RESUMO
While social psychology studies have shown that paradoxical thinking intervention has a moderating effect on negative attitudes toward members from rival social groups (i.e. outgroup), the neural underpinnings of the intervention have not been studied. Here, we investigate this by examining neural alignment across individuals at different phases during the intervention regarding Covid-19 vaccine-supporters' attitudes against vaccine-opposers. We raise two questions: Whether neural alignment varies during the intervention, and whether it predicts a change in outgroup attitudes measured via a survey 2 days after the intervention and compared to baseline. We test the neural alignment using magnetoencephalography-recorded neural oscillations and multiset canonical correlation analysis. We find a build-up of neural alignment which emerges at the final phase of the paradoxical thinking intervention in the precuneus-a hub of mentalizing; there was no such effect in the control conditions. In parallel, we find a behavioral build-up of dissent to the interventional stimuli. These neural and behavioral patterns predict a prosocial future change in affect and actions toward the outgroup. Together, these findings reveal a new operational pattern of mentalizing on the outgroup, which can change the way individuals may feel and behave toward members of that outgroup.
Assuntos
Atitude , Vacinas contra COVID-19 , Humanos , Lobo Parietal , MagnetoencefalografiaRESUMO
Graphical network characteristics and nonstationary functional connectivity features, both derived from resting-state functional magnetic resonance imaging (rsfMRI) data, have been associated with cognitive performance in healthy subjects. How these features jointly relate to cognition in diseased states has not been investigated. In this study, 46 relapsing-remitting multiple sclerosis subjects underwent rsfMRI scans and a focused cognitive battery. With a sliding window approach, we examined six dynamic network features that indicated how connectivity changed over time as well as six measures derived from graph theory to reflect static network characteristics. Multiset canonical correlation analysis (MCCA) was then carried out to investigate the relations between dynamic network features, stationary network characteristics, cognitive testing, demographic, disease severity, and mood. Multiple sclerosis (MS) subjects demonstrated weaker connectivity strength, decreased network density, reduced global changes, but increased changes in interhemispheric connectivity compared to controls. The MCCA model determined that executive functions and processing speed ability measured by Wechsler Adult Intelligence Scale IV (WAIS-IV) Working Memory Index, WAIS-IV Processing Speed Index, and the Verbal Fluency Test were positively correlated with education, dynamic connectivity, and static connectivity strength; while poor task switching was correlated with disease severity, psychiatric comorbidities such as depression, anxiety, and fatigue, and static network density. Taken together, our results suggest that better executive functioning in MS requires maintenance of a continued coordination between stationary and dynamic functional connectivity as well as the support of education, and dynamic functional connectivity may provide an additional cognitive biomarker of disease severity in the MS population.
Assuntos
Córtex Cerebral/fisiopatologia , Conectoma/métodos , Escolaridade , Função Executiva/fisiologia , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Rede Nervosa/fisiopatologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Índice de Gravidade de DoençaRESUMO
Brain functional network (BFN), usually estimated from blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI), has been proven to be a powerful tool to study the organization of the brain and discover biomarkers for diagnosis of brain disorders. Prior to BFN estimation and classification, extracting representative BOLD signals from brain regions of interest (ROIs) is a critical step. Traditional extraction methods include averaging, peaking operation and dimensionality reduction, often leading to signal cancellation and information loss. In this paper, we propose a novel method, namely time-constrained multiset canonical correlation analysis (TMCCA), to extract representative BOLD signals for subsequent BFN estimation and classification. Different from traditional methods that equally treat all BOLD signals in a ROI, the proposed method assigns weights to different BOLD signals, and learns the optimal weights to make the extracted representative signals jointly maximize the multiple correlations between ROIs. Importantly, time-constraint is incorporated into our proposed method, which can effectively encode nonlinear relationship among BOLD signals. To evaluate the effectiveness of the proposed method, the extracted BOLD signals is used to estimate BFN and, in turn, identify brain disorders, including mild cognitive impairment (MCI) and autistic spectrum disorder (ASD). Experimental results demonstrate that our proposed TMCCA can lead to better performance than traditional methods.
Assuntos
Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Mapeamento Encefálico , Análise de Correlação Canônica , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância MagnéticaRESUMO
We examined the influence of dysfunctional, non-lesional white matter on cognitive performance in multiple sclerosis (MS). Forty-six MS subjects were assessed using MRI-based myelin water imaging (MWI), and average myelin water fraction (MWF) values across 20 white matter regions of interest (ROIs) were determined. A data-fusion method, multiset canonical correlation analysis (MCCA), was used to investigate the multivariate, deterministic joint relations between MWF, executive function, and demographic and clinical characteristics. MCCA revealed one significant component (pâ¯=â¯0.009) which consisted of three linked profiles, with a pairwise correlation between the MWF and cognitive profiles of râ¯=â¯0.37, a correlation between MWF and demographics profiles of râ¯=â¯0.31, and between cognitive and demographics profiles râ¯=â¯0.64. White matter ROIs representing long-range intra-hemispheric tracts and ROIs connecting the two hemispheres were positively related through their individual profiles to overall cognitive performance, education and female gender, while age, EDSS, and disease duration were related negatively. Surprisingly, lesions within the ROIs had a negligible effect on overall relations between imaging, cognitive, and demographic variables. These findings indicate that there is a strong association between a pattern of MWF values and cognitive performance in MS, which is modulated by age, education, and disease severity. Moreover, this consistent relation involves multiple white matter regions and is separate from the influence of lesions.