Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(5): 1298-1310, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38459694

RESUMO

Undesired on- and off-target effects of CRISPR-Cas nucleases remain a challenge in genome editing. While the use of Cas9 nickases has been shown to minimize off-target mutagenesis, their use in therapeutic genome editing has been hampered by a lack of efficacy. To overcome this limitation, we and others have developed double-nickase-based strategies to generate staggered DNA double-strand breaks to mediate gene disruption or gene correction with high efficiency. However, the impact of paired single-strand nicks on genome integrity has remained largely unexplored. Here, we developed a novel CAST-seq pipeline, dual CAST, to characterize chromosomal aberrations induced by paired CRISPR-Cas9 nickases at three different loci in primary keratinocytes derived from patients with epidermolysis bullosa. While targeting COL7A1, COL17A1, or LAMA3 with Cas9 nucleases caused previously undescribed chromosomal rearrangements, no chromosomal translocations were detected following paired-nickase editing. While the double-nicking strategy induced large deletions/inversions within a 10 kb region surrounding the target sites at all three loci, similar to the nucleases, the chromosomal on-target aberrations were qualitatively different and included a high proportion of insertions. Taken together, our data indicate that double-nickase approaches combine efficient editing with greatly reduced off-target effects but still leave substantial chromosomal aberrations at on-target sites.


Assuntos
Sistemas CRISPR-Cas , Desoxirribonuclease I , Edição de Genes , Queratinócitos , Humanos , Edição de Genes/métodos , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/genética , Queratinócitos/metabolismo , Quebras de DNA de Cadeia Dupla , Aberrações Cromossômicas , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Células Cultivadas
2.
Mol Ther ; 32(6): 1628-1642, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38556793

RESUMO

Severe congenital neutropenia (CN) is an inherited pre-leukemia bone marrow failure syndrome commonly caused by autosomal-dominant ELANE mutations (ELANE-CN). ELANE-CN patients are treated with daily injections of recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, some patients do not respond to rhG-CSF, and approximately 15% of ELANE-CN patients develop myelodysplasia or acute myeloid leukemia. Here, we report the development of a curative therapy for ELANE-CN through inhibition of ELANE mRNA expression by introducing two single-strand DNA breaks at the opposing DNA strands of the ELANE promoter TATA box using CRISPR-Cas9D10A nickases-termed MILESTONE. This editing effectively restored defective neutrophil differentiation of ELANE-CN CD34+ hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, without affecting the functions of the edited neutrophils. CRISPResso analysis of the edited ELANE-CN CD34+ HSPCs revealed on-target efficiencies of over 90%. Simultaneously, GUIDE-seq, CAST-Seq, and rhAmpSeq indicated a safe off-target profile with no off-target sites or chromosomal translocations. Taken together, ex vivo gene editing of ELANE-CN HSPCs using MILESTONE in the setting of autologous stem cell transplantation could be a universal, safe, and efficient gene therapy approach for ELANE-CN patients.


Assuntos
Sistemas CRISPR-Cas , Síndrome Congênita de Insuficiência da Medula Óssea , Edição de Genes , Terapia Genética , Elastase de Leucócito , Neutropenia , Regiões Promotoras Genéticas , Edição de Genes/métodos , Humanos , Neutropenia/congênito , Neutropenia/terapia , Neutropenia/genética , Terapia Genética/métodos , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Animais , Camundongos , Neutrófilos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mutação , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Doenças Genéticas Ligadas ao Cromossomo X/genética
3.
Anal Biochem ; 692: 115569, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750682

RESUMO

Isothermal nucleic acid amplification techniques are attracting increasing attention in molecular diagnosis and biotechnology. However, most existing techniques are complicated by the need for intricate primer design and numerous enzymes and primers. Here, we have developed a simple method, termed NAQ, that employs adding both endonuclease Q (EndoQ) and dUTP/dITP to conventional rolling circle amplification reactions to increase DNA amplification. NAQ does not require intricate primer design or DNA sequence-specific enzymes, and existing isothermal amplification techniques could be readily adapted to include both EndoQ and dUTP/dITP.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/genética , Endonucleases/metabolismo , Endonucleases/genética
4.
Biotechnol Bioeng ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923503

RESUMO

Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Gene editing technology repairs the conversion of the 6th base T to C in exon 7 of the paralogous SMN2 gene, compensating for the SMN protein expression and promoting the survival and function of motor neurons. However, low editing efficiency and unintended off-target effects limit the application of this technology. Here, we optimized a TaC9-adenine base editor (ABE) system by combining Cas9 nickase with the transcription activator-like effector (TALE)-adenosine deaminase fusion protein to effectively and precisely edit SMN2 without detectable Cas9 dependent off-target effects in human cell lines. We also generated human SMA-induced pluripotent stem cells (SMA-iPSCs) through the mutation of the splice acceptor or deletion of the exon 7 of SMN1. TaC9-R10 induced 45% SMN2 T6 > C conversion in the SMA-iPSCs. The SMN2 T6 > C splice-corrected SMA-iPSCs were directionally differentiated into motor neurons, exhibiting SMN protein recovery and antiapoptosis ability. Therefore, the TaC9-ABE system with dual guides from the combination of Cas9 with TALE could be a potential therapeutic strategy for SMA with high efficacy and safety.

5.
Protein Expr Purif ; 217: 106445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342386

RESUMO

INTRODUCTION: The aim of this study was to compare two CRISPR/Cas9-based orthogonal strategies, paired-Cas9 nickase (paired-Cas9n) and RNA-guided FokI (RFN), in targeting 18S rDNA locus in Chinese hamster ovary (CHO) cells and precisely integrating a bicistronic anti-CD52 monoclonal antibody (mAb) expression cassette into this locus. METHODS: T7E1 and high-resolution melt (HRM) assays were used to compare the ability of mentioned systems in inducing double-strand break (DSB) at the target site. Moreover, 5'- and 3'-junction polymerase chain reactions (PCR) were used to verify the accuracy of the targeted integration of the mAb expression cassette into the 18S rDNA locus. Finally, anti-CD52 mAb gene copy number was measured and, its expression was analyzed using ELISA and western blot assays. RESULTS: Our results indicated that both paired-Cas9n and RFN induced DSB at the target site albeit RFN performance was slightly more efficient in HRM analysis. We also confirmed that the anti-CD52 mAb cassette was accurately integrated at the 18S rDNA locus and the mAb was expressed successfully in CHO cells. CONCLUSION: Taken together, our findings elucidated that both paired-Cas9n and RFN genome editing tools are promising in targeting the 18S rDNA locus. Site specific integration of the bicistronic anti-CD52 mAb expression cassette at this locus in the CHO-K1 cells was obtained, using RFN. Moreover, proper expression of the anti-CD52 mAb at the 18S rDNA target site can be achieved using the bicistronic internal ribosome entry site (IRES)-based vector system.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Cricetinae , Animais , Edição de Genes/métodos , Cricetulus , Células CHO , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , DNA Ribossômico , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo
6.
Bioessays ; 44(9): e2200032, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750651

RESUMO

Clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system has revolutionized genetic research in the life sciences. Four classes of CRISPR/Cas-derived genome editing agents, such as nuclease, base editor, recombinase, and prime editor have been introduced for engineering the genomes of diverse organisms. The recently introduced prime editing system offers precise editing without many off-target effects than traditional CRISPR-based systems. Many researchers have successfully applied this gene-editing toolbox in diverse systems for various genome-editing applications. This review presents the mechanism of prime editing and summarizes the details of the prime editing system applied in plants and mammalian cells for precise genome editing. We also discuss the advantages, limitations, and potential future applications of prime editing in these systems. This review enables the researcher to gain knowledge on prime editing tools and their potential applications in plants and mammalian cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Endonucleases , Genoma , Mamíferos/genética , Plantas/genética
7.
Biochem Biophys Res Commun ; 628: 49-56, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36081278

RESUMO

The coagulation factor 9 gene (FIX) point mutation contributes to most hemophilia B cases, providing ideal gene correction models. Here we identified the frequent mutation G20519A (R226Q) in FIX, which resulted in many severe and moderate hemophilia B patients. This study aimed to investigate the effect of HDR and base editing in correcting FIX mutant. We first constructed HEK293 and liver-derived cell lines Huh7 cells stabling carrying mutated FIX containing G20519A (HEK293-FIXmut and Huh7-FIXmut). Then, CRISPR/Cas9-based homology-directed repair (HDR) and base editing were used for the correction of this mutated point. We used Cas9 nickase (nCas9) mediated HDR and the advanced base editor ABE8e to correct G20519A and then measured the concentration and activity of FIX. Furthermore, we used the star-shaped poly(lysine) gene nanocarriers to deliver the ABE8e correction systems into HEK293-FIXmut and Huh7-FIXmut stem cells to correct mutated FIX. As a result, we found that gRNAs directed inefficient HDR in correcting G20519A. The ABE8e corrected the mutation efficiently in both HEK293-FIXmut and Huh7-FIXmut stem cells. In addition, the star-shaped poly(lysine) carriers delivered non-viral vectors into stem cells efficiently. The nanocarriers-delivered ABE8e system corrected mutated FIX in stem cells, and the stem cells secreted active FIX in high concentration. In conclusion, our study provides a potential alternative for correcting mutated FIX in hemophilia B patients.


Assuntos
Edição de Genes , Hemofilia A , Hemofilia B , Aminoidrolases/genética , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Sistemas CRISPR-Cas/genética , Desoxirribonuclease I/metabolismo , Edição de Genes/métodos , Células HEK293 , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia B/genética , Hemofilia B/terapia , Humanos , Mutação , Mutação de Sentido Incorreto , Polilisina/química , Células-Tronco/metabolismo
8.
J Virol ; 95(23): e0088221, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549979

RESUMO

Human and simian immunodeficiency virus (HIV and SIV) infections establish lifelong reservoirs of cells harboring an integrated proviral genome. Genome editing CRISPR-associated Cas9 nucleases, combined with SIV-specific guiding RNA (gRNA) molecules, inactivate integrated provirus DNA in vitro and in animal models. We generated RNA-guided Cas9 nucleases (RGNu) and nickases (RGNi) targeting conserved SIV regions with no homology in the human or rhesus macaque genome. Assays in cells cotransfected with SIV provirus and plasmids coding for RGNus identified SIV long terminal repeat (LTR), trans-activation response (TAR) element, and ribosome slip site (RSS) regions as the most effective at virus suppression; RGNi targeting these regions inhibited virus production significantly. Multiplex plasmids that coexpressed these three RGNu (Nu3), or six (three pairs) RGNi (Ni6), were more efficient at virus suppression than any combination of individual RGNu and RGNi plasmids. Both Nu3 and Ni6 plasmids were tested in lymphoid cells chronically infected with SIVmac239, and whole-genome sequencing was used to determine on- and off-target mutations. Treatment with these all-in-one plasmids resulted in similar levels of mutations of viral sequences from the cellular genome; Nu3 induced indels at the 3 SIV-specific sites, whereas for Ni6 indels were present at the LTR and TAR sites. Levels of off-target effects detected by two different algorithms were indistinguishable from background mutations. In summary, we demonstrate that Cas9 nickase in association with gRNA pairs can specifically eliminate parts of the integrated provirus DNA; also, we show that careful design of an all-in-one plasmid coding for 3 gRNAs and Cas9 nuclease inhibits SIV production with undetectable off-target mutations, making these tools a desirable prospect for moving into animal studies. IMPORTANCE Our approach to HIV cure, utilizing the translatable SIV/rhesus macaque model system, aims at provirus inactivation and its removal with the least possible off-target side effects. We developed single molecules that delivered either three truncated SIV-specific gRNAs along with Cas9 nuclease or three pairs of SIV-specific gRNAs (six individual gRNAs) along with Cas9 nickase to enhance efficacy of on-target mutagenesis. Whole-genome sequencing demonstrated effective SIV sequence mutation and inactivation and the absence of demonstrable off-target mutations. These results open the possibility to employ Cas9 variants that introduce single-strand DNA breaks to eliminate integrated proviral DNA.


Assuntos
DNA , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Provírus/genética , RNA Guia de Cinetoplastídeos/genética , Vírus da Imunodeficiência Símia/genética , Animais , Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes , Células HEK293 , Humanos , Macaca mulatta/metabolismo , Mutagênese , Plasmídeos
9.
J Biol Chem ; 295(17): 5538-5553, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32161115

RESUMO

Cas12a (Cpf1) is an RNA-guided endonuclease in the bacterial type V-A CRISPR-Cas anti-phage immune system that can be repurposed for genome editing. Cas12a can bind and cut dsDNA targets with high specificity in vivo, making it an ideal candidate for expanding the arsenal of enzymes used in precise genome editing. However, this reported high specificity contradicts Cas12a's natural role as an immune effector against rapidly evolving phages. Here, we employed high-throughput in vitro cleavage assays to determine and compare the native cleavage specificities and activities of three different natural Cas12a orthologs (FnCas12a, LbCas12a, and AsCas12a). Surprisingly, we observed pervasive sequence-specific nicking of randomized target libraries, with strong nicking of DNA sequences containing up to four mismatches in the Cas12a-targeted DNA-RNA hybrid sequences. We also found that these nicking and cleavage activities depend on mismatch type and position and vary with Cas12a ortholog and CRISPR RNA sequence. Our analysis further revealed robust nonspecific nicking of dsDNA when Cas12a is activated by binding to a target DNA. Together, our findings reveal that Cas12a has multiple nicking activities against dsDNA substrates and that these activities vary among different Cas12a orthologs.


Assuntos
Acidaminococcus/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/genética , Endodesoxirribonucleases/metabolismo , Francisella/enzimologia , Acidaminococcus/genética , Acidaminococcus/metabolismo , Proteínas de Bactérias/genética , Pareamento Incorreto de Bases , Sequência de Bases , Proteínas Associadas a CRISPR/genética , DNA/metabolismo , Clivagem do DNA , Endodesoxirribonucleases/genética , Francisella/genética , Francisella/metabolismo , Edição de Genes/métodos , Expressão Gênica
10.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33397707

RESUMO

Diverse Lactobacillus strains are widely used as probiotic cultures in the dairy and dietary supplement industries, and specific strains, such as Lactobacillus acidophilus NCFM, have been engineered for the development of biotherapeutics. To expand the Lactobacillus manipulation toolbox with enhanced efficiency and ease, we present here a CRISPR (clustered regularly interspaced palindromic repeats)-SpyCas9D10A nickase (Cas9N)-based system for programmable engineering of L. acidophilus NCFM, a model probiotic bacterium. Successful single-plasmid delivery system was achieved with the engineered pLbCas9N vector harboring cas9N under the regulation of a Lactobacillus promoter and a cloning region for a customized single guide RNA (sgRNA) and editing template. The functionality of the pLbCas9N system was validated in NCFM with targeted chromosomal deletions ranging between 300 bp and 1.9 kb at various loci (rafE, lacS, and ltaS), yielding 35 to 100% mutant recovery rates. Genome analysis of the mutants confirmed precision and specificity of the pLbCas9N system. To showcase the versatility of this system, we also inserted an mCherry fluorescent-protein gene downstream of the pgm gene to create a polycistronic transcript. The pLbCas9N system was further deployed in other species to generate a concurrent single-base substitution and gene deletion in Lactobacillus gasseri ATCC 33323 and an in-frame gene deletion in Lactobacillus paracasei Lpc-37, highlighting the portability of the system in phylogenetically distant Lactobacillus species, where its targeting activity was not interfered with by endogenous CRISPR-Cas systems. Collectively, these editing outcomes illustrate the robustness and versatility of the pLbCas9N system for genome manipulations in diverse lactobacilli and open new avenues for the engineering of health-promoting lactic acid bacteria.IMPORTANCE This work describes the development of a lactobacillus CRISPR-based editing system for genome manipulations in three Lactobacillus species belonging to the lactic acid bacteria (LAB), which are commonly known for their long history of use in food fermentations and as indigenous members of healthy microbiotas and for their emerging roles in human and animal commercial health-promoting applications. We exploited the established CRISPR-SpyCas9 nickase for flexible and precise genome editing applications in Lactobacillus acidophilus and further demonstrated the efficacy of this universal system in two distantly related Lactobacillus species. This versatile Cas9-based system facilitates genome engineering compared to conventional gene replacement systems and represents a valuable gene editing modality in species that do not possess native CRISPR-Cas systems. Overall, this portable tool contributes to expanding the genome editing toolbox of LAB for studying their health-promoting mechanisms and engineering of these beneficial microbes as next-generation vaccines and designer probiotics.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Desoxirribonuclease I , Edição de Genes/métodos , Lacticaseibacillus paracasei/genética , Lactobacillus acidophilus/genética , Lactobacillus gasseri/genética , Genoma Bacteriano
11.
FASEB J ; 34(4): 5688-5696, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32100378

RESUMO

Many studies have been conducted to improve economically important livestock traits such as feed efficiency and muscle growth. Genome editing technologies represent a major advancement for both basic research and agronomic biotechnology development. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technical platform is a powerful tool used to engineer specific targeted loci. However, the potential occurrence of off-target effects, including the cleavage of unintended targets, limits the practical applications of Cas9-mediated genome editing. In this study, to minimize the off-target effects of this technology, we utilized D10A-Cas9 nickase to generate myostatin-knockout (MSTN KO) chickens via primordial germ cells. D10A-Cas9 nickase (Cas9n)-mediated MSTN KO chickens exhibited significantly larger skeletal muscles in the breast and leg. Degrees of skeletal muscle hypertrophy and hyperplasia induced by myostatin deletion differed by sex and muscle type. The abdominal fat deposition was dramatically lower in MSTN KO chickens than in wild-type chickens. Our results demonstrate that the D10A-Cas9 technical platform can facilitate precise and efficient targeted genome engineering and may broaden the range of applications for genome-edited chickens in practical industrialization and as animal models of human diseases.


Assuntos
Animais Geneticamente Modificados/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Células Germinativas/metabolismo , Músculo Esquelético/metabolismo , Miostatina/fisiologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Galinhas , Células Germinativas/citologia , Músculo Esquelético/citologia , Miostatina/antagonistas & inibidores , Fenótipo
12.
J Struct Biol ; 210(3): 107508, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32298813

RESUMO

The mutated nickase Nt.BspD6I E418A has been obtained by site-directed mutagenesis. The purified protein has been crystallized, and its spatial structure has been determined at 2.45 Å resolution. An analysis of the crystal structures of the wild-type and mutated nickase have shown that the elimination of a carboxyl group due to the E418A mutation initiates marked conformational changes in both the N-terminal recognition domain and the C-terminal catalytic domain of nickase and insignificantly affects its linker domain. This is supported by changes in the functional properties of mutated nickase: an increase in the oligomerization capacity in the presence of a substrate, a reduction in the capacity to bind a substrate, and complete loss of catalytic activity.


Assuntos
Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Domínio Catalítico/genética , Desoxirribonuclease I/genética , Mutagênese Sítio-Dirigida , Mutação/genética
13.
Neurobiol Dis ; 146: 105122, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007388

RESUMO

Mutations in NR2E3 cause retinitis pigmentosa (RP) and enhanced S-cone syndrome (ESCS) in humans. This gene produces a large isoform encoded in 8 exons and a previously unreported shorter isoform of 7 exons, whose function is unknown. We generated two mouse models by targeting exon 8 of Nr2e3 using CRISPR/Cas9-D10A nickase. Allele Δ27 is an in-frame deletion of 27 bp that ablates the dimerization domain H10, whereas allele ΔE8 (full deletion of exon 8) produces only the short isoform, which lacks the C-terminal part of the ligand binding domain (LBD) that encodes both H10 and the AF2 domain involved in the Nr2e3 repressor activity. The Δ27 mutant shows developmental alterations and a non-progressive electrophysiological dysfunction that resembles the ESCS phenotype. The ΔE8 mutant exhibits progressive retinal degeneration, as occurs in human RP patients. Our mutants suggest a role for Nr2e3 as a cone-patterning regulator and provide valuable models for studying mechanisms of NR2E3-associated retinal dystrophies and evaluating potential therapies.


Assuntos
Oftalmopatias Hereditárias/genética , Mutação/genética , Receptores Nucleares Órfãos/metabolismo , Degeneração Retiniana/genética , Retinose Pigmentar/metabolismo , Transtornos da Visão/genética , Éxons/genética , Oftalmopatias Hereditárias/metabolismo , Humanos , Fenótipo , Isoformas de Proteínas/genética , Retina/metabolismo , Degeneração Retiniana/metabolismo , Retinose Pigmentar/genética , Transtornos da Visão/metabolismo
14.
Plant Biotechnol J ; 18(1): 45-56, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31116473

RESUMO

The base-editing technique using CRISPR/nCas9 (Cas9 nickase) or dCas9 (deactivated Cas9) fused with cytidine deaminase is a powerful tool to create point mutations. In this study, a novel G. hirsutum-Base Editor 3 (GhBE3) base-editing system has been developed to create single-base mutations in the allotetraploid genome of cotton (Gossypium hirsutum). A cytidine deaminase sequence (APOBEC) fused with nCas9 and uracil glycosylase inhibitor (UGI) was inserted into our CRISPR/Cas9 plasmid (pRGEB32-GhU6.7). Three target sites were chosen for two target genes, GhCLA and GhPEBP, to test the efficiency and accuracy of GhBE3. The editing efficiency ranged from 26.67 to 57.78% at the three target sites. Targeted deep sequencing revealed that the C→T substitution efficiency within an 'editing window', approximately six-nucleotide windows of -17 to -12 bp from the PAM sequence, was up to 18.63% of the total sequences. The 27 most likely off-target sites predicted by CRISPR-P and Cas-OFFinder tools were analysed by targeted deep sequencing, and it was found that rare C→T substitutions (average < 0.1%) were detected in the editing windows of these sites. Furthermore, whole-genome sequencing analyses on two GhCLA-edited and one wild-type plants with about 100× depth showed that no bona fide off-target mutations were detectable from 1500 predicted potential off-target sites across the genome. In addition, the edited bases were inherited to T1 progeny. These results demonstrate that GhBE3 has high specificity and accuracy for the generation of targeted point mutations in allotetraploid cotton.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Gossypium/genética , Mutação , Tetraploidia
15.
Dev Growth Differ ; 62(9): 554-567, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33155277

RESUMO

The CRISPR/Cas system offers new opportunities for targeted gene modifications in a wide range of organisms. In medaka (Oryzias latipes), a vertebrate model organism, a wild-type Cas9-based approach is commonly used to establish desired strains, however, its use in lethal genes is still challenging due to excess gene disruptions triggered by DNA double strand breaks (DSBs). To overcome this problem, we aimed to develop a new knock-in system using Cas9 nickase (Cas9n) that can reduce DNA DSBs. We revealed that Cas9n allowed reduction of the DSB-induced unwanted mutagenesis via non-homologous end-joining at both on- and off- target sites. Further, with a new donor plasmid (p2BaitD) that provides a linear template through Cas9n-mediated nicks, we successfully integrated reporter cassettes via homology-directed repair (HDR) into all three loci tested, including a lethal gene. In the experiment targeting the lethal gene, the combination of p2BaitD and Cas9n achieved higher survival rates than the Cas9-based approach, which enabled the desired knock-in founders. Additionally, through a technical blend of our knock-in system with a recently developed One-step mating protocol, we successfully established a homozygous knock-in strain in one generation period. This study presents evidence of an effective method to generate an HDR-mediated gene knock-in in medaka and other organisms, which is useful for establishing screening platforms for genes or drugs toxicity or other applications.


Assuntos
Sistemas CRISPR-Cas/genética , Desoxirribonuclease I/genética , Genes Letais/genética , Animais , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Desoxirribonuclease I/metabolismo , Oryzias/genética
16.
Tumour Biol ; 42(9): 1010428320962588, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32996421

RESUMO

A missense mutation of the guanine nucleotide binding protein alpha stimulating activity polypeptide 1 (GNAS) gene, typically Arg201Cys or Arg201His (R201H/R201C), leads to constitutive activation of the Gsα-cyclic AMP (cAMP) signaling pathway that causes several diseases. However, no germline mutations of GNAS have been identified to date, likely due to their lethality, and no robust human cell models have been generated. Therefore, the aim of this study was to generate GNAS-mutated disease-specific induced pluripotent stem cells as a model for these diseases. We then analyzed the functionality of this induced pluripotent stem cell model and differentiated epithelial cells. We generated disease-specific induced pluripotent stem cells by introducing a mutation in GNAS with the clustered regularly interspaced short palindromic repeats (CRISPR) nickase method, which has lower off-target effects than the conventional CRISPR/Cas9 method. We designed the target vector to contain the R201H mutation in GNAS, which was transfected into human control induced pluripotent stem cells (Nips-B2) by electroporation. We confirmed the establishment of GNASR201H-mutated (GNASR201H/+) induced pluripotent stem cells that exhibited a pluripotent stem cell phenotype. We analyzed the effect of the mutation on cAMP production, and further generated teratomas for immunohistochemical analysis of the luminal epithelial structure. GNAS-mutated induced pluripotent stem cells showed significantly higher levels of intracellular cAMP, which remained elevated state for a long time upon hormonal stimulation with parathyroid hormone or adrenocorticotropic hormone. Immunohistochemical analysis revealed that several mucins, including MUC1, 2, and MUC5AC, are expressed in cytokeratin 18 (CK18)-positive epithelial cells. However, we found few CK18-positive cells in mutated induced pluripotent stem cell-derived teratoma tissues, and reduced MUCINs expression in mutated epithelial cells. There was no difference in CDX2 expression; however, mutated epithelial cells were positive for CEA and CA19-9 expression. GNASR201H-mutated induced pluripotent stem cells and GNASR201H-mutated epithelial cells have distinct phenotypic and differentiation characteristics. We successfully established GNASR201H-mutated human induced pluripotent stem cells with increased cAMP production. Considering the differentiation potential of induced pluripotent stem cells, these cells will be useful as a model for elucidating the pathological mechanisms of GNAS-mutated diseases.


Assuntos
Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Mutação , Teratoma/patologia , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Cromograninas/antagonistas & inibidores , Subunidades alfa Gs de Proteínas de Ligação ao GTP/antagonistas & inibidores , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos SCID , Teratoma/genética
17.
J Biol Chem ; 293(18): 6883-6892, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507093

RESUMO

Hereditary tyrosinemia type I (HTI) is a metabolic genetic disorder caused by mutation of fumarylacetoacetate hydrolase (FAH). Because of the accumulation of toxic metabolites, HTI causes severe liver cirrhosis, liver failure, and even hepatocellular carcinoma. HTI is an ideal model for gene therapy, and several strategies have been shown to ameliorate HTI symptoms in animal models. Although CRISPR/Cas9-mediated genome editing is able to correct the Fah mutation in mouse models, WT Cas9 induces numerous undesired mutations that have raised safety concerns for clinical applications. To develop a new method for gene correction with high fidelity, we generated a Fah mutant rat model to investigate whether Cas9 nickase (Cas9n)-mediated genome editing can efficiently correct the Fah First, we confirmed that Cas9n rarely induces indels in both on-target and off-target sites in cell lines. Using WT Cas9 as a positive control, we delivered Cas9n and the repair donor template/single guide (sg)RNA through adenoviral vectors into HTI rats. Analyses of the initial genome editing efficiency indicated that only WT Cas9 but not Cas9n causes indels at the on-target site in the liver tissue. After receiving either Cas9n or WT Cas9-mediated gene correction therapy, HTI rats gained weight steadily and survived. Fah-expressing hepatocytes occupied over 95% of the liver tissue 9 months after the treatment. Moreover, CRISPR/Cas9-mediated gene therapy prevented the progression of liver cirrhosis, a phenotype that could not be recapitulated in the HTI mouse model. These results strongly suggest that Cas9n-mediated genome editing is a valuable and safe gene therapy strategy for this genetic disease.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Desoxirribonuclease I/metabolismo , Edição de Genes , Terapia Genética/métodos , Tirosinemias/genética , Adenoviridae/genética , Animais , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Células HEK293 , Hepatócitos/citologia , Humanos , Hidrolases/genética , Mutação INDEL , Cirrose Hepática/etiologia , Cirrose Hepática/prevenção & controle , Masculino , Ratos , Tirosinemias/complicações , Tirosinemias/imunologia , Tirosinemias/terapia
18.
Biotechnol Bioeng ; 116(6): 1475-1483, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739328

RESUMO

Clostridium beijerinckii is a potentially important industrial microorganism as it can synthesize valuable chemicals and fuels from various carbon sources. The establishment of convenient to use, effective gene tools with which the organism can be rapidly modified is essential if its full potential is to be realized. Here, we developed a genomic editing tool (pCBEclos) for use in C. beijerinckii based on the fusion of cytidine deaminase (Apobec1), Cas9 D10A nickase and uracil DNA glycosylase inhibitor (UGI). Apobec1 and UGI are guided to the target site where they introduce specific base-pair substitutions through the conversion of C·G to T·A. By appropriate choice of target sequence, these nucleotide changes are capable of creating missense mutation or null mutations in a gene. Through optimization of pCBEclos, the system derived, pCBEclos-opt, has been used to rapidly generate four different mutants in C. beijerinckii, in pyrE, xylR, spo0A, and araR. The efficiency of the system was such that they could sometimes be directly obtained following transformation, otherwise only requiring one single restreaking step. Whilst CRISPR-Cas9 nickase systems, such as pNICKclos2.0, have previously been reported in C. beijerinckii, pCBEclos-opt does not rely on homologous recombination, a process that is intrinsically inefficient in clostridia such as C. beijerinckii. As a consequence, bulky editing templates do not need to be included in the knockout plasmids. This both reduces plasmid size and makes their construction simpler, for example, whereas the assembly of pNICKclos2.0 requires six primers for the assembly of a typical knockout plasmid, pCBEclos-opt requires just two primers. The pCBEclos-opt plasmid established here represents a powerful new tool for genome editing in C. beijerinckii, which should be readily applicable to other clostridial species.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Clostridium beijerinckii/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desoxirribonuclease I/metabolismo , Edição de Genes/métodos , Proteínas Recombinantes de Fusão/metabolismo , Desaminase APOBEC-1/genética , Desaminase APOBEC-1/metabolismo , Pareamento de Bases/genética , Proteína 9 Associada à CRISPR/genética , DNA/genética , DNA/metabolismo , Desoxirribonuclease I/genética , Vetores Genéticos , Plasmídeos , Proteínas Recombinantes de Fusão/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Mol Ther ; 26(11): 2617-2630, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30274788

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by a CTG nucleotide repeat expansion within the 3' UTR of the Dystrophia Myotonica protein kinase gene. In this study, we explored therapeutic genome editing using CRISPR/Cas9 via targeted deletion of expanded CTG repeats and targeted insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats to eliminate toxic RNA CUG repeats. We found paired SpCas9 or SaCas9 guide RNA induced deletion of expanded CTG repeats. However, this approach incurred frequent inversion in both the mutant and normal alleles. In contrast, the insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats eliminated toxic RNA CUG repeats, which led to phenotype reversal in differentiated neural stem cells, forebrain neurons, cardiomyocytes, and skeletal muscle myofibers. We concluded that targeted insertion of polyadenylation signals in the 3' UTR is a viable approach to develop therapeutic genome editing for DM1.


Assuntos
Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Células-Tronco Neurais/fisiologia , Expansão das Repetições de Trinucleotídeos/genética , Regiões 3' não Traduzidas , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Edição de Genes/métodos , Terapia Genética/métodos , Células HEK293 , Humanos , Músculo Esquelético/crescimento & desenvolvimento , Miócitos Cardíacos/fisiologia , Distrofia Miotônica/patologia , Distrofia Miotônica/terapia , Neurônios/fisiologia , Sinais de Poliadenilação na Ponta 3' do RNA/genética , RNA Guia de Cinetoplastídeos , Transfecção
20.
Angew Chem Int Ed Engl ; 58(16): 5382-5386, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30773764

RESUMO

We have developed an ingenious method, termed Cas9 nickase-based amplification reaction (Cas9nAR), to amplify a target fragment from genomic DNA at a constant temperature of 37 °C. Cas9nAR employs a sgRNA:Cas9n complex with a single-strand nicking property, a strand-displacing DNA polymerase, and two primers bearing the cleavage sequence of Cas9n, to promote cycles of DNA replication through priming, extension, nicking, and displacement reaction steps. Cas9nAR exhibits a zeptomolar limit of detection (2 copies in 20 µL of reaction system) within 60 min and a single-base discrimination capability. More importantly, the underlying principle of Cas9nAR offers simplicity in primer design and universality in application. Considering the superior sensitivity and specificity, as well as the simple-to-implement, rapid, and isothermal features, Cas9nAR holds great potential to become a routine assay for the quantitative detection of nucleic acids in basic and applied studies.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , DNA Bacteriano/genética , Técnicas de Amplificação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/metabolismo , Temperatura , Sistemas CRISPR-Cas , Replicação do DNA , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA