferos
2.
Sci Rep ; 14(1): 13984, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886526

RESUMO

Indian coastal waters are critical for dugong populations in the western Indian Ocean. Systematic spatial planning of dugong habitats can help to achieve biodiversity conservation and area-based protection targets in the region. In this study, we employed environmental niche modelling to predict suitable dugong habitats and identify influencing factors along its entire distribution range in Indian waters. We examined data on fishing pressures collected through systematic interview surveys, citizen-science data, and field surveys to demarcate dugong habitats with varying risks. Seagrass presence was the primary factor in determining dugong habitat suitability across the study sites. Other variables such as depth, bathymetric slope, and Euclidean distance from the shore were significant factors, particularly in predicting seasonal suitability. Predicted suitable habitats showed a remarkable shift from pre-monsoon in Palk Bay to post-monsoon in the Gulf of Mannar, indicating the potential of seasonal dugong movement. The entire coastline along the Palk Bay-Gulf of Mannar region was observed to be at high to moderate risk, including the Gulf of Mannar Marine National Park, a high-risk area. The Andaman Islands exhibited high suitability during pre- and post-monsoon season, whereas the Nicobar Islands were highly suitable for monsoon season. Risk assessment of modelled suitable areas revealed that < 15% of high-risk areas across Andaman and Nicobar Islands and Palk Bay and Gulf of Mannar, Tamil Nadu, fall within the existing protected areas. A few offshore reef islands are identified under high-risk zones in the Gulf of Kutch, Gujarat. We highlight the utility of citizen science and secondary data in performing large-scale spatial ecological analysis. Overall, identifying synoptic scale 'Critical Dugong Habitats' has positive implications for the country's progress towards achieving the global 30 × 30 target through systematic conservation planning.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Dugong , Ecossistema , Índia , Conservação dos Recursos Naturais/métodos , Animais , Oceano Índico , Estações do Ano
3.
Proc Biol Sci ; 280(1771): 20132001, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24089338

RESUMO

Assessments of the impact of offshore energy developments are constrained because it is not known whether fine-scale behavioural responses to noise lead to broader-scale displacement of protected small cetaceans. We used passive acoustic monitoring and digital aerial surveys to study changes in the occurrence of harbour porpoises across a 2000 km(2) study area during a commercial two-dimensional seismic survey in the North Sea. Acoustic and visual data provided evidence of group responses to airgun noise from the 470 cu inch array over ranges of 5-10 km, at received peak-to-peak sound pressure levels of 165-172 dB re 1 µPa and sound exposure levels (SELs) of 145-151 dB re 1 µPa(2) s(-1). However, animals were typically detected again at affected sites within a few hours, and the level of response declined through the 10 day survey. Overall, acoustic detections decreased significantly during the survey period in the impact area compared with a control area, but this effect was small in relation to natural variation. These results demonstrate that prolonged seismic survey noise did not lead to broader-scale displacement into suboptimal or higher-risk habitats, and suggest that impact assessments should focus on sublethal effects resulting from changes in foraging performance of animals within affected sites.


Assuntos
Distribuição Animal , Comportamento Animal/fisiologia , Ecossistema , Indústrias Extrativas e de Processamento/métodos , Ruído/efeitos adversos , Phocoena/fisiologia , Animais , Modelos Biológicos , Mar do Norte , Pressão/efeitos adversos , Escócia
4.
Ecol Evol ; 13(9): e10464, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720065

RESUMO

Outdoor recreation is widespread, with uncertain effects on wildlife. The human shield hypothesis (HSH) suggests that recreation could have differential effects on predators and prey, with predator avoidance of humans creating a spatial refuge 'shielding' prey from people. The generality of the HSH remains to be tested across larger scales, wherein human shielding may prove generalizable, or diminish with variability in ecological contexts. We combined data from 446 camera traps and 79,279 sampling days across 10 landscapes spanning 15,840 km2 in western Canada. We used hierarchical models to quantify the influence of recreation and landscape disturbance (roads, logging) on ungulate prey (moose, mule deer and elk) and carnivore (wolf, grizzly bear, cougar and black bear) site use. We found limited support for the HSH and strong responses to recreation at local but not larger spatial scales. Only mule deer showed positive but weak landscape-level responses to recreation. Elk were positively associated with local recreation while moose and mule deer responses were negative, contrary to HSH predictions. Mule deer showed a more complex interaction between recreation and land-use disturbance, with more negative responses to recreation at lower road density or higher logged areas. Contrary to HSH predictions, carnivores did not avoid recreation and grizzly bear site use was positively associated. We also tested the effects of roads and logging on temporal activity overlap between mule deer and recreation, expecting deer to minimize interaction with humans by partitioning time in areas subject to more habitat disturbance. However, temporal overlap between people and deer increased with road density. Our findings highlight the complex ecological patterns that emerge at macroecological scales. There is a need for expanded monitoring of human and wildlife use of recreation areas, particularly multi-scale and -species approaches to studying the interacting effects of recreation and land-use change on wildlife.

5.
Ecol Evol ; 13(11): e10733, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034339

RESUMO

The management objectives of many protected areas must meet the dual mandates of protecting biodiversity while providing recreational opportunities. It is difficult to balance these mandates because it takes considerable effort to monitor both the status of biodiversity and impacts of recreation. Using detections from 45 camera traps deployed between July 2019 and September 2021, we assessed the potential impacts of recreation on spatial and temporal activity for 8 medium- and large-bodied terrestrial mammals in an isolated alpine protected area: Cathedral Provincial Park, British Columbia, Canada. We hypothesised that some wildlife perceive a level of threat from people, such that they avoid 'risky times' or 'risky places' associated with human activity. Other species may benefit from associating with people, be it through access to anthropogenic resource subsidies or filtering of competitors/predators that are more human-averse (i.e., human shield hypothesis). Specifically, we predicted that large carnivores would show the greatest segregation from people while mesocarnivores and ungulates would associate spatially with people. We found spatial co-occurrence between ungulates and recreation, consistent with the human shield hypothesis, but did not see the predicted negative relationship between larger carnivores and humans, except for coyotes (Canis latrans). Temporally, all species other than cougars (Puma concolor) had diel activity patterns significantly different from that of recreationists, suggesting potential displacement in the temporal niche. Wolves (Canis lupus) and mountain goats (Oreamnos americanus) showed shifts in temporal activity away from people on recreation trails relative to off-trail areas, providing further evidence of potential displacement. Our results highlight the importance of monitoring spatial and temporal interactions between recreation activities and wildlife communities, in order to ensure the effectiveness of protected areas in an era of increasing human impacts.

6.
Conserv Sci Pract ; 4(7): e12743, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35935172

RESUMO

The dual mandate for many protected areas (PAs) to simultaneously promote recreation and conserve biodiversity may be hampered by negative effects of recreation on wildlife. However, reports of these effects are not consistent, presenting a knowledge gap that hinders evidence-based decision-making. We used camera traps to monitor human activity and terrestrial mammals in Golden Ears Provincial Park and the adjacent University of British Columbia Malcolm Knapp Research Forest near Vancouver, Canada, with the objective of discerning relative effects of various forms of recreation on cougars (Puma concolor), black bears (Ursus americanus), black-tailed deer (Odocoileus hemionus), snowshoe hares (Lepus americanus), coyotes (Canis latrans), and bobcats (Lynx rufus). Additionally, public closures of the study area associated with the COVD-19 pandemic offered an unprecedented period of human-exclusion through which to explore these effects. Using Bayesian generalized mixed-effects models, we detected negative effects of hikers (mean posterior estimate = -0.58, 95% credible interval [CI] -1.09 to -0.12) on weekly bobcat habitat use and negative effects of motorized vehicles (estimate = -0.28, 95% CI -0.61 to -0.05) on weekly black bear habitat use. We also found increased cougar detection rates in the PA during the COVID-19 closure (estimate = 0.007, 95% CI 0.005 to 0.009), but decreased cougar detection rates (estimate = -0.006, 95% CI -0.009 to -0.003) and increased black-tailed deer detection rates (estimate = 0.014, 95% CI 0.002 to 0.026) upon reopening of the PA. Our results emphasize that effects of human activity on wildlife habitat use and movement may be species- and/or activity-dependent, and that camera traps can be an invaluable tool for monitoring both wildlife and human activity, collecting data even when public access is barred. Further, we encourage PA managers seeking to promote both biodiversity conservation and recreation to explicitly assess trade-offs between these two goals in their PAs.

7.
Innovation (Camb) ; 2(2): 100092, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34557746

RESUMO

The recent mass mortality event of more than 330 African elephants in Botswana has been attributed to biotoxins produced by cyanobacteria; however, scientific evidence for this is lacking. Here, by synthesizing multiple sources of data, we show that, during the past decades, the widespread hypertrophic waters in Southern Africa have entailed an extremely high risk and frequent exposure of cyanotoxins to the wildlife within this area, which functions as a hotspot of mammal species richness. The hot and dry climatic extremes have most likely acted as the primary trigger of the recent and perhaps also of prehistoric mass mortality events. As such climate extremes are projected to become more frequent in Southern Africa in the near future, there is a risk that similar tragedies may take place, rendering African megafauna species, especially those that are already endangered, in risk of extinction. Moreover, cyanotoxin poisoning amplified by climate change may have unexpected cascading effects on human societies. Seen within this perspective, the tragic mass death of the world's largest terrestrial mammal species serves as an alarming early warning signal of future environmental catastrophes in Southern Africa. We suggest that systematic, quantitative cyanotoxin risk assessments are made and precautionary actions to mitigate the risks are taken without hesitation to ensure the health and sustainability of the megafauna and human societies within the region.

8.
Ecol Evol ; 10(7): 3318-3329, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273989

RESUMO

The sea otter (Enhydra lutris) is a marine mammal hunted to near extinction during the 1800s. Despite their well-known modern importance as a keystone species, we know little about historical sea otter ecology. Here, we characterize the ecological niche of ancient southern sea otters (E. lutris nereis) using δ13C analysis and δ15N analysis of bones recovered from archaeological sites spanning ~7,000 to 350 years before present (N = 112 individuals) at five regions along the coast of California. These data are compared with previously published data on modern animals (N = 165) and potential modern prey items. In addition, we analyze the δ15N of individual amino acids for 23 individuals to test for differences in sea otter trophic ecology through time. After correcting for tissue-specific and temporal isotopic effects, we employ nonparametric statistics and Bayesian niche models to quantify differences among ancient and modern animals. We find ancient otters occupied a larger isotopic niche than nearly all modern localities; likely reflecting broader habitat and prey use in prefur trade populations. In addition, ancient sea otters at the most southerly sites occupied an isotopic niche that was more than twice as large as ancient otters from northerly regions. This likely reflects greater invertebrate prey diversity in southern California relative to northern California. Thus, we suggest the potential dietary niche of sea otters in southern California could be larger than in central and northern California. At two sites, Año Nuevo and Monterey Bay, ancient otters had significantly higher δ15N values than modern populations. Amino acid δ15N data indicated this resulted from shifting baseline isotope values, rather than a change in sea otter trophic ecology. Our results help in better understanding the contemporary ecological role of sea otters and exemplify the strength of combing zooarchaeological and biological information to provide baseline data for conservation efforts.

9.
R Soc Open Sci ; 6(6): 190335, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31312495

RESUMO

Estimating impacts of offshore windfarm construction on marine mammals requires data on displacement in relation to different noise levels and sources. Using echolocation detectors and noise recorders, we investigated harbour porpoise behavioural responses to piling noise during the 10-month foundation installation of a North Sea windfarm. Current UK guidance assumes total displacement within 26 km of pile driving. By contrast, we recorded a 50% probability of response within 7.4 km (95% CI = 5.7-9.4) at the first location piled, decreasing to 1.3 km (95% CI = 0.2-2.8) by the final location; representing 28% (95% CI = 21-35) and 18% (95% CI = 13-23) displacement of individuals within 26 km. Distance proved as good a predictor of responses as audiogram-weighted received levels, presenting a more practicable variable for environmental assessments. Critically, acoustic deterrent device (ADD) use and vessel activity increased response levels. Policy and management to minimize impacts of renewables on cetaceans have concentrated on pile-driving noise. Our results highlight the need to consider trade-offs between efforts to reduce far-field behavioural disturbance and near-field injury through ADD use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA