RESUMO
Genetic medicines show promise for treating various diseases, yet clinical success has been limited by tolerability, scalability, and immunogenicity issues of current delivery platforms. To overcome these, we developed a proteolipid vehicle (PLV) by combining features from viral and non-viral approaches. PLVs incorporate fusion-associated small transmembrane (FAST) proteins isolated from fusogenic orthoreoviruses into a well-tolerated lipid formulation, using scalable microfluidic mixing. Screening a FAST protein library, we identified a chimeric FAST protein with enhanced membrane fusion activity that improved gene expression from an optimized lipid formulation. Systemically administered FAST-PLVs showed broad biodistribution and effective mRNA and DNA delivery in mouse and non-human primate models. FAST-PLVs show low immunogenicity and maintain activity upon repeat dosing. Systemic administration of follistatin DNA gene therapy with FAST-PLVs raised circulating follistatin levels and significantly increased muscle mass and grip strength. These results demonstrate the promising potential of FAST-PLVs for redosable gene therapies and genetic medicines.
Assuntos
DNA , Proteolipídeos , Animais , Camundongos , DNA/metabolismo , DNA/administração & dosagem , Proteolipídeos/metabolismo , Terapia Genética/métodos , Humanos , Folistatina/metabolismo , Folistatina/genética , Técnicas de Transferência de Genes , RNA/metabolismo , RNA/administração & dosagem , Feminino , Camundongos Endogâmicos C57BLRESUMO
Nucleic acid therapeutics are becoming an important drug modality, offering the unique opportunity to address "undruggable" targets, respond rapidly to evolving pathogens, and treat diseases at the gene level for precision medicine. However, nucleic acid therapeutics have poor bioavailability and are chemolabile and enzymolabile, imposing the need for delivery vectors. Dendrimers, by virtue of their well-defined structure and cooperative multivalence, represent precision delivery systems. We synthesized and studied bola-amphiphilic dendrimers for cargo-selective and on-demand delivery of DNA and small interfering RNA (siRNA), both important nucleic acid therapeutics. Remarkably, superior performances were achieved for siRNA delivery with the second-generation dendrimer, yet for DNA delivery with the third generation. We systematically studied these dendrimers with regard to cargo binding, cellular uptake, endosomal release, and in vivo delivery. Differences in size both of the dendrimers and their nucleic acid cargos impacted the cooperative multivalent interactions for cargo binding and release, leading to cargo-adaptive and selective delivery. Moreover, both dendrimers harnessed the advantages of lipid and polymer vectors, while offering nanotechnology-based tumor targeting and redox-responsive cargo release. Notably, they allowed tumor- and cancer cell-specific delivery of siRNA and DNA therapeutics for effective treatment in different cancer models, including aggressive and metastatic malignancies, outperforming the currently available vectors. This study provides avenues to engineer tailor-made vectors for nucleic acid delivery and precision medicine.
Assuntos
Dendrímeros , Neoplasias , Ácidos Nucleicos , Humanos , Dendrímeros/química , Ácidos Nucleicos/química , RNA Interferente Pequeno/metabolismo , DNA , RNA de Cadeia DuplaRESUMO
Leveraging liposomes for drug and nucleic acid delivery, though promising due to reduced toxicity and ease of preparation, faces challenges in stability and efficiency. To address this, we synthesized cationic amphiphiles from amino acids (arginine, lysine, and histidine). Histidine emerged as the superior candidate, leading to the development of three histidine-rich cationic amphiphiles for liposomes. Using the hydration method, we have prepared the liposomes and determined the optimal N/P ratios for lipoplex formation via gel electrophoresis. In vitro transfection assays compared the efficacy of our lipids to Fugene, while MTT assays gauged biocompatibility across cancer cell lines (MDA-MB 231 and MCF-7). The histidine-based lipid demonstrated marked potential in enhancing drug and nucleic acid delivery. This improvement stemmed from increased zeta potential, enhancing electrostatic interactions with nucleic acids and cellular uptake. Our findings underscore histidine's crucial role over lysine and arginine for effective delivery, revealing a significant correlation between histidine abundance and optimal performance. This study paves the way for histidine-enriched lipids as promising candidates for efficient drug and nucleic acid delivery, addressing key challenges in the field.
Assuntos
Lipossomos , Ácidos Nucleicos , Lipossomos/química , Aminoácidos , Histidina/química , Lisina/química , Transfecção , Arginina/química , Lipídeos/química , Cátions/químicaRESUMO
The foundation of most food production systems underpinning global food security is the careful management of soil resources. Embedded in the concept of soil health is the impact of diverse soil-borne pests and pathogens, and phytoparasitic nematodes represent a particular challenge. Root-knot nematodes and cyst nematodes are severe threats to agriculture, accounting for annual yield losses of US$157 billion. The control of soil-borne phytoparasitic nematodes conventionally relies on the use of chemical nematicides, which can have adverse effects on the environment and human health due to their persistence in soil, plants, and water. Nematode-resistant plants offer a promising alternative, but genetic resistance is species-dependent, limited to a few crops, and breeding and deploying resistant cultivars often takes years. Novel approaches for the control of phytoparasitic nematodes are therefore required, those that specifically target these parasites in the ground whilst minimizing the impact on the environment, agricultural ecosystems, and human health. In addition to the development of next-generation, environmentally safer nematicides, promising biochemical strategies include the combination of RNA interference (RNAi) with nanomaterials that ensure the targeted delivery and controlled release of double-stranded RNA. Genome sequencing has identified more than 75 genes in root knot and cyst nematodes that have been targeted with RNAi so far. But despite encouraging results, the delivery of dsRNA to nematodes in the soil remains inefficient. In this review article, we describe the state-of-the-art RNAi approaches targeting phytoparasitic nematodes and consider the potential benefits of nanotechnology to improve dsRNA delivery.
Assuntos
Nanotecnologia , Nematoides , Doenças das Plantas , Animais , Nematoides/fisiologia , Nanotecnologia/métodos , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Produtos Agrícolas/parasitologia , Produtos Agrícolas/genética , Interferência de RNARESUMO
Nucleic acid (NA)-based therapies are revolutionizing biomedical research through their ability to control cellular functions at the genetic level. This work demonstrates a versatile elastin-like polypeptide (ELP) carrier system using a layer-by-layer (LbL) formulation approach that delivers NA cargos ranging in size from siRNA to plasmids. The components of the system can be reconfigured to modulate the biochemical and biophysical characteristics of the carrier for engaging the unique features of the biological target. We show the physical characterization and biological performance of LbL ELP nucleic acid nanoparticles (LENNs) in murine and human bladder tumor cell lines. Targeting bladder tumors is difficult owing to the constant influx of urine into the bladder, leading to low contact times (typically <2 h) for therapeutic agents delivered via intravesical instillation. LENN complexes bind to bladder tumor cells within 30 min and become rapidly internalized to release their NA cargo within 60 min. Our data show that a readily adaptable NA-delivery system has been created that is flexible in its targeting ability, cargo size, and disassembly kinetics. This approach provides an alternative path to either lipid nanoparticle formulations that suffer from inefficiency and physicochemical instability or viral vectors that are plagued by manufacturing and immune rejection challenges. This agile ELP-based nanocarrier provides an alternative route for nucleic acid delivery using a biomanufacturable, biodegradable, biocompatible, and highly tunable vehicle capable of targeting cells via engagement with overexpressed cell surface receptors.
Assuntos
Elastina , Nanopartículas , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Humanos , Elastina/química , Camundongos , Animais , Nanopartículas/química , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/genética , Peptídeos/química , Ácidos Nucleicos/química , Ácidos Nucleicos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Polipeptídeos Semelhantes à ElastinaRESUMO
Cell-penetrating peptides (CPPs) are crucial for delivering macromolecules such as nucleic acids into cells. This study investigates the effectiveness of dual-modified penetratin peptides, focusing on the impact of stapling structures and an endosomal escape domain (EED) on enhancing intracellular uptake. Some CPPs were synthesized with an EED at either the N- or C-terminus and stapling structures, and then complexed with plasmid DNA (pDNA) to evaluate their cellular uptake. Results revealed that the combination of stapling and an EED significantly improved delivery efficiency, primarily via macropinocytosis and clathrin-mediated endocytosis. These findings underscore the importance of optimizing CPP sequences for effective nucleic acid delivery systems.
Assuntos
Peptídeos Penetradores de Células , Endossomos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/farmacologia , Humanos , Endossomos/metabolismo , DNA/química , Plasmídeos , Células HeLaRESUMO
BACKGROUND: The design of DNA materials with specific nanostructures for biomedical tissue engineering applications remains a challenge. High-dimensional DNA nanomaterials are difficult to prepare and are unstable; moreover, their synthesis relies on heavy metal ions. Herein, we developed a bimodal DNA self-origami material with good biocompatibility and differing functions using a simple synthesis method. We simulated and characterized this material using a combination of oxDNA, freeze-fracture electron microscopy, and atomic force microscopy. Subsequently, we optimized the synthesis procedure to fix the morphology of this material. RESULTS: Using molecular dynamics simulation, we found that the bimodal DNA self-origami material exhibited properties of spontaneous stretching and curling and could be fixed in a single morphology via synthesis control. The application of different functional nucleic acids enabled the achievement of various biological functions, and the performance of functional nucleic acids was significantly enhanced in the material. Consequently, leveraging the various functional nucleic acids enhanced by this material will facilitate the attainment of diverse biological functions. CONCLUSION: The developed design can comprehensively reveal the morphology and dynamics of DNA materials. We thus report a novel strategy for the construction of high-dimensional DNA materials and the application of functional nucleic acid-enhancing materials.
Assuntos
Nanoestruturas , Ácidos Nucleicos , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Microscopia de Força Atômica , Nanotecnologia/métodosRESUMO
BACKGROUND: Neutrophil extracellular traps (NETs), antibacterial weapons of neutrophils (NEs), have been found to play a crucial role in cancer metastasis in recent years. More and more cancer research is focusing on anti-NETs. However, almost all anti-NETs treatments have limitations such as large side effects and limited efficacy. Therefore, exploring new anti-NETs therapeutic strategies is a long-term goal. RESULTS: The transmembrane protein coiled-coil domain containing 25 (CCDC25) on tumor cell membranes can bind NETs-DNA with high specificity and affinity, enabling tumor cells to sense NETs and thus promote distant metastasis. We transformed shCCDC25 into VNP20009 (VNP), an oncolytic bacterium, to generate VNP-shCCDC25 and performed preclinical evaluation of the inhibitory effect of shCCDC25 on cancer metastasis in B16F10 lung metastasis and 4T1 orthotopic lung metastasis models. VNP-shCCDC25 effectively blocked the downstream prometastatic signaling pathway of CCDC25 at tumor sites and reduced the formation of NETs while recruiting more neutrophils and macrophages to the tumor core, ultimately leading to excellent metastasis inhibition in the two lung metastasis models. CONCLUSION: This study is a pioneer in focusing on the effect of anti-NET treatment on CCDC25. shCCDC25 is effectively delivered to tumor sites via the help of oncolytic bacteria and has broad application in the inhibition of cancer metastasis via anti-NETs.
Assuntos
Armadilhas Extracelulares , Neoplasias Pulmonares , Ácidos Nucleicos , Humanos , Armadilhas Extracelulares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neutrófilos/metabolismo , Ácidos Nucleicos/uso terapêuticoRESUMO
RNA is a promising nucleic acid-based biomolecule for various treatments because of its high efficacy, low toxicity, and the tremendous availability of targeting sequences. Nevertheless, RNA shows instability and has a short half-life in physiological environments such as the bloodstream in the presence of RNAase. Therefore, developing reliable delivery strategies is important for targeting disease sites and maximizing the therapeutic effect of RNA drugs, particularly in the field of immunotherapy. In this mini-review, we highlight two major approaches: (1) delivery vehicles and (2) chemical modifications. Recent advances in delivery vehicles employ nanotechnologies such as lipid-based nanoparticles, viral vectors, and inorganic nanocarriers to precisely target specific cell types to facilitate RNA cellular entry. On the other hand, chemical modification utilizes the alteration of RNA structures via the addition of covalent bonds such as N-acetylgalactosamine or antibodies (antibody-oligonucleotide conjugates) to target specific receptors of cells. The pros and cons of these technologies are enlisted in this review. We aim to review nucleic acid drugs, their delivery systems, targeting strategies, and related chemical modifications. Finally, we express our perspective on the potential combination of RNA-based click chemistry with adoptive cell therapy (e.g., B cells or T cells) to address the issues of short duration and short half-life associated with antibody-oligonucleotide conjugate drugs.
Assuntos
Sistemas de Liberação de Medicamentos , Imunoterapia , RNA , Humanos , Imunoterapia/métodos , Sistemas de Liberação de Medicamentos/métodos , Animais , Nanopartículas/química , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/químicaRESUMO
Nucleic acid therapeutics are promising alternatives to conventional anti-cancer therapy, such as chemotherapy and radiation therapy. While conventional therapies have limitations, such as high side effects, low specificity, and drug resistance, nucleic acid therapeutics work at the gene level to eliminate the cause of the disease. Nucleic acid therapeutics treat diseases in various forms and using different mechanisms, including plasmid DNA (pDNA), small interfering RNA (siRNA), anti-microRNA (anti-miR), microRNA mimics (miRNA mimic), messenger RNA (mRNA), aptamer, catalytic nucleic acid (CNA), and CRISPR cas9 guide RNA (gRNA). In addition, nucleic acids have many advantages as nanomaterials, such as high biocompatibility, design flexibility, low immunogenicity, small size, relatively low price, and easy functionalization. Nucleic acid therapeutics can have a high therapeutic effect by being used in combination with various nucleic acid nanostructures, inorganic nanoparticles, lipid nanoparticles (LNPs), etc. to overcome low physiological stability and cell internalization efficiency. The field of nucleic acid therapeutics has advanced remarkably in recent decades, and as more and more nucleic acid therapeutics have been approved, they have already demonstrated their potential to treat diseases, including cancer. This review paper introduces the current status and recent advances in nucleic acid therapy for anti-cancer treatment and discusses the tasks and prospects ahead.
Assuntos
Neoplasias , Ácidos Nucleicos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/genética , Ácidos Nucleicos/uso terapêutico , Ácidos Nucleicos/química , Nanopartículas/química , Terapia Genética/métodos , Animais , MicroRNAs/genética , RNA Interferente Pequeno/uso terapêutico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/químicaRESUMO
The precise regulation of interactions of specific immunological components is crucial for controllable immunomodulation, yet it remains a great challenge. With the assistance of advanced computer design, programmable nucleic acid nanotechnology enables the customization of synthetic nucleic acid nanodevices with unprecedented geometrical and functional precision, which have shown promising potential for precise immunoengineering. Notably, the inherently immunologic functions of nucleic acids endow these nucleic acid-based assemblies with innate advantages in immunomodulatory engagement. In this review, the roles of nucleic acids in innate immunity are discussed, focusing on the definition, immunologic modularity, and enhanced bioavailability of structural nucleic acid nanodevices. In light of this, molecular programming and precise organization of functional modules with nucleic acid nanodevices for immunomodulation are emphatically reviewed. At last, the present challenges and future perspectives of nucleic acid nanodevices for immunomodulation are discussed.
Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/química , DNA/química , Conformação de Ácido Nucleico , Nanotecnologia , ImunomodulaçãoRESUMO
Metal-organic frameworks (MOFs), a distinctive funtionalmaterials which is constructed by various metal ions and organic molecules, have gradually attracted researchers' attention from they were founded. In the last decade, MOFs emerge as a biomedical material with potential applications due to their unique properties. However, the MOFs performed as nanocarriers for functional nucleic acid delivery in biomedical applications rarely summarized. In this review, we introduce recent developments of MOFs for nucleic acid delivery in various biologically relevant applications, with special emphasis on cancer therapy (including siRNA, ASO, DNAzyme, miRNA and CpG oligodeoxynucleotides), bioimaging, biosensors and separation of biomolecules. We expect the accomplishment of this review could benefit certain researchers in biomedical field to develop novel sophisticated nanocarriers for functional nucleic acid delivery based on the promising material of MOFs.
Assuntos
Estruturas Metalorgânicas , Ácidos Nucleicos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos , MetaisRESUMO
PURPOSE: Controlling small interfering RNA (siRNA) activity by external stimuli is useful to exert a selective therapeutic effect at the target site. This study aims to develop a technology to control siRNA activity in a thermo-responsive manner, which can be utilized even at temperatures close to body temperature. METHODS: siRNA was conjugated with a thermo-responsive copolymer that was synthesized by copolymerization of N-isopropylacrylamide (NIPAAm) and hydrophilic N,N-dimethylacrylamide (DMAA) to permit thermally controlled interaction between siRNA and an intracellular gene silencing-related protein by utilizing the coil-to-globule phase transition of the copolymer. The composition of the copolymer was fine-tuned to obtain lower critical solution temperature (LCST) around body temperature, and the phase transition behavior was evaluated. The cellular uptake and gene silencing efficiency of the copolymer-siRNA conjugates were then investigated in cultured cells. RESULTS: The siRNA conjugated with the copolymer with LCST of 38.0°C exhibited ~ 11.5 nm of the hydrodynamic diameter at 37°C and ~ 9.8 nm of the diameter at 41°C, indicating the coil-globule transition above the LCST. In line with this LCST behavior, its cellular uptake and gene silencing efficiency were enhanced when the temperature was increased from 37°C to 41°C. CONCLUSION: By fine-tuning the LCST behavior of the copolymer that was conjugated with siRNA, siRNA activity could be controlled in a thermo-responsive manner around the body temperature. This technique may offer a promising approach to induce therapeutic effects of siRNA selectively in the target site even in the in vivo conditions.
Assuntos
Temperatura Corporal , Polímeros , RNA Interferente Pequeno/genética , Temperatura , Inativação GênicaRESUMO
Hereditary genetic diseases, cancer, and infectious diseases are affecting global health and become major health issues, but the treatment development remains challenging. Gene therapies using DNA plasmid, RNAi, miRNA, mRNA, and gene editing hold great promise. Lipid nanoparticle (LNP) delivery technology has been a revolutionary development, which has been granted for clinical applications, including mRNA vaccines against SARS-CoV-2 infections. Due to the success of LNP systems, understanding the structure, formulation, and function relationship of the lipid components in LNP systems is crucial for design more effective LNP. Here, we highlight the key considerations for developing an LNP system. The evolution of structure and function of lipids as well as their LNP formulation from the early-stage simple formulations to multi-components LNP and multifunctional ionizable lipids have been discussed. The flexibility and platform nature of LNP enable efficient intracellular delivery of a variety of therapeutic nucleic acids and provide many novel treatment options for the diseases that are previously untreatable.
Assuntos
COVID-19 , Nanopartículas , Ácidos Nucleicos , Humanos , Vacinas contra COVID-19 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/química , SARS-CoV-2/genética , Lipídeos/química , Nanopartículas/químicaRESUMO
BACKGROUND: Oral delivery remains unattainable for nucleic acid therapies. Many nanoparticle-based drug delivery systems have been investigated for this, but most suffer from poor gut stability, poor mucus diffusion and/or inefficient epithelial uptake. Extracellular vesicles from bovine milk (mEVs) possess desirable characteristics for oral delivery of nucleic acid therapies since they both survive digestion and traverse the intestinal mucosa. RESULTS: Using novel tools, we comprehensively examine the intestinal delivery of mEVs, probing whether they could be used as, or inform the design of, nanoparticles for oral nucleic acid therapies. We show that mEVs efficiently translocate across the Caco-2 intestinal model, which is not compromised by treatment with simulated intestinal fluids. For the first time, we also demonstrate transport of mEVs in novel 3D 'apical-out' and monolayer-based human intestinal epithelial organoids (IEOs). Importantly, mEVs loaded with small interfering RNA (siRNA) induced (glyceraldehyde 3-phosphate dehydrogenase, GAPDH) gene silencing in macrophages. Using inflammatory bowel disease (IBD) as an example application, we show that administration of anti-tumour necrosis factor alpha (TNFα) siRNA-loaded mEVs reduced inflammation in a IBD rat model. CONCLUSIONS: Together, this work demonstrates that mEVs could either act as natural and safe systems for oral delivery or nucleic acid therapies, or inform the design of synthetic systems for such application.
Assuntos
Doenças Inflamatórias Intestinais , Nanopartículas , Ácidos Nucleicos , Humanos , Ratos , Animais , Células CACO-2 , Leite , RNA Interferente Pequeno/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa IntestinalRESUMO
Currently, nucleic acid therapeutics are actively developed for the treatment and prophylactic of metabolic disorders and oncological, inflammatory, and infectious diseases. A growing number of approved nucleic acid-based drugs evidences a high potential of gene therapy in medicine. Therapeutic nucleic acids act in the cytoplasm, which makes the plasma membrane the main barrier for the penetration of nucleic acid-based drugs into the cell and requires development of special vehicles for their intracellular delivery. The optimal carrier should not only facilitate internalization of nucleic acids, but also exhibit no toxic effects, ensure stabilization of the cargo molecules, and be suitable for a large-scale and low-cost production. Cell-penetrating peptides (CPPs), which match all these requirements, were found to be efficient and low-toxic carriers of nucleic acids. CPPs are typically basic peptides with a positive charge at physiological pH that can form nanostructures with negatively charged nucleic acids. The prospects of CPPs as vehicles for the delivery of therapeutic nucleic acids have been demonstrated in numerous preclinical studies. Some CPP-based drugs had successfully passed clinical trials and were implemented into medical practice. In this review, we described different types of therapeutic nucleic acids and summarized the data on the use of CPPs for their intracellular delivery, as well as discussed, the mechanisms of CPP uptake by the cells, as understanding of these mechanisms can significantly accelerate the development of new gene therapy approaches.
Assuntos
Peptídeos Penetradores de Células , Ácidos Nucleicos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/metabolismo , Ácidos Nucleicos/metabolismo , Transporte Biológico , Terapia GenéticaRESUMO
Mitochondrial DNA (mtDNA) mutations result in a variety of genetic diseases. As an emerging therapeutic method, mtDNA editing technology recognizes targets more based on the protein and less on the nucleic acid. Although the protein recognition type mtDNA editing technology represented by zinc finger nuclease technology, transcription activator like effector nuclease technology and base editing technology has made some progress, the disadvantages of complex recognition sequence design hinder further popularization. Gene editing based on nucleic acid recognition by the CRISPR system shows superiority due to the simple structure, easy design and modification. However, the lack of effective means to deliver nucleic acids into mitochondria limits application in the field of mtDNA editing. With the advances in the study of endogenous and exogenous import pathways and the deepening understanding of DNA repair mechanisms, growing evidence shows the feasibility of nucleic acid delivery and the broad application prospects of nucleic acid recognition type mtDNA editing technology. Based on the classification of recognition elements, this article summarizes the current principles and development of mitochondrial gene editing technology, and discusses its application prospects.
Assuntos
Genes Mitocondriais , Ácidos Nucleicos , Edição de Genes , Mitocôndrias/genética , DNA Mitocondrial/genética , TecnologiaRESUMO
This Review examines the state-of-the-art in the delivery of nucleic acid therapies that are directed to the vascular endothelium. First, we review the most important homeostatic functions and properties of the vascular endothelium and summarize the nucleic acid tools that are currently available for gene therapy and nucleic acid delivery. Second, we consider the opportunities available with the endothelium as a therapeutic target and the experimental models that exist to evaluate the potential of those opportunities. Finally, we review the progress to date from investigations that are directly targeting the vascular endothelium: for vascular disease, for peri-transplant therapy, for angiogenic therapies, for pulmonary endothelial disease, and for the blood-brain barrier, ending with a summary of the future outlook in this field.
Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/genética , Endotélio Vascular , Barreira Hematoencefálica , Terapia Genética , Transporte BiológicoRESUMO
Nucleic acids, both DNA and small RNAs, have emerged as potential therapeutics for the treatment of various lung disorders. However, delivery of nucleic acids to the lungs is challenging due to the barrier property imposed by mucus, which is further reinforced in disease conditions such as chronic obstructive pulmonary disease and asthma. The presence of negatively charged mucins imparts the electrostatic barrier property, and the mesh network structure of mucus provides steric hindrance to the delivery system. To overcome this, the delivery system either needs to be muco-inert with a low positive charge such that the interactions with mucus are minimized or should have the ability to transiently dismantle the mucus structure for effective penetration. We have developed a mucus penetrating system for the delivery of both small RNA and plasmid DNA independently. The nucleic acid core consists of a nucleic acid (pDNA/siRNA) and a cationic/amphipathic cell penetrating peptide. The mucus penetrating coating consists of the hydrophilic biopolymer chondroitin sulfate A (CS-A) conjugated with a mucolytic agent, mannitol. We hypothesize that the hydrophilic coating of CS-A would reduce the surface charge and decrease the interaction with negatively charged mucins, while the conjugated mannitol residues would disrupt the mucin-mucin interaction or decrease the viscosity of mucus by increasing the influx of water into the mucus. Our results indicate that CS-A-mannitol-coated nanocomplexes possess reduced surface charge, reduced viscosity of artificial mucus, and increased diffusion in mucin suspension as well as increased penetration through the artificial mucus layer as compared to the non-coated ones. Further, the coated nanocomplexes showed low cytotoxicity as well as higher transfection in A-549 and BEAS-2B cells as compared to the non-coated ones.
Assuntos
Peptídeos Penetradores de Células , Nanopartículas , Ácidos Nucleicos , Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos/química , Pulmão/metabolismo , Manitol/metabolismo , Mucinas/metabolismo , Muco/metabolismo , Nanopartículas/química , Ácidos Nucleicos/metabolismoRESUMO
Gene therapy has broad prospects as an effective treatment for some cancers and hereditary diseases. However, DNA and siRNA are easily degraded in vivo because of their biological activities as macromolecules, and they need the effective transmembrane delivery carrier Selecting the appropriate carrier for delivery will allow nucleic acid molecules to reach their site of action and enhance delivery efficiency. Currently used nucleic acid delivery vectors can be divided into two major categories: viral and non-viral vectors. Viral carrier transport efficiency is high, but there are safety issues. Non-viral vectors have attracted attention because of their advantages such as low immunogenicity, easy production, and non-tumorigenicity. The construction of safe, effective, and controllable vectors is the focus of current gene therapy research. This review presents the current types of nucleic acid delivery vehicles, which focuses on comparing their respective advantages and limitations, and proposes a novel delivery system, RNTs, a novel nanomolecular material, introducing the characteristics and nucleic acid delivery process of RNTs and their latest applications.