Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432639

RESUMO

The adaptor protein Grb2, or growth factor receptor-bound protein 2, possesses a pivotal role in the transmission of fundamental molecular signals in the cell. Despite lacking enzymatic activity, Grb2 functions as a dynamic assembly platform, orchestrating intracellular signals through its modular structure. This study delves into the energetic communication of Grb2 domains, focusing on the folding and binding properties of the C-SH3 domain linked to its neighboring SH2 domain. Surprisingly, while the folding and stability of C-SH3 remain robust and unaffected by SH2 presence, significant differences emerge in the binding properties when considered within the tandem context compared with isolated C-SH3. Through a double mutant cycle analysis, we highlighted a subset of residues, located at the interface with the SH2 domain and far from the binding site, finely regulating the binding of a peptide mimicking a physiological ligand of the C-SH3 domain. Our results have mechanistic implications about the mechanisms of specificity of the C-SH3 domain, indicating that the presence of the SH2 domain optimizes binding to its physiological target, and emphasizing the general importance of considering supramodular multidomain protein structures to understand the functional intricacies of protein-protein interaction domains.


Assuntos
Proteína Adaptadora GRB2 , Ligação Proteica , Dobramento de Proteína , Domínios de Homologia de src , Humanos , Sítios de Ligação , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/genética , Modelos Moleculares , Estrutura Terciária de Proteína
2.
J Chem Inf Model ; 64(1): 76-95, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38109487

RESUMO

Artificial intelligence has made significant advances in the field of protein structure prediction in recent years. In particular, DeepMind's end-to-end model, AlphaFold2, has demonstrated the capability to predict three-dimensional structures of numerous unknown proteins with accuracy levels comparable to those of experimental methods. This breakthrough has opened up new possibilities for understanding protein structure and function as well as accelerating drug discovery and other applications in the field of biology and medicine. Despite the remarkable achievements of artificial intelligence in the field, there are still some challenges and limitations. In this Review, we discuss the recent progress and some of the challenges in protein structure prediction. These challenges include predicting multidomain protein structures, protein complex structures, multiple conformational states of proteins, and protein folding pathways. Furthermore, we highlight directions in which further improvements can be conducted.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Dobramento de Proteína , Projetos de Pesquisa
3.
J Biol Chem ; 298(11): 102501, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116550

RESUMO

The inflammasome is a multiprotein complex that triggers the activation of proinflammatory cytokines. The adapter ASC and its isoform ASCb mediate inflammasome assembly via self-association and oligomerization with other inflammasome proteins by homotypic interactions of their two identical Death Domains, PYD and CARD, connected by a linker of different length: 23 (ASC) and 4 (ASCb) amino acids long. However, ASC is a more potent inflammasome activator compared to ASCb. Thus, adapter isoforms might be involved in the regulation of the inflammatory response. As previously reported, ASC's faster and less polydisperse self-association compared to ASCb points to interdomain flexibility resulting from the linker length as a key factor in inflammasome regulation. To test the influence of linker length in self-association, we have engineered the isoform ASC3X with identical PYD and CARD connected by a 69 amino acid-long linker (i.e., three-times longer than ASC's linker). Real-time NMR and dynamic light scattering data indicate that ASC3X polymerization is less effective and more polydisperse compared to ASC or ASCb. However, transmission electron micrographs show that ASC3X can polymerize into filaments. Comparative interdomain dynamics of the three isoforms obtained from NMR relaxation data reveal that ASCb tumbles as a rod, whereas the PYD and CARD of ASC and ASC3X tumble independently with marginally higher interdomain flexibility in ASC3X. Altogether, our data suggest that ASC's linker length is optimized for self-association by allowing enough flexibility to favor intermolecular homotypic interactions but simultaneously keeping both domains sufficiently close for essential participation in filament formation.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Inflamassomos , Inflamassomos/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Espectroscopia de Ressonância Magnética , Isoformas de Proteínas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(28): 16401-16408, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601215

RESUMO

Proteins have evolved by incorporating several structural units within a single polypeptide. As a result, multidomain proteins constitute a large fraction of all proteomes. Their domains often fold to their native structures individually and vectorially as each domain emerges from the ribosome or the protein translocation channel, leading to the decreased risk of interdomain misfolding. However, some multidomain proteins fold in the endoplasmic reticulum (ER) nonvectorially via intermediates with nonnative disulfide bonds, which were believed to be shuffled to native ones slowly after synthesis. Yet, the mechanism by which they fold nonvectorially remains unclear. Using two-dimensional (2D) gel electrophoresis and a conformation-specific antibody that recognizes a correctly folded domain, we show here that shuffling of nonnative disulfide bonds to native ones in the most N-terminal region of LDL receptor (LDLR) started at a specific timing during synthesis. Deletion analysis identified a region on LDLR that assisted with disulfide shuffling in the upstream domain, thereby promoting its cotranslational folding. Thus, a plasma membrane-bound multidomain protein has evolved a sequence that promotes the nonvectorial folding of its upstream domains. These findings demonstrate that nonvectorial folding of a multidomain protein in the ER of mammalian cells is more coordinated and elaborated than previously thought. Thus, our findings alter our current view of how a multidomain protein folds nonvectorially in the ER of living cells.


Assuntos
Retículo Endoplasmático/metabolismo , Receptores de LDL/química , Receptores de LDL/genética , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Células HeLa , Humanos , Biossíntese de Proteínas , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Receptores de LDL/metabolismo
5.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629048

RESUMO

Multidomain proteins can exhibit sophisticated functions based on cooperative interactions and allosteric regulation through spatial rearrangements of the multiple domains. This study explored the potential of using multidomain proteins as a basis for Förster resonance energy transfer (FRET) biosensors, focusing on protein disulfide isomerase (PDI) as a representative example. PDI, a well-studied multidomain protein, undergoes redox-dependent conformational changes, enabling the exposure of a hydrophobic surface extending across the b' and a' domains that serves as the primary binding site for substrates. Taking advantage of the dynamic domain rearrangements of PDI, we developed FRET-based biosensors by fusing the b' and a' domains of thermophilic fungal PDI with fluorescent proteins as the FRET acceptor and donor, respectively. Both experimental and computational approaches were used to characterize FRET efficiency in different redox states. In vitro and in vivo evaluations demonstrated higher FRET efficiency of this biosensor in the oxidized form, reflecting the domain rearrangement and its responsiveness to intracellular redox environments. This novel approach of exploiting redox-dependent domain dynamics in multidomain proteins offers promising opportunities for designing innovative FRET-based biosensors with potential applications in studying cellular redox regulation and beyond.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Isomerases de Dissulfetos de Proteínas , Isomerases de Dissulfetos de Proteínas/genética , Regulação Alostérica , Sítios de Ligação , Oxirredução
6.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047047

RESUMO

In multidomain proteins, individual domains connected by flexible linkers are dynamically rearranged upon ligand binding and sensing changes in environmental factors, such as pH and temperature. Here, we characterize dynamic domain rearrangements of Lys48-linked ubiquitin (Ub) chains as models of multidomain proteins in which molecular surfaces mediating intermolecular interactions are involved in intramolecular domain-domain interactions. Using NMR and other biophysical techniques, we characterized dynamic conformational interconversions of diUb between open and closed states regarding solvent exposure of the hydrophobic surfaces of each Ub unit, which serve as binding sites for various Ub-interacting proteins. We found that the hydrophobic Ub-Ub interaction in diUb was reinforced by cysteine substitution of Lys48 of the distal Ub unit because of interaction between the cysteinyl thiol group and the C-terminal segment of the proximal Ub unit. In contrast, the replacement of the isopeptide linker with an artificial ethylenamine linker minimally affected the conformational distributions. Furthermore, we demonstrated that the mutational modification allosterically impacted the exposure of the most distal Ub unit in triUb. Thus, the conformational interconversion of Ub chains offers a unique design framework in Ub-based protein engineering not only for developing biosensing probes but also for allowing new opportunities for the allosteric regulation of multidomain proteins.


Assuntos
Proteínas , Ubiquitina , Ubiquitina/metabolismo , Conformação Proteica , Mutação , Sítios de Ligação
7.
Proc Natl Acad Sci U S A ; 116(32): 15930-15938, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31341084

RESUMO

Most proteins exist with multiple domains in cells for cooperative functionality. However, structural biology and protein folding methods are often optimized for single-domain structures, resulting in a rapidly growing gap between the improved capability for tertiary structure determination and high demand for multidomain structure models. We have developed a pipeline, termed DEMO, for constructing multidomain protein structures by docking-based domain assembly simulations, with interdomain orientations determined by the distance profiles from analogous templates as detected through domain-level structure alignments. The pipeline was tested on a comprehensive benchmark set of 356 proteins consisting of 2-7 continuous and discontinuous domains, for which DEMO generated models with correct global fold (TM-score > 0.5) for 86% of cases with continuous domains and for 100% of cases with discontinuous domain structures, starting from randomly oriented target-domain structures. DEMO was also applied to reassemble multidomain targets in the CASP12 and CASP13 experiments using domain structures excised from the top server predictions, where the full-length DEMO models showed a significantly improved quality over the original server models. Finally, sparse restraints of mass spectrometry-generated cross-linking data and cryo-EM density maps are incorporated into DEMO, resulting in improvements in the average TM-score by 6.3% and 12.5%, respectively. The results demonstrate an efficient approach to assembling multidomain structures, which can be easily used for automated, genome-scale multidomain protein structure assembly.


Assuntos
Proteínas/química , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Bases de Dados de Proteínas , Modelos Moleculares , Domínios Proteicos , Software
8.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269628

RESUMO

Despite recent developments in protein structure prediction, the process of the structure formation, folding, remains poorly understood. Notably, folding of multidomain proteins, which involves multiple steps of segmental folding, is one of the biggest questions in protein science. Multidomain protein folding often requires the assistance of molecular chaperones. Molecular chaperones promote or delay the folding of the client protein, but the detailed mechanisms are still unclear. This review summarizes the findings of biophysical and structural studies on the mechanism of multidomain protein folding mediated by molecular chaperones and explains how molecular chaperones recognize the client proteins and alter their folding properties. Furthermore, we introduce several recent studies that describe the concept of kinetics-activity relationships to explain the mechanism of functional diversity of molecular chaperones.


Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Humanos , Cinética , Chaperonas Moleculares/metabolismo
9.
J Biol Chem ; 295(49): 16585-16603, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32963105

RESUMO

The functional mechanisms of multidomain proteins often exploit interdomain interactions, or "cross-talk." An example is human Pin1, an essential mitotic regulator consisting of a Trp-Trp (WW) domain flexibly tethered to a peptidyl-prolyl isomerase (PPIase) domain, resulting in interdomain interactions important for Pin1 function. Substrate binding to the WW domain alters its transient contacts with the PPIase domain via means that are only partially understood. Accordingly, we have investigated Pin1 interdomain interactions using NMR paramagnetic relaxation enhancement (PRE) and molecular dynamics (MD) simulations. The PREs show that apo-Pin1 samples interdomain contacts beyond the range suggested by previous structural studies. They further show that substrate binding to the WW domain simultaneously alters interdomain separation and the internal conformation of the WW domain. A 4.5-µs all-atom MD simulation of apo-Pin1 suggests that the fluctuations of interdomain distances are correlated with fluctuations of WW domain interresidue contacts involved in substrate binding. Thus, the interdomain/WW domain conformations sampled by apo-Pin1 may already include a range of conformations appropriate for binding Pin1's numerous substrates. The proposed coupling between intra-/interdomain conformational fluctuations is a consequence of the dynamic modular architecture of Pin1. Such modular architecture is common among cell-cycle proteins; thus, the WW-PPIase domain cross-talk mechanisms of Pin1 may be relevant for their mechanisms as well.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA/química , Apoproteínas/química , Apoproteínas/metabolismo , Sítios de Ligação , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Mutagênese , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Óxidos de Nitrogênio/química , Ligação Proteica , Estrutura Terciária de Proteína , Marcadores de Spin , Especificidade por Substrato , Domínios WW
10.
Proteins ; 89(9): 1099-1110, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33843112

RESUMO

The loops of modular polyketide synthases (PKSs) serve diverse functions but are largely uncharacterized. They frequently contain amino acid repeats resulting from genetic events such as slipped-strand mispairing. Determining the tolerance of loops to amino acid changes would aid in understanding and engineering these multidomain molecule factories. Here, tandem repeats in the DNA encoding 949 modules within 129 cis-acyltransferase PKSs were cataloged, and the locations of the corresponding amino acids within the module were identified. The most frequently inserted interdomain loop corresponds with the updated module boundary immediately downstream of the ketosynthase (KS), while the loops bordering the dehydratase are nearly intolerant to such insertions. From the 949 modules, no repetitive sequence loop insertions are located within ACP, and only 2 reside within KS, indicating the sensitivity of these domains to alteration.


Assuntos
Proteína de Transporte de Acila/química , Aciltransferases/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Policetídeo Sintases/química , Policetídeos/metabolismo , Proteína de Transporte de Acila/classificação , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Aciltransferases/classificação , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Policetídeo Sintases/classificação , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
11.
BMC Genomics ; 22(1): 550, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34275445

RESUMO

BACKGROUND: Fibrillar adhesins are long multidomain proteins that form filamentous structures at the cell surface of bacteria. They are an important yet understudied class of proteins composed of adhesive and stalk domains that mediate interactions of bacteria with their environment. This study aims to characterize fibrillar adhesins in a wide range of bacterial phyla and to identify new fibrillar adhesin-like proteins to improve our understanding of host-bacteria interactions. RESULTS: Through careful literature and computational searches, we identified 82 stalk and 27 adhesive domain families in fibrillar adhesins. Based on the presence of these domains in the UniProt Reference Proteomes database, we identified and analysed 3,542 fibrillar adhesin-like proteins across species of the most common bacterial phyla. We further enumerate the adhesive and stalk domain combinations found in nature and demonstrate that fibrillar adhesins have complex and variable domain architectures, which differ across species. By analysing the domain architecture of fibrillar adhesins, we show that in Gram positive bacteria, adhesive domains are mostly positioned at the N-terminus and cell surface anchors at the C-terminus of the protein, while their positions are more variable in Gram negative bacteria. We provide an open repository of fibrillar adhesin-like proteins and domains to enable further studies of this class of bacterial surface proteins. CONCLUSION: This study provides a domain-based characterization of fibrillar adhesins and demonstrates that they are widely found in species across the main bacterial phyla. We have discovered numerous novel fibrillar adhesins and improved our understanding of pathogenic adhesion and invasion mechanisms.


Assuntos
Adesinas Bacterianas , Proteínas de Bactérias , Adesinas Bacterianas/genética , Bactérias/genética , Aderência Bacteriana , Proteínas de Bactérias/genética , Bactérias Gram-Positivas , Proteínas de Membrana
12.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546457

RESUMO

Mononegavirales phosphoproteins (P) are essential co-factors of the viral polymerase by serving as a linchpin between the catalytic subunit and the ribonucleoprotein template. They have highly diverged, but their overall architecture is conserved. They are multidomain proteins, which all possess an oligomerization domain that separates N- and C-terminal domains. Large intrinsically disordered regions constitute their hallmark. Here, we exemplify their structural features and interaction potential, based on the Pneumoviridae P proteins. These P proteins are rather small, and their oligomerization domain is the only part with a defined 3D structure, owing to a quaternary arrangement. All other parts are either flexible or form short-lived secondary structure elements that transiently associate with the rest of the protein. Pneumoviridae P proteins interact with several viral and cellular proteins that are essential for viral transcription and replication. The combination of intrinsic disorder and tetrameric organization enables them to structurally adapt to different partners and to act as adaptor-like platforms to bring the latter close in space. Transient structures are stabilized in complex with protein partners. This class of proteins gives an insight into the structural versatility of non-globular intrinsically disordered protein domains.


Assuntos
Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Pneumovirus/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Regulação Viral da Expressão Gênica , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Mononegavirais , Fosfoproteínas/genética , Pneumovirus/genética , Ligação Proteica , Dobramento de Proteína , Vírus Sincicial Respiratório Humano , Relação Estrutura-Atividade , Proteínas Virais/genética
13.
Microb Cell Fact ; 19(1): 122, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503648

RESUMO

BACKGROUND: Although most of antimicrobial peptides (AMPs), being relatively short, are produced by chemical synthesis, several AMPs have been produced using recombinant technology. However, AMPs could be cytotoxic to the producer cell, and if small they can be easily degraded. The objective of this study was to produce a multidomain antimicrobial protein based on recombinant protein nanoclusters to increase the yield, stability and effectivity. RESULTS: A single antimicrobial polypeptide JAMF1 that combines three functional domains based on human α-defensin-5, human XII-A secreted phospholipase A2 (sPLA2), and a gelsolin-based bacterial-binding domain along with two aggregation-seeding domains based on leucine zippers was successfully produced with no toxic effects for the producer cell and mainly in a nanocluster structure. Both, the nanocluster and solubilized format of the protein showed a clear antimicrobial effect against a broad spectrum of Gram-negative and Gram-positive bacteria, including multi-resistant strains, with an optimal concentration between 1 and 10 µM. CONCLUSIONS: Our findings demonstrated that multidomain antimicrobial proteins forming nanoclusters can be efficiently produced in recombinant bacteria, being a novel and valuable strategy to create a versatile, highly stable and easily editable multidomain constructs with a broad-spectrum antimicrobial activity in both soluble and nanostructured format.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Gelsolina , Humanos , Fosfolipases A2 , Domínios Proteicos , alfa-Defensinas
14.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731397

RESUMO

Ubiquitin (Ub) molecules can be enzymatically connected through a specific isopeptide linkage, thereby mediating various cellular processes by binding to Ub-interacting proteins through their hydrophobic surfaces. The Lys48-linked Ub chains, which serve as tags for proteasomal degradation, undergo conformational interconversions between open and closed states, in which the hydrophobic surfaces are exposed and shielded, respectively. Here, we provide a quantitative view of such dynamic processes of Lys48-linked triUb and tetraUb in solution. The native and cyclic forms of Ub chains are prepared with isotope labeling by in vitro enzymatic reactions. Our comparative NMR analyses using monomeric Ub and cyclic diUb as reference molecules enabled the quantification of populations of the open and closed states for each Ub unit of the native Ub chains. The data indicate that the most distal Ub unit in the Ub chains is the most apt to expose its hydrophobic surface, suggesting its preferential involvement in interactions with the Ub-recognizing proteins. We also demonstrate that a mutational modification of the distal end of the Ub chain can remotely affect the solvent exposure of the hydrophobic surfaces of the other Ub units, suggesting that Ub chains could be unique design frameworks for the creation of allosterically controllable multidomain proteins.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Poliubiquitina/química , Humanos , Lisina/química
15.
J Biol Chem ; 293(34): 13270-13283, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29959230

RESUMO

Most protein folding studies until now focus on single domain or truncated proteins. Although great insights in the folding of such systems has been accumulated, very little is known regarding the proteins containing multiple domains. It has been shown that the high stability of domains, in conjunction with inter-domain interactions, manifests as a frustrated energy landscape, causing complexity in the global folding pathway. However, multidomain proteins despite containing independently foldable, loosely cooperative sections can fold into native states with amazing speed and accuracy. To understand the complexity in mechanism, studies were conducted previously on the multidomain protein malate synthase G (MSG), an enzyme of the glyoxylate pathway with four distinct and adjacent domains. It was shown that the protein refolds to a functionally active intermediate state at a fast rate, which slowly produces the native state. Although experiments decoded the nature of the intermediate, a full description of the folding pathway was not elucidated. In this study, we use a battery of biophysical techniques to examine the protein's folding pathway. By using multiprobe kinetics studies and comparison with the equilibrium behavior of protein against urea, we demonstrate that the unfolded polypeptide undergoes conformational compaction to a misfolded intermediate within milliseconds of refolding. The misfolded product appears to be stabilized under moderate denaturant concentrations. Further folding of the protein produces a stable intermediate, which undergoes partial unfolding-assisted large segmental rearrangements to achieve the native state. This study reveals an evolved folding pathway of the multidomain protein MSG, which involves surpassing the multiple misfolding traps during refolding.


Assuntos
Escherichia coli/enzimologia , Malato Sintase/química , Conformação Proteica , Dobramento de Proteína , Redobramento de Proteína , Cristalografia por Raios X , Cinética , Malato Sintase/metabolismo , Modelos Moleculares , Desnaturação Proteica , Termodinâmica
16.
Mol Pharm ; 16(2): 744-755, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30565948

RESUMO

Multidomain biotherapeutic proteins present additional behavioral and analytical challenges for the optimization of their kinetic stability by formulation. Tissue-type plasminogen activator (tPA) comprises six protein domains that exhibit a complex and pH-dependent thermal unfolding profile, due to partially independent domain unfolding. Here we have used tPA as a model for evaluating the relationships between various thermal unfolding and aggregation parameters in multidomain proteins. We show that changes in the thermal unfolding profile of tPA were parametrized by the overall thermal midpoint transition temperature, Tm, and the Van't Hoff entropy for unfolding, Δ Svh, which is a measure of unfolding cooperativity. The kinetics of degradation at 45 °C, leading to aggregation, were measured as rates of monomer and activity loss. These two rates were found to be coincident at all pH. Aggregation accelerated at pH 4 due to the early unfolding of the serine protease N-terminal domain (SP-N), whereas at pH 5-8, the fraction unfolded at 45 °C ( f45) was <1%, resulting in a baseline rate of aggregation from the native ensemble. We used a Design of Experiments (DoE) approach to evaluate how formulation excipients impact and control the thermal unfolding profile for tPA and found that the relative stability of each of the tPA domains was dependent on the formulation. Therefore, the optimization of formulations for complex multidomain proteins such as tPA may need to be multiobjective, with careful selection of the desired attributes that improve stability. As aggregation rates (ln v) correlated well to Tm ( R2 = 0.77) and Δ Svh ( R2 = 0.71) but not Tagg ( R2 = 0.01), we analyzed how formulation excipients and pH would be able to optimize Tm and Δ Svh. Formulation excipient behaviors were found to group according to their combined impact on Tm and Δ Svh. The effects of each excipient were often selectively stabilizing or destabilizing to specific tPA domains and changed the stability of particular domains relative to the others. The types of mechanism by which this could occur might involve specific interactions with the protein surface, or otherwise effects that are mediated via the solvent as a result of the different surface hydrophobicities and polarities of each domain.


Assuntos
Composição de Medicamentos/métodos , Excipientes/química , Ativador de Plasminogênio Tecidual/química , Animais , Células CHO , Varredura Diferencial de Calorimetria , Cricetulus , Concentração de Íons de Hidrogênio , Cinética , Desnaturação Proteica , Domínios Proteicos , Dobramento de Proteína , Temperatura
17.
Molecules ; 24(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067727

RESUMO

A tertiary structure governs, to a great extent, the biological activity of a protein in the living cell and is consequently a central focus of numerous studies aiming to shed light on cellular processes central to human health. Here, we aim to elucidate the structure of the Rift Valley fever virus (RVFV) L protein using a combination of in silico techniques. Due to its large size and multiple domains, elucidation of the tertiary structure of the L protein has so far challenged both dry and wet laboratories. In this work, we leverage complementary perspectives and tools from the computational-molecular-biology and bioinformatics domains for constructing, refining, and evaluating several atomistic structural models of the L protein that are physically realistic. All computed models have very flexible termini of about 200 amino acids each, and a high proportion of helical regions. Properties such as potential energy, radius of gyration, hydrodynamics radius, flexibility coefficient, and solvent-accessible surface are reported. Structural characterization of the L protein enables our laboratories to better understand viral replication and transcription via further studies of L protein-mediated protein-protein interactions. While results presented a focus on the RVFV L protein, the following workflow is a more general modeling protocol for discovering the tertiary structure of multidomain proteins consisting of thousands of amino acids.


Assuntos
Estrutura Terciária de Proteína , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/química , Proteínas Virais/química , Animais , Genoma Viral/genética , Humanos , Conformação Proteica , RNA Viral/química , RNA Viral/genética , Vírus da Febre do Vale do Rift/genética , Proteínas Virais/genética , Replicação Viral/genética
18.
Proteins ; 86(5): 501-514, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29383828

RESUMO

The structural variations of multidomain proteins with flexible parts mediate many biological processes, and a structure ensemble can be determined by selecting a weighted combination of representative structures from a simulated structure pool, producing the best fit to experimental constraints such as interatomic distance. In this study, a hybrid structure-based and physics-based atomistic force field with an efficient sampling strategy is adopted to simulate a model di-domain protein against experimental paramagnetic relaxation enhancement (PRE) data that correspond to distance constraints. The molecular dynamics simulations produce a wide range of conformations depicted on a protein energy landscape. Subsequently, a conformational ensemble recovered with low-energy structures and the minimum-size restraint is identified in good agreement with experimental PRE rates, and the result is also supported by chemical shift perturbations and small-angle X-ray scattering data. It is illustrated that the regularizations of energy and ensemble-size prevent an arbitrary interpretation of protein conformations. Moreover, energy is found to serve as a critical control to refine the structure pool and prevent data overfitting, because the absence of energy regularization exposes ensemble construction to the noise from high-energy structures and causes a more ambiguous representation of protein conformations. Finally, we perform structure-ensemble optimizations with a topology-based structure pool, to enhance the understanding on the ensemble results from different sources of pool candidates.


Assuntos
Simulação de Dinâmica Molecular , Proteínas de Ligação a Poli(A)/química , Proteínas de Saccharomyces cerevisiae/química , Aminoácidos/química , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Saccharomyces cerevisiae , Relação Estrutura-Atividade , Termodinâmica
19.
Proc Natl Acad Sci U S A ; 112(37): 11565-70, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26305976

RESUMO

Enzyme I (EI) is the first component in the bacterial phosphotransferase system, a signal transduction pathway in which phosphoryl transfer through a series of bimolecular protein-protein interactions is coupled to sugar transport across the membrane. EI is a multidomain, 128-kDa homodimer that has been shown to exist in two conformational states related to one another by two large (50-90°) rigid body domain reorientations. The open conformation of apo EI allows phosphoryl transfer from His189 located in the N-terminal domain α/ß (EIN(α/ß)) subdomain to the downstream protein partner bound to the EIN(α) subdomain. The closed conformation, observed in a trapped phosphoryl transfer intermediate, brings the EIN(α/ß) subdomain into close proximity to the C-terminal dimerization domain (EIC), thereby permitting in-line phosphoryl transfer from phosphoenolpyruvate (PEP) bound to EIC to His189. Here, we investigate the solution conformation of a complex of an active site mutant of EI (H189A) with PEP. Simulated annealing refinement driven simultaneously by solution small angle X-ray scattering and NMR residual dipolar coupling data demonstrates unambiguously that the EI(H189A)-PEP complex exists in a dynamic equilibrium between two approximately equally populated conformational states, one corresponding to the closed structure and the other to a partially closed species. The latter likely represents an intermediate in the open-to-closed transition.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/enzimologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Fosfotransferases (Aceptor do Grupo Nitrogenado)/química , Algoritmos , Domínio Catalítico , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Mutação , Nitrogênio/química , Fosforilação , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Espalhamento de Radiação , Transdução de Sinais , Raios X
20.
Int J Mol Sci ; 19(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337899

RESUMO

Saccharomyces cerevisiae Fet3p is a multicopper oxidase that contains three cupredoxin-like domains and four copper ions located in three distinct metal sites (T1 in domain 3; T2 and the binuclear T3 at the interface between domains 1 and 3). To probe the role of the copper sites in Fet3p thermodynamic stability, we performed urea-induced unfolding experiments with holo-, apo- and three partially-metallated (T1, T2 and T1/T2 sites depleted of copper) forms of Fet3p. Using a combination of spectroscopic probes (circular dichroism, fluorescence intensity and maximum, 8-anilinonaphthalene-1-sulfonic acid (ANS) emission, oxidase activity and blue color), we reveal that all forms of Fet3p unfold in a four-state reaction with two partially-folded intermediates. Using phase diagrams, it emerged that Fet3p with all copper sites filled had a significantly higher stability as compared to the combined contributions of the individual copper sites. Hence, there is long-range inter-domain communication between distal copper sites that contribute to overall Fet3p stability.


Assuntos
Ceruloplasmina/metabolismo , Cobre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Apoproteínas/metabolismo , Estabilidade Enzimática , Proteínas Mutantes/metabolismo , Desnaturação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Espectrometria de Fluorescência , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA