RESUMO
AIMS: Neocosmospora species are saprobes, endophytes, and pathogens belonging to the family Nectriaceae. This study aims to investigate the taxonomy, biosynthetic potential, and application of three newly isolated Neocosmospora species from mangrove habitats in the southern part of Thailand using phylogeny, bioactivity screening, genome sequencing, and bioinformatics analysis. METHODS AND RESULTS: Detailed descriptions, illustrations, and a multi-locus phylogenetic tree with large subunit ribosomal DNA (LSU), internal transcribed spacer (ITS), translation elongation factor 1-alpha (ef1-α), and RNA polymerase II second largest subunit (RPB2) regions showing the placement of three fungal strains, MFLUCC 17-0253, MFLUCC 17-0257, and MFLUCC 17-0259 clustered within the Neocosmospora clade with strong statistical support. Fungal crude extracts of the new species N. mangrovei MFLUCC 17-0253 exhibited strong antifungal activity to control Colletotrichum truncatum CG-0064, while N. ferruginea MFLUCC 17-0259 exhibited only moderate antifungal activity toward C. acutatum CC-0036. Thus, N. mangrovei MFLUCC 17-0253 was sequenced by Oxford nanopore technology. The bioinformatics analysis revealed that 49.17 Mb genome of this fungus harbors 41 potential biosynthetic gene clusters. CONCLUSION: Two fungal isolates of Neocosmospora and a new species of N. mangrovei were reported in this study. These fungal strains showed activity against pathogenic fungi causing anthracnose in chili. In addition, full genome sequencing and bioinformatics analysis of N. mangrovei MFLUCC 17-0253 were obtained.
Assuntos
Avicennia , Colletotrichum , Filogenia , Doenças das Plantas , Antifúngicos/farmacologia , Ascomicetos/genética , Agentes de Controle Biológico , Colletotrichum/genética , DNA Fúngico/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Tailândia , Avicennia/microbiologiaRESUMO
Tannery effluents contain high amounts of polluting chemicals, such as salts and heavy metals released often to surface waters. New economic and eco-friendly purification methods are needed. Two adsorbing materials and five salt-tolerant fungal isolates from mangrove habitat were studied. Purification experiments were carried out using the pollutant adsorbents biochar and the biomass of vetiver grass (Chrysopogon zizanioides) roots and the fungi Cladosporium cladosporioides, Phomopsis glabrae, Aspergillus niger, Emericellopsis sp., and Scopulariopsis sp., which were isolated from mangrove sediment. They efficacy to reduce pollutants was studied in different combinations. Salinity, turbidity, total dissolved solids, total suspended solids, phenols, nitrogen, ammonia. Biological and chemical oxygen demand (BOD, COD) and several heavy metals were measured. The adsorbents were efficient reducing the pollutants to 15-50% of the original. The efficiency of the combination of biochar and roots was generally at the same level as the adsorbents alone. Some pollutants such as turbidity, COD and ammonium were reduced slightly more by the combination than the adsorbents alone. From all 14 treatments, Emericellopsis sp. with biochar and roots appeared to be the most efficient reducing pollutants to < 10-30%. BOD and COD were reduced to ca 5% of the original. The treatment was efficient in reducing also heavy metals (As, Cd, Cr, Mn Pb, Zn). The fungal species originating from the environment instead of the strains present in the tannery effluent reduced pollutants remarkably and the adsorbents improved the reduction efficiency. However, the method needs development for effluents with high pollutant concentrations to fulfil the environmental regulations.
Assuntos
Biodegradação Ambiental , Biomassa , Carvão Vegetal , Fungos , Metais Pesados , Raízes de Plantas , Poaceae , Curtume , Poluentes Químicos da Água , Carvão Vegetal/química , Poaceae/microbiologia , Raízes de Plantas/microbiologia , Fungos/isolamento & purificação , Fungos/classificação , Águas Residuárias/microbiologia , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Adsorção , Purificação da Água/métodos , Resíduos Industriais/análise , Áreas AlagadasRESUMO
One chromone (1), together with four known alkaloids, were isolated from the mangrove endophytic fungus Aspergillus sp. ZJ-68. Their structures were elucidated by a combination of HRESIMS and NMR spectroscopic analyses. Compound 1 showed strong anti-inflammatory activity in vitro by inhibiting nitric oxide (NO) production in lipopolysaccharide-activated RAW264.7 cells with an IC50 value of 4.094 ± 0.8 µM, which was better than positive drug indomethacin (IC50=35.8 ± 0.5 µM).
Assuntos
Rhizophoraceae , Animais , Camundongos , Rhizophoraceae/microbiologia , Cromonas/farmacologia , Aspergillus/química , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Estrutura MolecularRESUMO
Six new DIKETOPIPERAZINE alkaloids aspergiamides A-F (1-6), together with ten known alkaloids (7-16), were isolated from the mangrove endophytic fungus Aspergillus sp. 16-5c. The structures of the new compounds were elucidated based on 1D/2D NMR spectroscopic and HR-ESIMS data analyses. The absolute configurations of aspergiamides A-F were established based on the experimental and calculated ECD data. All the compounds were evaluated for the antidiabetic activity against α-glucosidase and PTP1B enzyme. The bioassay results disclosed compounds 1 and 9 exhibited significant α-glucosidase inhibitory with IC50 values of 18.2 and 7.6 µM, respectively; compounds 3, 10, 11, and 15 exhibited moderate α-glucosidase inhibition with IC50 values ranging from 40.7 to 83.9 µM; while no compounds showed obvious PTP1B enzyme inhibition activity.
Assuntos
Alcaloides/farmacologia , Aspergillus/química , Dicetopiperazinas/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , China , Diabetes Mellitus Tipo 2 , Humanos , Concentração Inibidora 50 , Áreas AlagadasRESUMO
Mangrove fungi, their ecological role in mangrove ecosystems, their bioproducts, and potential applications are reviewed in this article. Mangrove ecosystems can play an important role in beach protection, accretion promotion, and sheltering coastlines and creeks as barriers against devastating tropical storms and waves, seawater, and air pollution. The ecosystems are characterized by high average and constant temperatures, high salinity, strong winds, and anaerobic muddy soil. The mangrove ecosystems also provide the unique habitats for the colonization of fungi which can produce different kinds of enzymes for industrial uses, recycling of plants and animals in the ecosystems, and the degradation of pollutants. Many mangrove ecosystem-associated fungi also can produce exopolysaccharides, Ca2+-gluconic acid, polymalate, liamocin, polyunsaturated fatty acids, biofuels, xylitol, enzymes, and bioactive substances, which have many potential applications in the bioenergy, food, agricultural, and pharmaceutical industries. Therefore, mangrove ecosystems are rich bioresources for bioindustries and ecology. It is necessary to identify more mangrove fungi and genetically edit them to produce a distinct array of novel chemical entities, enzymes, and bioactive substances.
Assuntos
Fungos , Plantas Tolerantes a Sal/microbiologia , Áreas Alagadas , Aureobasidium , Avicennia/microbiologia , Biodegradação Ambiental , Fungos/isolamento & purificação , Fungos/metabolismo , Fungos/fisiologia , Rhizophoraceae/microbiologiaRESUMO
To search for more microbial resources for screening environment-friendly antifoulants, we investigated the phylogenetic diversity and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China. A total of 176 isolates belonging to 57 fungal taxa were recovered and identified. The high levels of diversity and abundance of mangrove fungi from Techeng Isle were in accordance with previous studies on fungi from other mangrove ecosystems. Fifteen of the 176 isolates demonstrated high divergence (87-93%) from the known fungal taxa in GenBank. Moreover, 26 isolates recorded in mangrove ecosystems for the first time. These results suggested that mangrove sediments from Techeng Isle harbored some new fungal communities compared with other mangrove ecosystems. The antifouling activity of 57 representative isolates (belonging to 57 different fungal taxa) was tested against three marine bacteria (Loktanella hongkongensis, Micrococcus luteus and Pseudoalteromonas piscida) and two marine macrofoulers (bryozoan Bugula neritina and barnacle Balanus amphitrite). Approximately 40% of the tested isolates displayed distinct antifouling activity. Furthermore, 17 fungal isolates were found to display strong or a wide spectrum of antifouling activity in this study, suggesting that these isolates deserve further study as potential sources of novel antifouling metabolites. To our knowledge, this is the first report on the investigation of the phylogenetic diversity and antifouling potential of culturable fungi in mangrove sediments from Techeng Isle, China. These results contribute to our knowledge of mangrove fungi and further increases the pool of fungi available for natural bioactive product screening.
Assuntos
Incrustação Biológica/prevenção & controle , Produtos Biológicos/farmacologia , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Sedimentos Geológicos/microbiologia , Filogenia , Antibacterianos , Bactérias/efeitos dos fármacos , Biodiversidade , China , DNA Fúngico , Ecossistema , Fungos/genética , Água do Mar/microbiologia , Áreas AlagadasRESUMO
Vermicomposting of food waste amended with biochar and cow dung was studied during a 90-day composting period. The improvement of the vermicomposting process by adding three mangrove fungal species as additional amendments were studied. The use of mangrove fungi Acrophialophora jodhpurensis as a bio-catalytic actor during vermicomposting proved to be beneficial in terms of final compost quality (available N, P and K) and the shortening of the composting period. All three fungal species, however, reached the neutral pH at the end of the composting period and appeared to be beneficial. Heavy metal (Cd, Ni, Pb, Zn, Cu and Cr) concentrations decreased throughout the composting process. Food waste can be treated using vermicomposting with biochar, cow dung and the mangrove fungi A. jodhpurensis. The final vermicomposting product is suitable for agricultural use.
Assuntos
Oligoquetos , Eliminação de Resíduos , Animais , Carvão Vegetal , Alimentos , Alimentos Orgânicos , Fungos , SordarialesRESUMO
With the over 2000 marine fungi and fungal-like organisms documented so far, some have adapted fully to life in the sea, while some have the ability to tolerate environmental conditions in the marine milieu. These organisms have evolved various mechanisms for growth in the marine environment, especially against salinity gradients. This review highlights the response of marine fungi, fungal-like organisms and terrestrial fungi (for comparison) towards salinity variations in terms of their growth, spore germination, sporulation, physiology, and genetic adaptability. Marine, freshwater and terrestrial fungi and fungal-like organisms vary greatly in their response to salinity. Generally, terrestrial and freshwater fungi grow, germinate and sporulate better at lower salinities, while marine fungi do so over a wide range of salinities. Zoosporic fungal-like organisms are more sensitive to salinity than true fungi, especially Ascomycota and Basidiomycota. Labyrinthulomycota and marine Oomycota are more salinity tolerant than saprolegniaceous organisms in terms of growth and reproduction. Wide adaptability to saline conditions in marine or marine-related habitats requires mechanisms for maintaining accumulation of ions in the vacuoles, the exclusion of high levels of sodium chloride, the maintenance of turgor in the mycelium, optimal growth at alkaline pH, a broad temperature growth range from polar to tropical waters, and growth at depths and often under anoxic conditions, and these properties may allow marine fungi to positively respond to the challenges that climate change will bring. Other related topics will also be discussed in this article, such as the effect of salinity on secondary metabolite production by marine fungi, their evolution in the sea, and marine endophytes.
RESUMO
Mangroves are one of the most productive and biologically diverse ecosystems, with unique plants, animals, and microorganisms adapted to the harsh coastal environments. Although fungi are widely distributed in the mangrove ecosystem and they are playing an important role in the decomposition of organic matter, their genomic profiles are still poorly understood. In this study, we isolated seven Ascomycota fungi (Westerdykella dispersa F012, Trichoderma lixii F014, Aspergillus tubingensis F023, Penicillium brefeldianum F032, Neoroussoella solani F033, Talaromyces fuscoviridis F034, and Arthrinium marii F035) from rhizospheres of two mangroves of Kandelia obovata and Acanthus ilicifolius. We sequenced and assembled the whole genome of these fungi, resulting in size ranging from 29 to 48 Mb, while contig N50 from 112 to 833 Kb. We generated six novel fungi genomes except A. tubingensis, and the gene completeness and genome completeness of all seven genomes are higher than 94%. Comparing with non-mangrove fungi, we found Carbohydrate-Binding Modules (CBM32), a subfamily of carbohydrate active enzymes, only detected in two mangrove fungi. Another two subfamilies, Glycoside Hydrolases (GH6) and Polysaccharide Lyases (PL4), were significantly different in gene copy number between K. obovata and A. ilicifolius rhizospheres (P-value 0.041 for GH6, 0.047 for PL4). These findings may indicate an important influence of mangrove environments or hosts on the ability of decomposition in rhizosphere fungi. Secondary metabolite biosynthesis gene clusters were detected and we found the mangrove fungi averagely contain 18 Type I Polyketide (t1pks) synthase, which was significantly higher than 13 in non-mangrove fungi (P-value 0.048), suggesting their potential roles in producing bioactive compounds that important for fungi development and ecology. We reported seven mangrove-associated fungal genomes in this study and compared their carbohydrate active enzymes and secondary metabolites (SM) genes with those of non-mangrove fungi, and the results suggest that there are differences in genetic information among fungi in different habitats.
RESUMO
Marine-derived fungi provide plenty of structurally unique and biologically active secondary metabolites. We screened 87 marine products from mangrove fungi in the South China Sea for anticancer activity by MTT assay. 14% of the compounds (11/86) exhibited a potent activity against cancer in vitro. Importantly, some compounds such as compounds 78 and 81 appeared to be promising for treating cancer patients with multidrug resistance, which should encourage more efforts to isolate promising candidates for further development as clinically useful chemotherapeutic drugs. Furthermore, DNA intercalation was not involved in their anticancer activities, as determined by DNA binding assay. On the other hand, the structure-activity analysis indicated that the hydroxyl group was important for their cytotoxic activity and that bulky functional groups such as phenyl rings could result in a loss of biological activity, which will direct the further development of marine product-based derivatives.
Assuntos
Antineoplásicos/farmacologia , Fungos/metabolismo , Neoplasias/tratamento farmacológico , Rhizophoraceae/microbiologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , China , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Fungos/isolamento & purificação , Humanos , Neoplasias/patologia , Água do Mar , Relação Estrutura-Atividade , Sais de Tetrazólio , TiazóisRESUMO
Ten fungal isolates with an ability to degrade crude oil were isolated from select marine substrates, such as mangrove sediments, Arabian Sea sediments, and tarballs. Out of the ten isolates, six belonged to Aspergillus, two to Fusarium and one each to Penicillium and Acremonium as identified using ITS rDNA sequencing. The selected ten fungal isolates were found to degrade the long-chain n-alkanes as opposed to short-chain n-alkanes from the crude oil. Mangrove fungus #NIOSN-M126 (Penicillium citrinum) was found to be highly efficient in biodegradation of crude oil, reducing the total crude oil content by 77% and the individual n-alkane fraction by an average of 95.37%, indicating it to be a potential candidate for the development into a bioremediation agent.
RESUMO
A new cyclic tetrapeptide, cyclo-(L-leucyl-trans-4-hydroxy-L-prolyl-D-leucyl-trans-4-hydroxy-L-proline) (1), was isolated from the co-culture broth of two mangrove fungi Phomopsis sp. K38 and Alternaria sp. E33. The structure of 1 was determined by analysis of spectroscopic data and Marfey's analytic method. Primary bioassay demonstrated that compound 1 exhibited moderate to high inhibitory activity against four crop-threatening fungi including Gaeumannomyces graminis, Rhizoctonia cerealis, Helminthosporium sativum and Fusarium graminearum as compared with triadimefon.
Assuntos
Alternaria/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Ascomicetos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Antifúngicos/química , Técnicas de Cocultura , Fusarium/efeitos dos fármacos , Helminthosporium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos Cíclicos/química , Rhizoctonia/efeitos dos fármacos , Rhizophoraceae/microbiologia , Triazóis/farmacologiaRESUMO
BACKGROUND: The strategy that co-cultivation two microorganisms in a single confined environment were recently developed to generate new active natural products. In the study, two new cyclic tetrapeptides, cyclo (D-Pro-L-Tyr-L-Pro-L-Tyr) (1) and cyclo (Gly-L-Phe-L-Pro-L-Tyr) (2) were isolated from the co-culture broth of two mangrove fungi Phomopsis sp. K38 and Alternaria sp. E33. Their antifungal activity against Candida albicans, Gaeumannomyces graminis, Rhzioctonia cerealis, Helminthosporium sativum and Fusarium graminearum was evaluated. MATERIALS AND METHODS: Different column chromatographic techniques with different solvent systems were used to separate the constituents of the n-butyl alcohol extract of the culture broth. The structures of compounds 1 and 2 were identified by analysis of spectroscopic data (one-dimensional, two-dimensional - nuclear magnetic resonance, mass spectrometry) and Marfey's analytic method. Dilution method was used for the evaluation of antifungal activity. RESULTS: Compounds 1 and 2 were identified as cyclo (D-Pro-L-Tyr-L-Pro-L-Tyr) and cyclo (Gly-L-Phe-L-Pro-L-Tyr), respectively. Compounds 1 and 2 showed moderate to high antifungal activities as compared with the positive control. CONCLUSIONS: Compounds 1 and 2 are new cyclopeptides with moderate antifungal activity being worthy of consideration for the development and research of antifungal agents.
RESUMO
OBJECTIVE: To investigate the cytotoxic activity of endophytic fungi isolated from mangrove fungi. METHODS: In the present study the DNA was isolated and the ITS region of 5.8s rRNA was amplified using specific primers ITS 1 and ITS4 and sequence was determined using automated sequencers. Blast search sequence similarity was found against the existing non redundant nucleotide sequence database thus, identified as Aspergilus flavus, Hyporcaea lixii, Aspergillus niger, Eutorium amstelodami, Irpex hydnoides and Neurospora crassa. Among the seven isolates, one fungi Irpex hydnoides was selected for further studies. The fungi were grown in sabouraud broth for five days and filtrate were separated and subjected to ethyl acetate for further studies. RESULTS: Nearly half (49.25%) of the extracts showed activity (IC50 of 125µg/mL). These values were within the cutoff point of the National Cancer Institute criteria for cytotoxicity (IC50<20 µg/mL) in the screening of crude plant extracts. The GC MS analysis revealed that the active principals might be Tetradecane (6.26%) with the RT 8.606. CONCLUSIONS: It is clear from the present study that mangrove fungi with bioactive metabolites can be expected to provide high quality biological material for high throughout biochemical, anti cancer screening programmes. The results help us conclude that the potential of using metabolic engineering and post genomic approaches to isolate more novel bioactive compounds and to make their possible commercial application is not far off.