Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 136(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37039099

RESUMO

The width of cisternal structures in the endoplasmic reticulum (ER) is maintained by the ER-resident protein Climp63 (also known as CKAP4). Self-association of the Climp63 luminal domain (LD), even though moderate, plays a key role in shaping ER sheets. However, the molecular basis of luminal spacing remains elusive. Here, we analyzed the homotypic interactions of the Climp63 LD using deep learning-predicted structures. The LD is highly α-helical, with a flexible leading helix followed by a five-helix bundle (5HB). Charge-based trans associations were formed between the tip of the 5HB and the C-terminus of the LD, consistent with generating a width of ∼50 nm for ER sheets. The leading helix of the LD was dispensable for homotypic interactions but packing of the 5HB regulated self-association. The density of Climp63, likely reflecting the strength of cis interactions, influenced the ER width, which was maintained by trans interactions. These results indicate that a general principle in maintaining membrane tethering is multi-modular self-association.


Assuntos
Retículo Endoplasmático , Retículo Endoplasmático/metabolismo
2.
J Biol Chem ; 298(1): 101438, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808209

RESUMO

Hereditary spastic paraplegia (HSP) comprises a heterogeneous group of neuropathies affecting upper motor neurons and causing progressive gait disorder. Mutations in the gene SPG3A/atlastin-1 (ATL1), encoding a dynamin superfamily member, which utilizes the energy from GTP hydrolysis for membrane tethering and fusion to promote the formation of a highly branched, smooth endoplasmic reticulum (ER), account for approximately 10% of all HSP cases. The continued discovery and characterization of novel disease mutations are crucial for our understanding of HSP pathogenesis and potential treatments. Here, we report a novel disease-causing, in-frame insertion in the ATL1 gene, leading to inclusion of an additional asparagine residue at position 417 (N417ins). This mutation correlates with complex, early-onset spastic quadriplegia affecting all four extremities, generalized dystonia, and a thinning of the corpus callosum. We show using limited proteolysis and FRET-based studies that this novel insertion affects a region in the protein central to intramolecular interactions and GTPase-driven conformational change, and that this insertion mutation is associated with an aberrant prehydrolysis state. While GTPase activity remains unaffected by the insertion, membrane tethering is increased, indicative of a gain-of-function disease mechanism uncommon for ATL1-associated pathologies. In conclusion, our results identify a novel insertion mutation with altered membrane tethering activity that is associated with spastic quadriplegia, potentially uncovering a broad spectrum of molecular mechanisms that may affect neuronal function.


Assuntos
Proteínas de Ligação ao GTP , Proteínas de Membrana , Mutação , Paraplegia Espástica Hereditária , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Insercional , Conformação Proteica , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(42): E9792-E9801, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30185561

RESUMO

Autophagy is an enigmatic cellular process in which double-membrane compartments, called "autophagosomes, form de novo adjacent to the endoplasmic reticulum (ER) and package cytoplasmic contents for delivery to lysosomes. Expansion of the precursor membrane phagophore requires autophagy-related 2 (ATG2), which localizes to the PI3P-enriched ER-phagophore junction. We combined single-particle electron microscopy, chemical cross-linking coupled with mass spectrometry, and biochemical analyses to characterize human ATG2A in complex with the PI3P effector WIPI4. ATG2A is a rod-shaped protein that can bridge neighboring vesicles through interactions at each of its tips. WIPI4 binds to one of the tips, enabling the ATG2A-WIPI4 complex to tether a PI3P-containing vesicle to another PI3P-free vesicle. These data suggest that the ATG2A-WIPI4 complex mediates ER-phagophore association and/or tethers vesicles to the ER-phagophore junction, establishing the required organization for phagophore expansion via the transfer of lipid membranes from the ER and/or the vesicles to the phagophore.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia/química , Humanos , Proteínas de Membrana/química , Complexos Multiproteicos/química , Fosfatos de Fosfatidilinositol/química , Conformação Proteica , Homologia de Sequência
4.
J Biol Chem ; 294(19): 7722-7739, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30910814

RESUMO

Membrane tethering is a highly regulated event occurring during the initial physical contact between membrane-bounded transport carriers and their target subcellular membrane compartments, thereby ensuring the spatiotemporal specificity of intracellular membrane trafficking. Although Rab-family small GTPases and specific Rab-interacting effectors, such as coiled-coil tethering proteins and multisubunit tethering complexes, are known to be involved in membrane tethering, how these protein components directly act upon the tethering event remains enigmatic. Here, using a chemically defined reconstitution system, we investigated the molecular basis of membrane tethering by comprehensively and quantitatively evaluating the intrinsic capacities of 10 representative human Rab-family proteins (Rab1a, -3a, -4a, -5a, -6a, -7a, -9a, -11a, -27a, and -33b) to physically tether two distinct membranes via homotypic and heterotypic Rab-Rab assembly. All of the Rabs tested, except Rab27a, specifically caused homotypic membrane tethering at physiologically relevant Rab densities on membrane surfaces (e.g. Rab/lipid molar ratios of 1:100-1:3,000). Notably, endosomal Rab5a retained its intrinsic potency to drive efficient homotypic tethering even at concentrations below the Rab/lipid ratio of 1:3,000. Comprehensive reconstitution experiments further uncovered that heterotypic combinations of human Rab-family isoforms, including Rab1a/6a, Rab1a/9a, and Rab1a/33b, can directly and selectively mediate membrane tethering. Rab1a and Rab9a in particular synergistically triggered very rapid and efficient membrane tethering reactions through their heterotypic trans-assembly on two opposing membranes. In conclusion, our findings establish that, in the physiological context, homotypic and heterotypic trans-assemblies of Rab-family small GTPases can provide the essential molecular machinery necessary to drive membrane tethering in eukaryotic endomembrane systems.


Assuntos
Lipídeos de Membrana/química , Membranas Artificiais , Proteínas rab de Ligação ao GTP/química , Humanos , Lipídeos de Membrana/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
5.
J Biol Chem ; 294(29): 11323-11332, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31171719

RESUMO

In eukaryotic cells, the growth rate is strictly regulated for proper progression of the cell cycle. In the budding yeast Saccharomyces cerevisiae, it was previously shown that cell growth dramatically slows down when the cells start budding at the G1/S transition. However, the molecular mechanism for this G1/S-associated growth arrest is unclear. In this study, using exocytic secretion, cyclin-dependent kinase (CDK) assay, immunoprecipitation, and microscopy, we demonstrate that the exocyst subunit Exo84, which is known to be phosphorylated in mitosis, can also be phosphorylated directly by Cdk1 in the late G1 phase. Of note, we found that the Cdk1-mediated Exo84 phosphorylation impairs exocytic secretion in the late G1 phase. Using conditional cdc mutants and phosphodeficient and phosphomimetic exo84 mutants, we further observed that Cdk1-phosphoryated Exo84 inhibits the exocyst complex assembly, exocytic secretion, and cell growth, which may be important for proper execution of the G1/S-phase transition before commitment to a complete cell cycle. Our results suggest that the direct Cdk1-mediated regulation of the exocyst complex critically contributes to the coordination of cell growth and cell cycle progression.


Assuntos
Proteína Quinase CDC2/metabolismo , Divisão Celular , Exocitose , Fase G1 , Saccharomyces cerevisiae/enzimologia , Fosforilação , Fase S , Saccharomyces cerevisiae/citologia
6.
Biochem Biophys Res Commun ; 529(3): 720-725, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736698

RESUMO

TMEM16E deficiency has been shown to be responsible for human limb-girdle muscular dystrophy LGMD2L. We found that endogenous TMEM16E co-localized with caveolin-3 at cytoplasmic vesicular compartments in a myotube from C2C12 cells (C2C12 myotube) without forming a molecular complex. In contrast, a myotube from murine myoblastic dysferlin-deficient GREG cells (GREG myotube) showed not only co-localization but also constitutive association of caveolin-3 and TMEM16E. GREG myotubes also displayed constitutive association of TMEM16E with DHPRα, which reside in different membrane compartments, indicating increased contact of the different vesicular membrane compartments. Τhese results suggest that a dynamic tethering of different membrane compartments might represent a distorted membrane damage repairing process in the absence of dysferlin.


Assuntos
Anoctaminas/metabolismo , Canais de Cálcio Tipo L/metabolismo , Disferlina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Anoctaminas/análise , Canais de Cálcio Tipo L/análise , Caveolina 3/análise , Caveolina 3/metabolismo , Disferlina/análise , Disferlina/genética , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/citologia
7.
Proc Natl Acad Sci U S A ; 114(28): E5559-E5568, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28645896

RESUMO

Dynamin-like proteins (DLPs) mediate various membrane fusion and fission processes within the cell, which often require the polymerization of DLPs. An IFN-inducible family of DLPs, the guanylate-binding proteins (GBPs), is involved in antimicrobial and antiviral responses within the cell. Human guanylate-binding protein 1 (hGBP1), the founding member of GBPs, is also engaged in the regulation of cell adhesion and migration. Here, we show how the GTPase cycle of farnesylated hGBP1 (hGBP1F) regulates its self-assembly and membrane interaction. Using vesicles of various sizes as a lipid bilayer model, we show GTP-dependent membrane binding of hGBP1F In addition, we demonstrate nucleotide-dependent tethering ability of hGBP1F Furthermore, we report nucleotide-dependent polymerization of hGBP1F, which competes with membrane binding of the protein. Our results show that hGBP1F acts as a nucleotide-controlled molecular switch by modulating the accessibility of its farnesyl moiety, which does not require any supportive proteins.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/química , Polímeros/química , Sítios de Ligação , Catálise , Membrana Celular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HeLa , Humanos , Hidrólise , Imunidade Inata , Lipossomos/química , Microscopia Eletrônica , Polimerização , Prenilação , Ligação Proteica
8.
Arch Biochem Biophys ; 677: 108163, 2019 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-31672499

RESUMO

Membrane proteins control and shape membrane trafficking processes. The role of protein structure in shaping cellular membranes is well established. However, a significant fraction of membrane proteins is disordered or contains long disordered regions. It becomes more and more clear that these disordered regions contribute to the function of membrane proteins. While the fold of a structured protein is essential for its function, being disordered seems to be a crucial feature of membrane bound intrinsically disordered proteins and protein regions. Here we outline the motifs that encode function in disordered proteins and discuss how these functional motifs enable disordered proteins to modulate membrane properties. These changes in membrane properties facilitate and regulate membrane trafficking processes which are highly abundant in eukaryotes.


Assuntos
Membrana Celular/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Membrana Celular/química , Humanos , Proteínas Intrinsicamente Desordenadas/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Transição de Fase , Domínios Proteicos
9.
Traffic ; 17(10): 1078-90, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27307091

RESUMO

Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter-membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low-curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p-bearing low-curvature liposomes even when the high-curvature liposomes are protein-free. Phosphorylation of the curvature-sensing amphipathic lipid-packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high-curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high-curvature liposomes and Ypt7p-bearing low-curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein-membrane interaction. Such high-curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole-vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high-curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane.


Assuntos
Membranas Intracelulares/metabolismo , Fusão de Membrana/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Sítios de Ligação , Proteínas de Fluorescência Verde/genética , Lipossomos/química , Lipossomos/metabolismo , Proteínas Luminescentes/genética , Proteínas de Fusão de Membrana/química , Proteínas de Fusão de Membrana/genética , Proteínas de Fusão de Membrana/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Complexos Multiproteicos/química , Corpos Multivesiculares/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Proteínas de Transporte Vesicular/química , Proteína Vermelha Fluorescente
10.
J Biol Chem ; 292(45): 18500-18517, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28939769

RESUMO

Membrane tethering is a fundamental process essential for the compartmental specificity of intracellular membrane trafficking in eukaryotic cells. Rab-family small GTPases and specific sets of Rab-interacting effector proteins, including coiled-coil tethering proteins and multisubunit tethering complexes, are reported to be responsible for membrane tethering. However, whether and how these key components directly and specifically tether subcellular membranes remains enigmatic. Using chemically defined proteoliposomal systems reconstituted with purified human Rab proteins and synthetic liposomal membranes to study the molecular basis of membrane tethering, we established here that Rab-family GTPases have a highly conserved function to directly mediate membrane tethering, even in the absence of any types of Rab effectors such as the so-called tethering proteins. Moreover, we demonstrate that membrane tethering mediated by endosomal Rab11a is drastically and selectively stimulated by its cognate Rab effectors, class V myosins (Myo5A and Myo5B), in a GTP-dependent manner. Of note, Myo5A and Myo5B exclusively recognized and cooperated with the membrane-anchored form of their cognate Rab11a to support membrane tethering mediated by trans-Rab assemblies on opposing membranes. Our findings support the novel concept that Rab-family proteins provide a bona fide membrane tether to physically and specifically link two distinct lipid bilayers of subcellular membranes. They further indicate that Rab-interacting effector proteins, including class V myosins, can regulate these Rab-mediated membrane-tethering reactions.


Assuntos
Endossomos/metabolismo , Guanosina Trifosfato/metabolismo , Membranas Intracelulares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas rab de Ligação ao GTP/agonistas , Acilação , Endossomos/enzimologia , Histidina/química , Histidina/genética , Histidina/metabolismo , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/enzimologia , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/química , Miosina Tipo V/genética , Ácidos Oleicos/química , Ácidos Oleicos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Prenilação de Proteína , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Succinatos/química , Succinatos/metabolismo , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
11.
Int J Mol Sci ; 19(2)2018 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-29439474

RESUMO

Plant chloroplasts originate from the symbiotic relationship between ancient free-living cyanobacteria and ancestral eukaryotic cells. Since the discovery of the bacterial derivative FtsZ gene-which encodes a tubulin homolog responsible for the formation of the chloroplast inner division ring (Z ring)-in the Arabidopsis genome in 1995, many components of the chloroplast division machinery were successively identified. The knowledge of these components continues to expand; however, the mode of action of the chloroplast dividing system remains unknown (compared to bacterial cell division), owing to the complexities faced in in planta analyses. To date, yeast and bacterial heterologous expression systems have been developed for the reconstitution of Z ring-like structures formed by chloroplast FtsZ. In this review, we especially focus on recent progress of our bacterial system using the model bacterium Escherichia coli to dissect and understand the chloroplast division machinery-an evolutionary hybrid structure composed of both bacterial (inner) and host-derived (outer) components.


Assuntos
Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Escherichia coli/genética , Transgenes , Proteínas de Cloroplastos/metabolismo , Cloroplastos/fisiologia , Escherichia coli/metabolismo
12.
J Exp Bot ; 69(1): 117-132, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29036578

RESUMO

The infection of plants by viruses depends on cellular mechanisms that support the replication of the viral genomes, and the cell-to-cell and systemic movement of the virus via plasmodesmata (PD) and the connected phloem. While the propagation of some viruses requires the conventional endoplasmic reticulum (ER)-Golgi pathway, others replicate and spread between cells in association with the ER and are independent of this pathway. Using selected viruses as examples, this review re-examines the involvement of membranes and the cytoskeleton during virus infection and proposes potential roles of class VIII myosins and membrane-tethering proteins in controlling viral functions at specific ER subdomains, such as cortical microtubule-associated ER sites, ER-plasma membrane contact sites, and PD.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Miosinas/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Replicação Viral , Retículo Endoplasmático/metabolismo , Microtúbulos/metabolismo , Plantas/metabolismo , Plantas/virologia , Plasmodesmos/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(35): 12793-8, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25139988

RESUMO

The autophagy-related 1 (Atg1) complex of Saccharomyces cerevisiae has a central role in the initiation of autophagy following starvation and TORC1 inactivation. The complex consists of the protein kinase Atg1, the TORC1 substrate Atg13, and the trimeric Atg17-Atg31-Atg29 scaffolding subcomplex. Autophagy is triggered when Atg1 and Atg13 assemble with the trimeric scaffold. Here we show by hydrogen-deuterium exchange coupled to mass spectrometry that the mutually interacting Atg1 early autophagy targeting/tethering domain and the Atg13 central domain are highly dynamic in isolation but together form a stable complex with ∼ 100-nM affinity. The Atg1-Atg13 complex in turn binds as a unit to the Atg17-Atg31-Atg29 scaffold with ∼ 10-µM affinity via Atg13. The resulting complex consists primarily of a dimer of pentamers in solution. These results lead to a model for autophagy initiation in which Atg1 and Atg13 are tightly associated with one another and assemble transiently into the pentameric Atg1 complex during starvation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia , Calorimetria , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Deleção de Genes , Dados de Sequência Molecular , Complexos Multiproteicos/química , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
14.
Proc Natl Acad Sci U S A ; 110(24): 9800-5, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716696

RESUMO

When macroautophagy, a catabolic process that rids the cells of unwanted proteins, is initiated, 30-60 nm Atg9 vesicles move from the Golgi to the preautophagosomal structure (PAS) to initiate autophagosome formation. The Rab GTPase Ypt1 and its mammalian homolog Rab1 regulate macroautophagy and two other trafficking events: endoplasmic reticulum-Golgi and intra-Golgi traffic. How a Rab, which localizes to three distinct cellular locations, achieves specificity is unknown. Here we show that transport protein particle III (TRAPPIII), a conserved autophagy-specific guanine nucleotide exchange factor for Ypt1/Rab1, is recruited to the PAS by Atg17. We also show that activated Ypt1 recruits the putative membrane curvature sensor Atg1 to the PAS, bringing it into proximity to its binding partner Atg17. Since Atg17 resides at the PAS, these events ensure that Atg1 will specifically localize to the PAS and not to the other compartments where Ypt1 resides. We propose that Ypt1 regulates Atg9 vesicle tethering by modulating the delivery of Atg1 to the PAS. These events appear to be conserved in higher cells.


Assuntos
Fagossomos/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Ligação Proteica , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab1 de Ligação ao GTP/genética , Proteínas rab1 de Ligação ao GTP/metabolismo
15.
J Eukaryot Microbiol ; 62(5): 694-700, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25847055

RESUMO

Proteins with membrane occupation and recognition nexus (MORN) motifs are associated with cell fission in apicomplexan parasites, chloroplast division in Arabidopsis and the motility of sperm cells. We found that ciliates are among those that encode the largest variety of MORN proteins. Tetrahymena thermophila expresses 129 MORN protein-encoding genes, some of which are specifically up-regulated during conjugation. A lipid-binding assay underpins the assumption that the predominant function of MORN motifs themselves is to confer the ability of lipid binding. The localisation of four MORN candidate proteins with similar characteristics highlights the functional diversity of this group especially in ciliates.


Assuntos
Motivos de Aminoácidos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/química , Tetrahymena thermophila/metabolismo , Sequência de Aminoácidos , Metabolismo dos Lipídeos , Proteínas de Membrana/isolamento & purificação , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/isolamento & purificação , Tetrahymena thermophila/genética
16.
Autophagy ; 20(3): 714-715, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38083843

RESUMO

Macroautophagy/autophagy is a highly conserved process that involves the degradation of proteins, damaged organelles, and other cytoplasmic macromolecules. Autophagosome-lysosome fusion is critical for successful substrate degradation and is mediated by SNARE proteins. The fusion process requires additional vesicle docking and tethering-regulating factors. Our recent work has uncovered a functional model of autophagosome-lysosome fusion. We demonstrated that the six-subunit homotypic fusion and vacuole protein sorting (HOPS) complex can be assembled by two subcomplexes, the VPS39-VPS11 subcomplex (HOPS-2) and the VPS41-VPS16-VPS18-VPS33A subcomplex (HOPS-4). VPS39 binds with RAB2 on the autophagosome and VPS41 binds with RAB39A on the lysosome, which then promotes membrane tethering and autophagic SNARE-mediated membrane fusion. Moreover, we have revealed that ALS- and FTD-related C9orf72 is a guanine exchange factor (GEF) for RAB39A. In this punctum, we discuss how the C9orf72-RAB39A-HOPS axis function regulates autophagosome-lysosome fusion.


Assuntos
Autofagia , Macroautofagia , Proteína C9orf72/metabolismo , Autofagossomos/metabolismo , Fusão de Membrana/fisiologia , Proteínas SNARE/metabolismo , Lisossomos/metabolismo
17.
J Fungi (Basel) ; 10(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276033

RESUMO

Lipid droplets (LDs) are intracellular organelles that play important roles in cellular lipid metabolism; they change their sizes and numbers in response to both intracellular and extracellular signals. Changes in LD size reflect lipid synthesis and degradation and affect many cellular activities, including energy supply and membrane synthesis. Here, we focused on the function of the endoplasmic reticulum-plasma membrane tethering protein Ice2 in LD dynamics in the fungal pathogen Candida albicans (C. albicans). Nile red staining and size quantification showed that the LD size increased in the ice2Δ/Δ mutant, indicating the critical role of Ice2 in the regulation of LD dynamics. A lipid content analysis further demonstrated that the mutant had lower phosphatidylcholine levels. As revealed with GFP labeling and fluorescence microscopy, the methyltransferase Cho2, which is involved in phosphatidylcholine synthesis, had poorer localization in the plasma membrane in the mutant than in the wild-type strain. Interestingly, the addition of the phosphatidylcholine precursor choline led to the recovery of normal-sized LDs in the mutant. These results indicated that Ice2 regulates LD size by controlling intracellular phosphatidylcholine levels and that endoplasmic reticulum-plasma membrane tethering proteins play a role in lipid metabolism regulation in C. albicans. This study provides significant findings for further investigation of the lipid metabolism in fungi.

18.
Dev Cell ; 58(2): 121-138.e9, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36693319

RESUMO

Membrane contact sites (MCSs) are heterogeneous in shape, composition, and dynamics. Despite this diversity, VAP proteins act as receptors for multiple FFAT motif-containing proteins and drive the formation of most MCSs that involve the endoplasmic reticulum (ER). Although the VAP-FFAT interaction is well characterized, no model explains how VAP adapts to its partners in various MCSs. We report that VAP-A localization to different MCSs depends on its intrinsically disordered regions (IDRs) in human cells. VAP-A interaction with PTPIP51 and VPS13A at ER-mitochondria MCS conditions mitochondria fusion by promoting lipid transfer and cardiolipin buildup. VAP-A also enables lipid exchange at ER-Golgi MCS by interacting with oxysterol-binding protein (OSBP) and CERT. However, removing IDRs from VAP-A restricts its distribution and function to ER-mitochondria MCS. Our data suggest that IDRs do not modulate VAP-A preference toward specific partners but do adjust their geometry to MCS organization and lifetime constraints. Thus, IDR-mediated VAP-A conformational flexibility ensures membrane tethering plasticity and efficiency.


Assuntos
Proteínas de Membrana , Proteínas de Transporte Vesicular , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Proteínas de Transporte/metabolismo , Lipídeos/química
19.
Cell Rep ; 42(1): 111969, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640308

RESUMO

The transfer of endocytosed cargoes to lysosomes (LYSs) requires HOPS, a multiprotein complex that tethers late endosomes (LEs) to LYSs before fusion. Many proteins interact with HOPS on LEs/LYSs. However, it is not clear whether these HOPS interactors localize to LEs or LYSs or how they participate in tethering. Here, we biochemically characterized endosomes purified from untreated or experimentally manipulated cells to put HOPS and interacting proteins in order and to establish their functional interdependence. Our results assign Rab2a and Rab7 to LEs and Arl8 and BORC to LYSs and show that HOPS drives LE-LYS fusion by bridging late endosomal Rab2a with lysosomal BORC-anchored Arl8. We further show that Rab7 is absent from sites of HOPS-dependent tethering but promotes fusion by moving LEs toward LYSs via dynein. Thus, our study identifies the topology of the machinery for LE-LYS tethering and elucidates the role of different small GTPases in the process.


Assuntos
Endocitose , Endossomos , Endossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Lisossomos/metabolismo , Fusão de Membrana
20.
Membranes (Basel) ; 12(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35629783

RESUMO

Intrinsically disordered proteins and protein regions (IDPs/IDPRs) are mainly involved in signaling pathways, where fast regulation, temporal interactions, promiscuous interactions, and assemblies of structurally diverse components including membranes are essential. The autophagy pathway builds, de novo, a membrane organelle, the autophagosome, using carefully orchestrated interactions between proteins and lipid bilayers. Here, we discuss molecular mechanisms related to the protein disorder-based interactions of the autophagy machinery with membranes. We describe not only membrane binding phenomenon, but also examples of membrane remodeling processes including membrane tethering, bending, curvature sensing, and/or fragmentation of membrane organelles such as the endoplasmic reticulum, which is an important membrane source as well as cargo for autophagy. Summary of the current state of knowledge presented here will hopefully inspire new studies. A profound understanding of the autophagic protein-membrane interface is essential for advancements in therapeutic interventions against major human diseases, in which autophagy is involved including neurodegeneration, cancer as well as cardiovascular, metabolic, infectious, musculoskeletal, and other disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA