Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 40(1): 52, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967699

RESUMO

Diabetic osteoporosis (DO) presents significant clinical challenges. This study aimed to investigate the potential of magnetic nanoparticle-enhanced extracellular vesicles (GMNPE-EVs) derived from bone marrow mesenchymal stem cells (BMSCs) to deliver miR-15b-5p, thereby targeting and downregulating glial fibrillary acidic protein (GFAP) expression in rat DO models. Data was sourced from DO-related RNA-seq datasets combined with GEO and GeneCards databases. Rat primary BMSCs, bone marrow-derived macrophages (BMMs), and osteoclasts were isolated and cultured. EVs were separated, and GMNPE targeting EVs were synthesized. Bioinformatic analysis revealed a high GFAP expression in DO-related RNA-seq and GSE26168 datasets for disease models. Experimental results confirmed elevated GFAP in rat DO bone tissues, promoting osteoclast differentiation. miR-15b-5p was identified as a GFAP inhibitor, but was significantly downregulated in DO and enriched in BMSC-derived EVs. In vitro experiments showed that GMNPE-EVs could transfer miR-15b-5p to osteoclasts, downregulating GFAP and inhibiting osteoclast differentiation. In vivo tests confirmed the therapeutic potential of this approach in alleviating rat DO. Collectively, GMNPE-EVs can effectively deliver miR-15b-5p to osteoclasts, downregulating GFAP expression, and hence, offering a therapeutic strategy for rat DO.


Assuntos
Vesículas Extracelulares , Proteína Glial Fibrilar Ácida , Células-Tronco Mesenquimais , MicroRNAs , Osteoclastos , Osteoporose , Ratos Sprague-Dawley , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Osteoporose/metabolismo , Osteoporose/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Ratos , Osteoclastos/metabolismo , Masculino , Diferenciação Celular , Nanopartículas de Magnetita , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Complicações do Diabetes/metabolismo , Complicações do Diabetes/genética
2.
J Bioenerg Biomembr ; 54(1): 17-30, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34806156

RESUMO

Diabetic nephropathy (DN) is a severe complication of diabetes lethal for end-stage renal disease, with less treatment methodologies and uncertain pathogenesis. In the current study, we determined the role of mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) containing microRNA (miR)-15b-5p in DN. After extraction and identification of MSC-derived EVs, mouse podocyte line MPC5 was selected to establish an in vitro high-glucose (HG) cell model, where expression of miR-15b-5p, pyruvate dehydrogenase kinase 4 (PDK4) and VEGFA expression in tissues and cells were determined. The loss- and gain- function assays were conducted to determine the roles of miR-15b-5p, PDK4 and VEGFA. MPC5 cells were then co-cultured with MSC-derived EVs and their biological behaviors were detected by Western blot, CCK-8 assay, and flow cytometry. The binding relationship between miR-15b-5p and PDK43 by dual luciferase reporter gene assay. The expression of miR-15b-5p was downregulated in podocytes under HG environment, but highly expressed in mouse MSCs-derived EVs. EVs-derived miR-15b-5p could protect MPC5 cell apoptosis and inflammation. miR-15b-5p inhibited the expression of PDK4 by directly bound to the 3'UTR region of PDK4 gene. miR-15b-5p inhibits VEGF expression by binding to PDK4. Inhibition of PDK4 decreased VEGFA expression and reduced apoptosis and inflammation. Collectively, miR-15b-5p shuttled by MSC-derived EV can play protective roles in HG-induced mouse podocyte injury, possibly by targeting PDK4 and decreasing the VEGFA expression.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Podócitos , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação para Baixo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Glucose/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Proteínas Quinases , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209084

RESUMO

Glioblastoma multiforme (GBM) is a lethal malignant tumor accounting for 42% of the tumors of the central nervous system, the median survival being 15 months. At present, no curative treatment is available for GBM and new drugs and therapeutic protocols are urgently needed. In this context, combined therapy appears to be a very interesting approach. The isothiocyanate sulforaphane (SFN) has been previously shown to induce apoptosis and inhibit the growth and invasion of GBM cells. On the other hand, the microRNA miR-15b is involved in invasiveness and proliferation in GBM and its inhibition is associated with the induction of apoptosis. On the basis of these observations, the objective of the present study was to determine whether a combined treatment using SFN and a peptide nucleic acid interfering with miR-15b-5p (PNA-a15b) might be proposed for increasing the pro-apoptotic effects of the single agents. To verify this hypothesis, we have treated GMB U251 cells with SFN alone, PNA-a15b alone or their combination. The cell viability, apoptosis and combination index were, respectively, analyzed by calcein staining, annexin-V and caspase-3/7 assays, and RT-qPCR for genes involved in apoptosis. The efficacy of the PNA-a15b determined the miR-15b-5p content analyzed by RT-qPCR. The results obtained indicate that SFN and PNA-a15b synergistically act in inducing the apoptosis of U251 cells. Therefore, the PNA-a15b might be proposed in a "combo-therapy" associated with SFN. Overall, this study suggests the feasibility of using combined treatments based on PNAs targeting miRNA involved in GBM and nutraceuticals able to stimulate apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Isotiocianatos/farmacologia , MicroRNAs/genética , Ácidos Nucleicos Peptídicos/farmacologia , Sulfóxidos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Glioblastoma , Humanos
4.
J Transl Med ; 19(1): 294, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233716

RESUMO

OBJECTIVE: Diabetic retinopathy, a common complication of diabetes mellitus and a major cause of blindness. circRNAs spongs target miRNA and thus influencing mRNA expression in DR. We investigated the mechanism of circ_001209 in regulating diabetic retinal vascular dysfunction. METHODS: QRT-PCR analysis was performed to detect the expression of miR-15b-5p, COL12A1 and circ_001209 in human retinal vascular endothelial cells (HRVECs) under high glucose conditions. Western blot assay, wound healing assay, transwell assay and tube formation were used to explore the roles of circ_001209/miR-15b-5p/COL12A1 in retinal vascular dysfunction. Bioinformatics analysis and luciferase reporter, RNA-FISH, and overexpression assays were performed to reveal the mechanisms of the circ_001209/miR-15b-5p/COL12A1 interaction. TUNEL staining and H&E staining were used to evaluate the pathological changes in streptozotocin (STZ)-induced DR in rats. RESULTS: Downregulation of miR-15b-5p under HG conditions promoted proliferation, migration, and tube formation of HRVECs. QRT-PCR and western blot results revealed that miR-15b-5p affected the HRVECs function through targeting COL12A1. Under HG conditions, circ_001209, which acts as a sponge of miR-15b-5p, is upregulated. Besides, overexpression of circ_001209 can affect HRVEC function and aggravate retinal injury in diabetic rats. CONCLUSION: Upregulation of circ_001209 contributes to vascular dysfunction in diabetic retinas through regulating miR-15b-5p and COL12A1, providing a potential treatment strategy for diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , MicroRNAs , Animais , Proliferação de Células , Colágeno Tipo XII , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Retinopatia Diabética/genética , Células Endoteliais , MicroRNAs/genética , Ratos
5.
Cancer Cell Int ; 21(1): 84, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526036

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common tumor with severe morbidity and high mortality. Long non-coding RNAs (lncRNAs) as crucial regulators participate in multiple cancer progressions. However, the role of lncRNA MEG8 in the development of NSCLC remains unclear. Here, we aimed to investigate the effect of lncRNA MEG8 on the progression of NSCLC and the underlying mechanism. METHODS: Cell proliferation was analyzed by EdU assays. The impacts of lncRNA MEG8, miR-15a-5p, and miR-15b-5p on cell invasion and migration of NSCLC were assessed by transwell assay. The luciferase reporter gene assay was performed using the Dual-luciferase Reporter Assay System. The effect of lncRNA MEG8, miR-15a-5p, and miR-15b-5p on tumor growth was evaluated in nude mice of Balb/c in vivo. RESULTS: We revealed that the expression levels of MEG8 were elevated in the NSCLC patient tissues compared to that in adjacent normal tissues. The expression of MEG8 was negatively relative to that of miR-15a-5p and miR-15b-5p in the NSCLC patient tissues. The expression of MEG8 was upregulated, while miR-15a-5p and miR-15b-5p were downregulated in NSCLC cell lines. The depletion of MEG8 inhibited NSCLC cell proliferation, migration, and invasion in vitro. MEG8 contributed to NSCLC progression by targeting miR-15a-5p/miR-15b-5p in vitro. LncRNA MEG8 contributes to tumor growth of NSCLC via the miR-15a/b-5p/PSAT1 axis in vivo. Thus, we concluded that lncRNA MEG8 promotes NSCLC progression by modulating the miR-15a/b-5p/PSAT1 axis. CONCLUSIONS: Our findings demonstrated that lncRNA MEG8 plays a critical role in NSCLC development. LncRNA MEG8, miR-15a-5p, miR-15b-5p, and PSAT1 may serve as potential targets for NSCLC therapy.

6.
Allergy ; 76(3): 766-774, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32713026

RESUMO

BACKGROUND: It remains unclear how to characterize different subtypes of asthma and chronic obstructive pulmonary disease (COPD). We previously described serum periostin and chitinase-3-like protein 1 (YKL-40) as useful markers for asthma-COPD overlap (ACO). MicroRNAs (miRNAs) are now recognized as markers for identifying the pathophysiological features in several diseases. This study aimed to identify circulating miRNAs that could discriminate patients with ACO from patients with asthma or COPD. METHODS: This study included two independent cohorts. First, we screened 84 miRNAs for expression levels in patients with ACO (n = 6) or asthma (n = 6) using a quantitative real-time PCR array. The miRNAs showing at least a 2-fold difference in the discovery phase were analyzed in 30 patients each with asthma, COPD, or ACO in the replication phase. The diagnostic accuracy was evaluated using the area under the receiver operating characteristic curve (AUROC). RESULTS: Nine miRNAs were identified in the discovery phase. Five of these miRNAs (miR-148a-3p, miR-15b-5p, miR-223-3p, miR-23a-3p, and miR-26b-5p) had lower levels in ACO patients and could discriminate between ACO patients and patients with either asthma or COPD. miR-15b-5p was the most accurate miRNA for the discrimination of patients with ACO (AUROC, 0.71). Moreover, the combined assessment of miR-15b-5p, serum periostin, and YKL-40 (AUROC, 0.80) improved diagnostic accuracy for ACO compared with the combined model of periostin and YKL-40 (AUROC, 0.69). CONCLUSIONS: Circulating miR-15b-5p is a potential marker for identifying patients with ACO. By elucidating the molecular pathways controlled by miRNAs, we may better understand the pathophysiology of ACO.


Assuntos
Asma , MicroRNA Circulante , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Asma/diagnóstico , Asma/genética , Biomarcadores , Humanos , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética
7.
Biochem Biophys Res Commun ; 530(1): 54-59, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828315

RESUMO

In this study, the regulation of miR-15b-5p on myocardial ischemia reperfusion (I/R) injury-induced arrhythmia and myocardial apoptosis was investigated in mice. We observed the change in miR-15b-5p expression after mice suffered from myocardial I/R injury and the change in myocardial injury, infarct size, apoptosis, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), superoxide dismutase (SOD) and malondialdehyde (MDA) after down-regulation of miR-15b-5p expression. The negative regulation of miR-15b-5p to KCNJ2 as well as whether cardioprotective effect formed by miR-15b-5p down-regulation relied on the increase of KNCJ2 expression were measured by dual-luciferase reporter assay system. miR-15b-5p expression increased and KCNJ2 mRNA and protein expressions decreased after myocardial ischemia reperfusion (all P < 0.05). miR-15b-5p negatively regulated KCNJ2 in a targeted way. Down-regulating miR-15b-5p expression or increasing KCNJ2 expression significantly decreased the incidence of arrhythmia, infarct size and apoptosis after myocardial I/R and lowered MDA content in the myocardial tissue as well as IL-6 and TNF-α content in the blood (all P < 0.05). KCNJ2 gene knockout reversed the above cardioprotective effect formed by miR-15b-5p down-regulation (P < 0.05). Down-regulating miR-15b-5p expression or up-regulating KCNJ2 expression improves arrhythmia after mice suffered from myocardial I/R injury and inhibits myocardial apoptosis.


Assuntos
Apoptose , Arritmias Cardíacas/genética , Regulação para Baixo , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Animais , Arritmias Cardíacas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia
8.
Pathol Int ; 70(3): 155-165, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32037689

RESUMO

Previous studies demonstrated that dysregulation of G protein-coupled receptor 120 (GPR120) plays a protective role in osteoarthritis (OA). However, the mechanism underlying how GPR120 is downregulated remains largely unknown. In the present study, we evaluated whether GPR120 is regulated by microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Our results show that GPR120 was negatively regulated by miR-15b-5p through targeting 3' untranslated region (3'UTR), and that miR-15b-5p was negatively regulated by LINC00662. Further luciferase assay shows that LINC00662-miR-15b-5p signaling pathway contributed the regulation of GPR120 expression. Functionally, the decreased of LINC00662 caused increased miR-15b-5p, thereby leading to decreased GPR120. The decreased GPR120 then contributes to increased expression of inflammatory factors including tumor necrosis factor α (TNF-α), interleukin (IL)-6 and IL-8, cell apoptosis, and decreased apoptosis-related protein levels including cleaved caspase-3, cleaved caspase-9, and Bax in cultured rat chondrocytes. In summary, the present study shows that LINC00662-miR-15b-5p signaling pathway is involved in the regulation of GPR120, thereby contributing to arthritis.


Assuntos
MicroRNAs/genética , Osteoartrite/genética , RNA Longo não Codificante/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Regiões 3' não Traduzidas/genética , Animais , Apoptose , Cartilagem Articular/patologia , Condrócitos/patologia , Regulação para Baixo , Regulação da Expressão Gênica , Genes Reporter , Humanos , Masculino , Osteoartrite/patologia , Ratos Sprague-Dawley
9.
J Cell Physiol ; 234(11): 20869-20878, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31025335

RESUMO

Podocyte damage is a hallmark of diabetic nephropathy (DN). Accumulating evidence indicates that microRNAs play important roles in the DN pathogenesis. This study aimed to explore the possible roles and underlying mechanisms of miR-15b-5p on high glucose (HG)-triggered podocyte injury. We observed that miR-15b-5p declined dramatically in a time-dependent manner in podocytes exposed to HG. In addition, miR-15b-5p restored cell proliferation in HG-induced podocytes. Meanwhile, forced expression of miR-15b-5p apparently restrained HG-triggered apoptosis of podocytes, concomitant with downregulated in the proapoptotic protein markers Bax and cleavage caspase-3, and upregulated the antiapoptotic protein Bcl-2. Simultaneously, introduction of miR-15b-5p repressed HG-induced oxidative stress damage in HG-treated podocytes, as evidenced by reduced MDA content, NOX4 expression, and enhanced activities of superoxide dismutase and catalase. Moreover, enforced expression of miR-15b-5p remarkably restrained the HG-stimulated inflammatory response, as reflected by attenuated the level of the cytokines IL-1ß, TNF-α, and IL-6. More important, we also identified Sema3A as a direct target of miR-15b-5p. Reverse transcription polymerase chain reaction and western blot subsequently confirmed that miR-15b-5p negatively modulated the level of Sema3A. Mechanically, overexpression of Sema3A impeded the beneficial effects of miR-15b-5p on HG-mediated apoptosis, oxidative stress, and inflammatory response. Altogether, these findings manifested that miR-15b-5p protectively antagonized HG-triggered podocyte damage through relieving HG-induced apoptosis, oxidative stress, and inflammatory process in podocytes by targeting Sema3A, suggesting that miR-15b-5p might be a new therapeutic agent to improve management of DN.


Assuntos
Apoptose/efeitos dos fármacos , Glucose/toxicidade , Inflamação/patologia , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Podócitos/patologia , Semaforina-3A/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Regulação para Baixo/genética , Camundongos , MicroRNAs/genética , Podócitos/efeitos dos fármacos , Podócitos/metabolismo
10.
J Cell Biochem ; 120(4): 5790-5801, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30302821

RESUMO

Long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) has been demonstrated to be upregulated and play a crucial role in the pathology of Parkinson's disease (PD). However, the exact role of SNHG1 and its underlying mechanisms in PD remains elusive. In this study, we found that SNHG1 and glycogen synthase kinase 3 beta (GSK3ß) were upregulated, but miR-15b-5p was downregulated in 1-methyl-4-phenylpyridinium ion (MPP+ )-treated SH-SY5Y cells. The upregulation of SNHG1 enhanced MPP+ -induced cellular toxicity in SH-SY5Y cells, as shown by decreased cell viability, increased ROS production, and increased number of TdT-mediated dUTP Nick-End labeling-positive cells, accompanied with the upregulation of cleaved caspase 3 and elevation of cytochrome C release. Meanwhile, SNHG1 knockdown presented the converse effects. SNHG1 was demonstrated to interact with miR-15b-5p. Moreover, SNHG1 could attenuate the inhibitory effects of miR-15b-5p on MPP+ -induced cytotoxicity and production of ROS. Besides, GSK3ß was identified as a direct target of miR-15b-5p. The inhibitory effects of SNHG1 knockdown or miR-15b-5p overexpression on MPP+ -induced cytotoxicity and reactive oxygen species (ROS) production were abrogated by upregulation of GSK3ß. Taken together, these results demonstrate that upregulated lncRNA SNHG1 promotes MPP+ -induced cytotoxicity and ROS production through the miR-15b-5p/GSK3ß axis in human dopaminergic SH-SY5Y cells, suggesting that SNHG1 may act as a potential therapeutic target for PD treatment in the future.


Assuntos
1-Metil-4-fenilpiridínio/farmacologia , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , MicroRNAs/genética , Neuroblastoma/patologia , RNA Longo não Codificante/genética , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Glicogênio Sintase Quinase 3 beta/genética , Herbicidas/farmacologia , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Células Tumorais Cultivadas
11.
Biol Pharm Bull ; 42(5): 758-763, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30842352

RESUMO

MicroRNAs were involved in a wide range of biological processes of diabetic nephropathy (DN). It is reported that miR-15b-5p was downregulated in the patients with DN. However, the mechanisms underlying the regulatory effects of miR-15b-5p on patients with diabetes remain unclear. Thus, this study aimed to investigate the role of miR-15b-5p during high glucose (HG)-induced apoptosis in human kidney cells. Quantitative real-time (qRT)-PCR was used to detect the level of miR-15b-5p. CCK-8 assay, EdU staining assays and flow cytometry were used to detect cell proliferation, apoptosis respectively in vitro. In addition, Western blotting was used to determine active caspase-3, cleaved poly(ADP-ribose) polymerase (PARP), phosphorylated (p)-AKT, p-mammalian target of rapamycin (mTOR), p-S6, p-c-Jun N terminal kinase (JNK), p-p38 and p-extracellular signal-regulated kinase (ERK) proteins levels. The expression of miR-15b-5p in patients with DN were dramatically decreased compared with health persons. Similarly, HG down-regulated the expression of miR-15b-5p in HK-2 cells. In contrast, miR-15b-5p mimics alleviated HG-induced apoptosis in HK-2 cells via decreasing the expressions of active caspase 3 and cleaved PARP. EdU detection further confirmed that miR-15b-5p mimics attenuated the anti-proliferation effect of HG in HK-2 cells. Furthermore, HG-induced Akt/mTOR pathway downregulation and JNK upregulation were markedly reversed by miR-15b-5p mimics in cells. The data suggested that miR-15b-5p mimics protects HK-2 cells from HG-induced apoptosis. The anti-apoptotic effects of miR-15b-5p may due to the activation of the Akt/mTOR pathway as well as inactivation of JNK. Taken together, miR-15b-5p might be a potential therapeutic target for the treatment of patients with DN.


Assuntos
Materiais Biomiméticos/farmacologia , Glucose/farmacologia , MicroRNAs/química , Apoptose/efeitos dos fármacos , Materiais Biomiméticos/química , Caspase 3/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MicroRNAs/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Transfecção
12.
J Cell Mol Med ; 22(3): 1855-1863, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29363862

RESUMO

MicroRNAs (miRNAs) have been reported to participate in many biological behaviours of multiple malignancies. Recent studies have shown that miR-15b-5p (miR-15b) exhibits dual roles by accelerating or blocking tumour progression. However, the molecular mechanisms by which miR-15b contributes to prostate cancer (PCa) are still elusive. Here, miR-15b expression was found significantly up-regulated in PCa in comparison with the normal samples and was positively correlated with age and Gleason score in patients with PCa. Notably, PCa patients with miR-15b high expression displayed a higher recurrence rate than those with miR-15b low expression (P = 0.0058). Knockdown of miR-15b suppressed cell growth and invasiveness in 22RV1 and PC3 cells, while overexpression of miR-15b reversed these effects. Then, we validated that RECK acted as a direct target of miR-15b by dual-luciferase assay and revealed the negative correlation of RECK with miR-15b expression in PCa tissues. Ectopic expression of RECK reduced cell proliferation and invasive potential and partially abrogated the tumour-promoting effects caused by miR-15b overexpression. Additionally, miR-15b knockdown inhibited tumour growth activity in a mouse PCa xenograft model. Taken together, our findings indicate that miR-15b promotes the progression of PCa cells by targeting RECK and represents a potential marker for patients with PCa.


Assuntos
Proteínas Ligadas por GPI/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Recidiva Local de Neoplasia/genética , Neoplasias da Próstata/genética , Idoso , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Ligadas por GPI/metabolismo , Humanos , Metástase Linfática , Masculino , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/prevenção & controle , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biochem Biophys Res Commun ; 503(4): 2749-2757, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30093112

RESUMO

Blocking aerobic glycolysis has been proposed as an attractive therapeutic strategy for impairing the proliferation of cancer cells. However, the underlying mechanisms are poorly understood. Here, we show that miR-15b-5p was downregulated in osteosarcoma (OS) and that lower expression of miR-15b-5p promoted proliferation and contributed to the Warburg effect in OS cells. Mechanistically, miR-15b-5p acted as a tumor suppressor in OS by directly targeting pyruvate dehydrogenase kinase-4 and inhibiting its expression. These results reveal a previously unknown function of miR-15b-5p in OS, which is associated with metabolic alterations that promote cancer progression. miR-15b-5p may play an essential role in the molecular therapy of patients with OS.


Assuntos
Neoplasias Ósseas/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Osteoblastos/metabolismo , Osteossarcoma/genética , Proteínas Serina-Treonina Quinases/genética , Regiões 3' não Traduzidas , Animais , Apoptose , Sequência de Bases , Sítios de Ligação , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glicólise/genética , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Osteoblastos/patologia , Osteossarcoma/metabolismo , Osteossarcoma/mortalidade , Osteossarcoma/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Biochem Biophys Res Commun ; 507(1-4): 231-235, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30442369

RESUMO

Bladder cancer (BCa) belongs to a popular urological malignancy and leads to large numbers of deaths worldwide. Recently, emerging evidences indicate that long noncoding RNAs (lncRNAs) are closely related with BC occurrence and progression. However, the function of lncRNA MAGI2-AS3 remains poorly understood in BC. In this present study, we screened out a novel lncRNA MAGI2-AS3 whose expression was downregulated in BCa tissues. We showed that MAGI2-AS3 downregulation in BCa patients indicated a poor prognosis. Functionally, we showed that MAGI2-AS3 overexpression inhibits proliferation, migration and invasion of BCa cells. Moreover, ectopic expression of MAGI2-AS3 suppresses BCa growth in vivo. Bioinformatics analysis revealed that MAGI2-AS3 could serve as a competing endogenous RNA (ceRNA) for miR-15b-5p. In the meantime, miR-15b-5p directly targeted CCDC19, a tumor suppressor in BCa. Rescue assays demonstrated that knockdown of CCDC19 restored the proliferation, migration and invasion of BCa cells suppressed by MAGI2-AS3 overexpression. In conclusion, this study identified a novel mechanism that MAGI2-AS3/miR-15b-5p/CCDC19 signaling pathway regulates BCa progression.


Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Proteínas/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas do Citoesqueleto , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas/metabolismo , RNA Longo não Codificante/genética
15.
Arterioscler Thromb Vasc Biol ; 37(5): 957-968, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28254819

RESUMO

OBJECTIVE: To identify circulating microRNAs that are differentially expressed in severe coronary heart disease with well or poorly developed collateral arteries and to investigate their mechanisms of action in vivo and in vitro. APPROACH AND RESULTS: In our study, we identified a circulating microRNA, miR-15b-5p, with low expression that, nevertheless, characterized patients with sufficient coronary collateral artery function. Moreover, in murine hindlimb ischemia model, in situ hybridization identified that miR-15b-5p was specifically expressed in vascular endothelial cells of adductors in sham group and was remarkably downregulated after femoral artery ligation. Overexpressed miR-15b-5p significantly inhibited arteriogenesis and angiogenesis in mice. In vitro, both under basal and vascular endothelial growth factor stimulation, loss-of-function or gain-of-function studies suggested that miR-15b-5p significantly promoted or depressed the migration and proliferation of endothelial cells. We identified AKT3 (protein kinase B-3) as a direct target of miR-15b-5p. Interestingly, AKT3 deficiency by injection with Chol-AKT3-siRNA obviously suppressed arteriogenesis and the recovery of blood perfusion after femoral ligation in mice. CONCLUSIONS: These results indicate that circulating miR-15b-5p is a suitable biomarker for discriminating between patients with well-developed or poorly developed collaterals. Moreover, miR-15b-5p is a key regulator of arteriogenesis and angiogenesis, which may represent a potential therapeutic target for ischemic disease.


Assuntos
Circulação Colateral , Doença da Artéria Coronariana/enzimologia , Circulação Coronária , Vasos Coronários/enzimologia , Isquemia/enzimologia , MicroRNAs/metabolismo , Músculo Esquelético/irrigação sanguínea , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Membro Posterior , Humanos , Isquemia/genética , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , Transdução de Sinais , Transfecção
16.
Cell Signal ; 113: 110975, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972802

RESUMO

BACKGROUND: Differentiation of induced pluripotent stem cells (iPSCs)-derived ß-like cells is a novel strategy for treatment of type 1 diabetes. Elucidation of the regulatory mechanisms of long noncoding RNAs (lncRNAs) in ß-like cells derived from iPSCs is important for understanding the development of the pancreas and pancreatic ß-cells and may improve the quality of ß-like cells for stem cell therapy. METHODS: ß-like cells were derived from iPSCs in a three-step protocol. RNA sequencing and bioinformatics analysis were carried out to screen the differentially expressed lncRNAs and identify the putative target genes separately. LncRNA Malat1 was chosen for further research. Series of loss and gain of functions experiments were performed to study the biological function of LncRNA Malat1. Quantitative real-time PCR (qRT-PCR), Western blot (WB) analysis and immunofluorescence (IF) staining were carried out to separately detect the functions of pancreatic ß-cells at the mRNA and protein levels. Cytoplasmic and nuclear RNA fractionation and fluorescence in situ hybridization (FISH) were used to determine the subcellar location of lncRNA Malat1 in ß-like cells. Enzyme-linked immunosorbent assays (ELISAs) were performed to examine the differentiation and insulin secretion of ß-like cells after stimulation with different glucose concentrations. Structural interactions between lncRNA Malat1 and miR-15b-5p and between miR-15b-5p/Ihh were detected by dual luciferase reporter assays (LRAs). RESULTS: We found that the expression of lncRNA Malat1 declined during differentiation, and overexpression (OE) of lncRNA Malat1 notably impaired the differentiation and maturation of ß-like cells derived from iPSCs in vitro and in vivo. Most importantly, lncRNA Malat1 could function as a competing endogenous RNA (ceRNA) of miR-15b-5p to regulate the expression of Ihh according to bioinformatics prediction, mechanistic analysis and downstream experiments. CONCLUSION: This study established an unreported regulatory network of lncRNA Malat1 and the miR-15b-5p/Ihh axis during the differentiation of iPSCs into ß-like cells. In addition to acting as an oncogene promoting tumorigenesis, lncRNA Malat1 may be an effective and novel target for treatment of diabetes in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Hibridização in Situ Fluorescente , Diferenciação Celular/genética
17.
J Cancer ; 15(12): 3781-3793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911389

RESUMO

Background: Long non-coding RNAs (lncRNAs) are associated with multiple head and neck tumors and play important roles in cancer. This study explored the molecular mechanism of Linc00662 in hypopharyngeal squamous cell carcinoma (HSCC). Methods: Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect gene expression in HSCC tissues. The viability and proliferation of tumor cells were measured using CCK-8 assays. HSCC cell apoptosis was measured using flow cytometry and western blotting. Cell stemness was examined using the sphere formation assay. A xenograft tumor model was established to investigate the role of Linc00662 in vivo. Results: The expression level of Linc00662 in HSCC tissues was significantly higher than that in adjacent normal tissues. The expression of Linc00662 had no significant relationship with the tumor stage. Patients with high Linc00662 expression were found to have shorter overall survival than those with low Linc00662 expression. Linc00662 over-expression promoted cell viability and inhibited apoptosis. Using online databases and a dual luciferase reporter, miR-15b-5p was confirmed as a potential downstream sponge of Linc00662. Moreover, Linc00662 was negatively associated with miR-15b-5p in HSCC cells. Depletion of miR-15b-5p can reverse the function of Linc00662 in vivo and in vitro. Furthermore, Linc00662 promotes tumor growth, which was abolished by miR-15b-5p mimics. Importantly, the stemness of cancer stem cells was mediated by the Linc00662/miR-15b-5p axis. Conclusion: Patients with HSCC with high Linc00662 showed poor prognosis and high Linc00662 induced stemness of tumor cells by targeting miR-15b-5p. Linc00662 may serve as a novel diagnostic and target marker for head and neck squamous cell carcinoma.

18.
Toxicology ; 503: 153742, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325558

RESUMO

Mercuric chloride (HgCl2), a widespread environmental pollutant, induces ferroptosis in chicken embryonic kidney (CEK) cells. Whereas activating transcription factor 4 (ATF4), a critical mediator of oxidative homeostasis, plays a dual role in ferroptosis, but its precise mechanisms in HgCl2-induced ferroptosis remain elusive. This study aims to investigate the function and molecular mechanism of ATF4 in HgCl2-induced ferroptosis. Our results revealed that ATF4 was downregulated during HgCl2-induced ferroptosis in CEK cells. Surprisingly, HgCl2 exposure has no significant impact on ATF4 mRNA level. Further investigation indicated that HgCl2 enhanced the expression of the E3 ligase beta-transducin repeat-containing protein (ß-TrCP) and increased ATF4 ubiquitination. Subsequent findings identified that miR-15b-5p as an upstream modulator of ß-TrCP, with miR-15b-5p downregulation observed in HgCl2-exposed CEK cells. Importantly, miR-15b-5p mimics suppressed ß-TrCP expression and reversed HgCl2-induced cellular ferroptosis. Mechanistically, HgCl2 inhibited miR-15b-5p, and promoted ß-TrCP-mediated ubiquitin degradation of ATF4, thereby inhibited the expression of antioxidant-related target genes and promoted ferroptosis. In conclusion, our study highlighted the crucial role of the miR-15b-5p/ß-TrCP/ATF4 axis in HgCl2-induced nephrotoxicity, offering a new therapeutic target for understanding the mechanism of HgCl2 nephrotoxicity.


Assuntos
Ferroptose , MicroRNAs , Embrião de Galinha , Animais , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Galinhas/metabolismo , Ubiquitina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Rim/metabolismo
19.
Biomedicines ; 12(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39062015

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play a regulatory role in various human cancers. The roles of hsa-miR-15a-5p, hsa-miR-99b-5p, and hsa-miR-181a-5p have not been fully explored in the angiogenesis of renal cell carcinoma (RCC). AIMS: The present study aimed to evaluate the expression of these miRNAs in tumorous and adjacent healthy tissues of RCC. METHODS: Paired tumorous and adjacent normal kidney tissues from 20 patients were studied. The expression levels of hsa-miR-15b-5p, hsa-miR-99b-5p, and hsa-miR-181a-5p were quantified by TaqMan miRNA Assays. Putative targets were analyzed by qRT-PCR. RESULTS: Significant downregulation of all three miRNAs investigated was observed in tumorous samples compared to adjacent normal kidney tissues. Spearman analysis showed a negative correlation between the expression levels of miRNAs and the pathological grades of the patients. Increased expression of vascular endothelial growth factor-A (VEGF-A) and hypoxia-inducible factor-1α (HIF-1α), a tissue inhibitor of metalloproteinases-1 (TIMP-1), was observed in tumorous samples compared to adjacent normal tissues. Depletion of tissue inhibitors of metalloproteinase-2 (TIMP-2) and metalloproteinase-2 (MMP-2) was detected compared to normal adjacent tissues. The examined miRNAs might function as contributing factors to renal carcinogenesis. However, more prospective studies are warranted to evaluate the potential role of miRNAs in RCC angiogenesis.

20.
Biomark Res ; 12(1): 42, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650024

RESUMO

Autologous hematopoietic stem cell transplantation (AHSCT) remains the most prevalent type of stem cell transplantation. In our study, we investigated the changes in circulating miRNAs in AHSCT recipients and their potential to predict early procedure-related complications. We collected serum samples from 77 patients, including 54 with multiple myeloma, at four key time points: before AHSCT, on the day of transplantation (day 0), and at days + 7 and + 14 post-transplantation. Through serum miRNA-seq analysis, we identified altered expression patterns and miRNAs associated with the AHSCT procedure. Validation using qPCR confirmed deviations in the levels of miRNAs at the beginning of the procedure in patients who subsequently developed bacteremia: hsa-miR-223-3p and hsa-miR-15b-5p exhibited decreased expression, while hsa-miR-126-5p had increased level. Then, a neural network model was constructed to use miRNA levels for the prediction of bacteremia. The model achieved an accuracy of 93.33% (95%CI: 68.05-99.83%), with a sensitivity of 100% (95%CI: 67.81-100.00%) and specificity of 90.91% (95%CI: 58.72-99.77%) in predicting bacteremia with mean of 6.5 ± 3.2 days before occurrence. In addition, we showed unique patterns of miRNA expression in patients experiencing platelet engraftment delay which involved the downregulation of hsa-let-7f-5p and upregulation of hsa-miR-96-5p; and neutrophil engraftment delay which was associated with decreased levels of hsa-miR-125a-5p and hsa-miR-15b-5p. Our findings highlight the significant alterations in serum miRNA levels during AHSCT and suggest the clinical utility of miRNA expression patterns as potential biomarkers that could be harnessed to improve patient outcomes, particularly by predicting the risk of bacteremia during AHSCT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA