Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742881

RESUMO

Long chain acyl-coA synthase (acsl) family genes activate the conversion of long chain fatty acids into acyl-coA to regulate fatty acid metabolism. However, the evolutionary characteristics, tissue expression and nutritional regulation of the acsl gene family are poorly understood in fish. The present study investigated the molecular characterization, tissue expression and nutritional regulation of the acsl gene family in golden pompano (Trachinotus ovatus). The results showed that the coding regions of acsl1, acsl3, acsl4, acsl5 and acsl6 cDNA were 2091 bp, 2142 bp, 2136 bp, 1977 bp and 2007 bp, encoding 697, 714, 712, 659 and 669 amino acids, respectively. Five acsl isoforms divided into two branches, namely, acsl1, acsl5 and acsl6, as well as acsl3 and acsl4. The tissue expression distribution of acsl genes showed that acsl1 and acsl3 are widely expressed in the detected tissues, while acsl4, acsl5 and acsl6 are mainly expressed in the brain. Compared to the fish fed with lard oil diets, the fish fed with soybean oil exhibited high muscular C18 PUFA contents and acsl1 and acsl3 mRNA levels, as well as low muscular SFA contents and acsl4 mRNA levels. High muscular n-3 LC-PUFA contents, and acsl3, acsl4 and acsl6 mRNA levels were observed in the fish fed with fish oil diets compared with those of fish fed with lard oil or soybean oil diets. High n-3 LC-PUFA levels and DHA contents, as well as the acsl3, acsl4 and acsl6 mRNA levels were exhibited in the muscle of fish fed diets with high dietary n-3 LC-PUFA levels. Additionally, the muscular acsl3, acsl4 and acsl6 mRNA expression levels, n-3 LC-PUFA and DHA levels were significantly up-regulated by the increase of dietary DHA proportions. Collectively, the positive relationship among dietary fatty acids, muscular fatty acids and acsl mRNA, indicated that T. ovatus Acsl1 and Acsl3 are beneficial for the C18 PUFA enrichment, and Acsl3, Acsl4 and Acsl6 are for n-3 LC-PUFA and DHA enrichment. The acquisition of fish Acsl potential function in the present study will play the foundation for ameliorating the fatty acids nutrition in farmed fish products.


Assuntos
Acil Coenzima A , Óleo de Soja , Acil Coenzima A/metabolismo , Animais , Ácidos Graxos/metabolismo , Peixes/genética , Peixes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual
2.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768841

RESUMO

Ulcerative colitis (UC), which affects millions of people worldwide, is characterized by extensive colonic injury involving mucosal and submucosal layers of the colon. Nuclear factor E2-related factor 2 (Nrf2) plays a critical role in cellular protection against oxidant-induced stress. Antioxidant response element (ARE) is the binding site recognized by Nrf2 and leads to the expression of phase II detoxifying enzymes and antioxidant proteins. The Nrf2/ARE system is a key factor for preventing and resolving tissue injury and inflammation in disease conditions such as UC. Researchers have proposed that both Keap1-dependent and Keap1-independent cascades contribute positive effects on activation of the Nrf2/ARE pathway. In this review, we summarize the present knowledge on mechanisms controlling the activation process. We will further review nutritional compounds that can modulate activation of the Nrf2/ARE pathway and may be used as potential therapeutic application of UC. These comprehensive data will help us to better understand the Nrf2/ARE signaling pathway and promote its effective application in response to common diseases induced by oxidative stress and inflammation.


Assuntos
Elementos de Resposta Antioxidante/fisiologia , Colite Ulcerativa/terapia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Elementos de Resposta Antioxidante/genética , Antioxidantes/farmacologia , Colite Ulcerativa/metabolismo , Citoproteção/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Oxidantes/farmacologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
3.
Int J Mol Sci ; 20(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30979053

RESUMO

Elongation of very long chain fatty acids protein 6 (Elovl6) is a key enzyme in fatty acid synthesis, which participates in converting palmitate (C16:0) to stearate (C18:0). Although studies of Elovl6 have been carried out in mammals, the nutritional regulation of elovl6 in fish remains poorly understood. In the present study, the cloning and nutritional regulation of elovl6 were determined in large yellow croaker. Sequence and phylogenetic analysis revealed that the full-length cDNA of elovl6 was 1360 bp, including an open reading frame of 810 bp encoding a putative protein of 269 amino acid that possesses the characteristic features of Elovl proteins. The transcript level of elovl6 was significantly increased in the liver of croaker fed the diets with soybean oil (enriched with 18: 2n-6, LA) or linseed oil (enriched with 18: 3n-3, ALA) than that in croaker fed the diet with fish oil (enriched with 20: 5n-3 and 22: 6n-3). Correspondingly, the elovl6 expression in croaker's hepatocytes treated with ALA or LA was remarkably increased compared to the controls. Furthermore, the transcription factors including hepatocyte nuclear factor 1α (HNF1α), CCAAT-enhancer-binding protein ß (CEBPß), retinoid X receptor α (RXRα), and cAMP response element-binding protein 1 (CREB1) greatly enhanced promoter activity of elovl6 in large yellow croaker, and the expression of transcription factors is consistent with the changes of elovl6 expression in response to fatty acids in vivo and in vitro. In conclusion, this study revealed that elovl6 expression in large yellow croaker could be upregulated by dietary ALA or LA via the increased transcriptional expression of transcription factors including hnf1α, cebpß, rxrα, and creb1.


Assuntos
Acetiltransferases/genética , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Peixes/genética , Perciformes/genética , Ativação Transcricional , Acetiltransferases/química , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Sequência de Bases , Clonagem Molecular , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Óleo de Semente do Linho/metabolismo , Fígado/fisiologia , Perciformes/fisiologia , Filogenia , Óleo de Soja/metabolismo
4.
Fish Physiol Biochem ; 45(3): 1015-1028, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30788696

RESUMO

Despite being a carnivorous fish species, cobia (Rachycentron canadum) can utilize high levels of dietary carbohydrate (up to 360 g kg-1). By contrast, rainbow trout (also carnivorous) cannot, due to the absence of molecular induction of glycolytic enzyme and inhibition of gluconeogenic enzyme gene expressions such as pyruvate kinase (PK) and phosphoenolpyruvate carboxykinase (PEPCK). We hypothesized that this phenomenon is species-specific and will not be observed in cobia. Our results show that, at the molecular level, the mRNA abundance of the important glycolytic (PK) and gluconeogenic (PEPCK) enzymes in cobia liver are regulated by dietary carbohydrate-to-lipid (CHO:L) ratios and nutritional status (fed, unfed, and refed). Significantly upregulated hepatic PK and depressed PEPCK gene expressions were observed when the fish were fed with an increasing CHO/L-ratio diet or were refed. However, in contrast to gene expression, there was no significant effect of dietary CHO/L ratios on PK enzyme activity. The decrease in PEPCK activity was significantly found between low CHO/L ratio and high CHO/L ratio diets, whereas the moderate CHO/L ratio group showed intermediate values. But PEPCK activity appeared to be independent of nutritional status. These results suggest that nutritional regulation is obvious, at least at the molecular level, in the key hepatic enzymes (PK and PEPCK) of the glucose metabolism pathway, in response to different dietary CHO/L ratios and to the transition from being starved to fed. Determining whether other key enzymes involved in hepatic glucose metabolism contribute to glucose tolerance in cobia is necessary for further investigation of this phenomenon at the enzymatic and molecular levels.


Assuntos
Carboidratos da Dieta/administração & dosagem , Peixes/fisiologia , Lipídeos/administração & dosagem , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Piruvato Quinase/metabolismo , Sequência de Aminoácidos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Sequência de Bases , Dieta/veterinária , Regulação Enzimológica da Expressão Gênica , Estado Nutricional , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Filogenia , Piruvato Quinase/genética
5.
Biochem Biophys Res Commun ; 505(3): 705-711, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30292406

RESUMO

In the present study, SREBP-1 cDNA was cloned from the hepatopancreas of mud crab (Scylla paramamosain) and characterized by performing rapid-amplification of cDNA ends. The 3361bp long full-length cDNA encodes a polypeptide with 1039 amino acids. Tissue distribution analysis revealed that SREBP-1 transcripts were widely distributed in various organs, with higher mRNA levels in the eyestalk and cranial ganglia. Further, expression level of SREBP-1 mRNA were up-regulated in proportion to the replacement of dietary fish oil (FO) with soybean oil (SO). These results may contribute to better understanding of the long-chain polyunsaturated fatty acids (LC-PUFA) biosynthetic pathway and regulation mechanism in mud crab.


Assuntos
Proteínas de Artrópodes/genética , Braquiúros/genética , Perfilação da Expressão Gênica , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Sequência de Aminoácidos , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal/genética , Animais , Proteínas de Artrópodes/classificação , Proteínas de Artrópodes/metabolismo , Braquiúros/metabolismo , Clonagem Molecular , DNA Complementar/genética , Dieta , Ácidos Graxos Insaturados/metabolismo , Filogenia , Homologia de Sequência de Aminoácidos , Óleo de Soja/administração & dosagem , Proteína de Ligação a Elemento Regulador de Esterol 1/classificação , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
6.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455330

RESUMO

Botulinum neurotoxin (BoNT), produced by neurotoxigenic clostridia, is the most potent biological toxin known and the causative agent of the paralytic disease botulism. The nutritional, environmental, and genetic regulation of BoNT synthesis, activation, stability, and toxin complex (TC) formation is not well studied. Previous studies indicated that growth and BoNT formation were affected by arginine and glucose in Clostridium botulinum types A and B. In the present study, C. botulinum ATCC 3502 was grown in toxin production medium (TPM) with different levels of arginine and glucose and of three products of arginine metabolism, citrulline, proline, and ornithine. Cultures were analyzed for growth (optical density at 600 nm [OD600]), spore formation, and BoNT and TC formation by Western blotting and immunoprecipitation and for BoNT activity by mouse bioassay. A high level of arginine (20 g/liter) repressed BoNT production approximately 1,000-fold, enhanced growth, slowed lysis, and reduced endospore production by greater than 1,000-fold. Similar effects on toxin production were seen with equivalent levels of citrulline but not ornithine or proline. In TPM lacking glucose, levels of formation of BoNT/A1 and TC were significantly decreased, and extracellular BoNT and TC proteins were partially inactivated after the first day of culture. An understanding of the regulation of C. botulinum growth and BoNT and TC formation should be valuable in defining requirements for BoNT formation in foods and clinical samples, improving the quality of BoNT for pharmaceutical preparations, and elucidating the biological functions of BoNTs for the bacterium.IMPORTANCE Botulinum neurotoxin (BoNT) is a major food safety and bioterrorism concern and is also an important pharmaceutical, and yet the regulation of its synthesis, activation, and stability in culture media, foods, and clinical samples is not well understood. This paper provides insights into the effects of critical nutrients on growth, lysis, spore formation, BoNT and TC production, and stability of BoNTs of C. botulinum We show that for C. botulinum ATCC 3502 cultured in a complex medium, a high level of arginine repressed BoNT expression by ca. 1,000-fold and also strongly reduced sporulation. Arginine stimulated growth and compensated for a lack of glucose. BoNT and toxin complex proteins were partially inactivated in a complex medium lacking glucose. This work should aid in optimizing BoNT production for pharmaceutical uses, and furthermore, an understanding of the nutritional regulation of growth and BoNT formation may provide insights into growth and BoNT formation in foods and clinical samples and into the enigmatic function of BoNTs in nature.


Assuntos
Arginina/metabolismo , Toxinas Botulínicas/biossíntese , Botulismo/microbiologia , Clostridium botulinum/genética , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Neurotoxinas/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Botulínicas/genética , Clostridium botulinum/crescimento & desenvolvimento , Clostridium botulinum/metabolismo , Humanos , Neurotoxinas/genética
7.
Biochim Biophys Acta ; 1851(3): 248-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25542509

RESUMO

The endogenous production of long-chain polyunsaturated fatty acids (LC-PUFA) in carnivorous teleost species inhabiting freshwater environments is poorly understood. Although a predatory lifestyle could potentially supply sufficient LC-PUFA to satisfy the requirements of these species, the nutrient-poor characteristics of the freshwater food web could impede this advantage. In this study, we report the cloning and functional characterisation of an elongase enzyme in the LC-PUFA biosynthesis pathway from striped snakehead (Channa striata), which is a strict freshwater piscivore that shows high deposition of LC-PUFA in its flesh. We also functionally characterised a previously isolated fatty acyl desaturase cDNA from this species. Results showed that the striped snakehead desaturase is capable of Δ4 and Δ5 desaturation activities, while the elongase showed the characteristics of Elovl5 elongases. Collectively, these findings reveal that striped snakehead exhibits the genetic resources to synthesise docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Both genes are expressed at considerable levels in the brain and the liver. In liver, both genes were up-regulated by dietary C18 PUFA, although this increase did not correspond to a significant rise in the deposition of muscle LC-PUFA. Brain tissue of fish fed with plant oil diets showed higher expression of fads2 gene compared to fish fed with fish oil-based diet, which could ensure DHA levels remain constant under limited dietary DHA intake. This suggests the importance of DHA production from EPA via the ∆4 desaturation step in order to maintain an optimal reserve of DHA in the neuronal tissues of carnivores.


Assuntos
Acetiltransferases/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Ácido Eicosapentaenoico/biossíntese , Ácidos Graxos Dessaturases/metabolismo , Proteínas de Peixes/metabolismo , Perciformes/metabolismo , Acetiltransferases/genética , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Carnivoridade , Clonagem Molecular , Dieta , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos , Óleos de Peixe/administração & dosagem , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Fígado/metabolismo , Dados de Sequência Molecular , Músculos/metabolismo , Especificidade de Órgãos , Perciformes/classificação , Perciformes/genética , Filogenia , Óleos de Plantas/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
8.
Biochim Biophys Acta ; 1851(5): 588-97, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25660580

RESUMO

The present study presents the first "in vivo" evidence of enzymatic activity and nutritional regulation of a Δ4-desaturase-dependent DHA synthesis pathway in the teleost Solea senegalensis. Juvenile fish were fed diets containing 2 lipid levels (8 and 18%, LL and HL) with either 100% fish oil (FO) or 75% of the FO replaced by vegetable oils (VOs). Fatty acyl elongation (Elovl5) and desaturation (Δ4Fad) activities were measured in isolated enterocytes and hepatocytes incubated with radiolabeled α-linolenic acid (ALA; 18:3n-3) and eicosapentaenoic acid (EPA; 20:5n-3). Tissue distributions of elovl5 and Δ4fad transcripts were also determined, and the transcriptional regulation of these genes in liver and intestine was assessed at fasting and postprandially. DHA biosynthesis from EPA occurred in both cell types, although Elovl5 and Δ4Fad activities tended to be higher in hepatocytes. In contrast, no Δ6Fad activity was detected on (14)C-ALA, which was only elongated to 20:3n-3. Enzymatic activities and gene transcription were modulated by dietary lipid level (LL>HL) and fatty acid (FA) composition (VO>FO), more significantly in the liver than in the intestine, which was reflected in tissue FA compositions. Dietary VO induced a significant up-regulation of Δ4fad transcripts in the liver 6h after feeding, whereas in fasting conditions the effect of lipid level possibly prevailed over or interacted with FA composition in regulating the expression of elovl5 and Δ4fad, which were down-regulated in the liver of fish fed the HL diets. Results indicated functionality and biological relevance of the Δ4 LC-PUFA biosynthesis pathway in S. senegalensis.


Assuntos
Acetiltransferases/metabolismo , Gorduras na Dieta/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Graxos Dessaturases/metabolismo , Óleos de Peixe/metabolismo , Proteínas de Peixes/metabolismo , Linguados/metabolismo , Óleos de Plantas/metabolismo , Acetiltransferases/genética , Fenômenos Fisiológicos da Nutrição Animal , Animais , Gorduras na Dieta/administração & dosagem , Enterócitos/enzimologia , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos , Óleos de Peixe/administração & dosagem , Linguados/genética , Regulação Enzimológica da Expressão Gênica , Hepatócitos/enzimologia , Estado Nutricional , Óleos de Plantas/administração & dosagem , RNA Mensageiro/metabolismo
9.
Int J Mol Sci ; 17(6)2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27231907

RESUMO

The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs). The citrate carrier (CiC) and the carnitine/acylcarnitine transporter (CACT) are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria to the cytosol, CiC contributes to fatty acid and cholesterol synthesis; CACT allows fatty acid oxidation, transporting cytosolic fatty acids, in the form of acylcarnitines, into the mitochondrial matrix. Fatty acid synthesis and oxidation are inversely regulated so that when fatty acid synthesis is activated, the catabolism of fatty acids is turned-off. Malonyl-CoA, produced by acetyl-coenzyme A carboxylase, a key enzyme of cytosolic fatty acid synthesis, represents a regulator of both metabolic pathways. CiC and CACT activity and expression are regulated by different nutritional and hormonal conditions. Defects in the corresponding genes have been directly linked to various human diseases. This review will assess the current understanding of CiC and CACT regulation; underlining their roles in physio-pathological conditions. Emphasis will be placed on the molecular basis of the regulation of CiC and CACT associated with fatty acid metabolism.


Assuntos
Carnitina Aciltransferases/metabolismo , Proteínas de Transporte/metabolismo , Colesterol/biossíntese , Ácidos Graxos/biossíntese , Hormônios Tireóideos/fisiologia , Acetilcoenzima A/metabolismo , Animais , Carnitina Aciltransferases/genética , Proteínas de Transporte/genética , Citosol/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Lipogênese , Mitocôndrias/metabolismo
10.
Fish Physiol Biochem ; 42(4): 1107-22, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26842427

RESUMO

Despite the potential of vegetable oils as aquafeed ingredients, a major drawback associated with their utilization is the inferior level of beneficial n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Echium oil (EO), which is rich in stearidonic acid (SDA, 18:4n-3), could potentially improve the deposition of n-3 LC-PUFA as the biosynthesis of LC-PUFA is enhanced through bypassing the rate-limiting ∆6 desaturation step. We report for the first time an attempt to investigate whether the presence of a desaturase (Fads2) capable of ∆4 desaturation activities and an elongase (Elovl5) will leverage the provision of dietary SDA to produce a higher rate of LC-PUFA bioconversion. Experimental diets were designed containing fish oil (FO), EO or linseed oil (LO) (100FO, 100EO, 100LO), and diets which comprised equal mixtures of the designated oils (50EOFO and 50EOLO) were evaluated in a 12-week feeding trial involving striped snakeheads (Channa striata). There was no significant difference in growth and feed conversion efficiency. The hepatic fatty acid composition and higher expression of fads2 and elovl5 genes in fish fed EO-based diets indicate the utilization of dietary SDA for LC-PUFA biosynthesis. Collectively, this resulted in a higher deposition of muscle eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) compared to LO-based diets. Dietary EO improved the ratio of n-3 LC-PUFA to n-6 LC-PUFA in fish muscle, which is desirable for human populations with excessive consumption of n-6 PUFA. This study validates the contribution of SDA in improving the content of n-3 LC-PUFA and the ratio of EPA to arachidonic acid (ARA, 20:4n-6) in a freshwater carnivorous species.


Assuntos
Echium , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/metabolismo , Linho , Perciformes/metabolismo , Óleos de Plantas/farmacologia , Acetiltransferases/genética , Animais , Encéfalo/metabolismo , Elongases de Ácidos Graxos , Proteínas de Peixes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Músculos/metabolismo , Perciformes/genética
11.
Biotechnol Appl Biochem ; 62(2): 173-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24953758

RESUMO

Coculturing of two white-rot fungi, Dichomitus squalens and Ceriporiopsis subvermispora, was explored for the optimization of cultivation media for simultaneous augmentation of laccase and peroxidase activities by response surface methodology (RSM). Nutrient parameters chosen from our previous studies with the monocultures of D. squalens and C. subvermispora were used to design the experiments for the cocultivation study. Glucose, arabinose, sodium nitrate, casein, copper sulfate (CuSO4 ), and manganese sulfate (MnSO4 ) were combined according to central composite design and used as the incubation medium for the cocultivation. The interaction of glucose and sodium nitrate resulted in laccase and peroxidase activities of approximately 800 U/g protein. The addition of either glucose or sodium nitrate to the medium also modifies the impact of other nutrients on the ligninolytic activity. Both enzyme activities were cross-regulated by arabinose, casein, CuSO4 , and MnSO4 as a function of concentrations. Based on RSM, the optimum nutrient levels are 1% glucose, 0.1% arabinose, 20 mM sodium nitrate, 0.27% casein, 0.31 mM CuSO4 , and 0.07 mM MnSO4 . Cocultivation resulted in the production of laccase of 1,378 U/g protein and peroxidase of 1,372 U/g protein. Lignin (16.9%) in wheat straw was degraded by the optimized enzyme mixture.


Assuntos
Técnicas de Cocultura/métodos , Coriolaceae/enzimologia , Meios de Cultura/metabolismo , Lacase/biossíntese , Peroxidases/biossíntese , Polyporales/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Coriolaceae/crescimento & desenvolvimento , Meios de Cultura/química , Ativação Enzimática , Estabilidade Enzimática , Lacase/química , Lacase/isolamento & purificação , Peroxidases/química , Peroxidases/isolamento & purificação , Polyporales/crescimento & desenvolvimento
12.
Mol Biol (Mosk) ; 49(4): 592-600, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26299859

RESUMO

Elovl5 elongase is a critical enzyme involved in the highly unsaturated fatty acid (HUFA) biosynthesis. There is very little information on the evolution and functional characterization of Elovl5-a and Elovl5-b genes in common carp (Cyprinus carpio var. Jian). In the present study, the genomic sequences and structures of two putative Elovl5-like elongase genes in the common carp genome were obtained. The mRNA expression patterns of Elovl5-a and Elovl5-b in tissues, hatching carp embryos, and juveniles under nutritional regulation were investigated. The results show that the two Elovl5 elongase genes have similar organization, coding 8 exons of high identity and introns of distinct size and sequence composition. They are not allelic variants of a single gene. Both Elovl5 elongase genes are highly expressed in liver, intestine (pyloric caeca) and brain. Elovl5-a and Elovl5-b mRNAs showed increased expression from newly hatched to 20 days after hatching. The regulation of Elovl5-a and Elovl5-b in response to dietary fatty acid composition was determined in liver, brain and intestine (pyloric caeca) of common carp fed with diets: (i) fish oil (FO) rich in n-3 HUFA, (ii) corn oil (CO, 18:2n-6) or (iii) linseed oil (LO, 18:3n-3). Also the differential expression of Elovl5-a and Elovl5-b genes in liver, brain and intestine in common carps fed with different oil sources was studied. Further work aimed at the determination of the mechanisms of differential expression of the Elovl5-a and Elovl5-b in different tissues and the roles of transcription factors in regulating HUFA synthesis is in progress.

13.
Anim Nutr ; 17: 297-311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800731

RESUMO

Post-weaning diarrhea (PWD) is a globally significant threat to the swine industry. Historically, antibiotics as well as high doses of zinc oxide and copper sulfate have been commonly used to control PWD. However, the development of bacterial resistance and environmental pollution have created an interest in alternative strategies. In recent years, the research surrounding these alternative strategies and the mechanisms of piglet diarrhea has been continually updated. Mechanically, diarrhea in piglets is a result of an imbalance in intestinal fluid and electrolyte absorption and secretion. In general, enterotoxigenic Escherichia coli (ETEC) and diarrheal viruses are known to cause an imbalance in the absorption and secretion of intestinal fluids and electrolytes in piglets, resulting in diarrhea when Cl- secretion-driven fluid secretion surpasses absorptive capacity. From a perspective of feedstuffs, factors that contribute to imbalances in fluid absorption and secretion in the intestines of weaned piglets include high levels of crude protein (CP), stimulation by certain antigenic proteins, high acid-binding capacity (ABC), and contamination with deoxynivalenol (DON) in the diet. In response, efforts to reduce CP levels in diets, select feedstuffs with lower ABC values, and process feedstuffs using physical, chemical, and biological approaches are important strategies for alleviating PWD in piglets. Additionally, the diet supplementation with additives such as vitamins and natural products can also play a role in reducing the diarrhea incidence in weaned piglets. Here, we examine the mechanisms of absorption and secretion of intestinal fluids and electrolytes in piglets, summarize nutritional strategies to control PWD in piglets from the perspective of feeds, and provide new insights towards future research directions.

14.
Adv Nutr ; 15(9): 100277, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053604

RESUMO

The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.


Assuntos
Imunidade Inata , Animais , Humanos , Imunidade Inata/efeitos dos fármacos , Suplementos Nutricionais , Peptídeos Antimicrobianos/farmacologia , Probióticos/farmacologia , Dieta , Prebióticos , Anti-Infecciosos/farmacologia , Ácidos Graxos Voláteis/metabolismo , Compostos Fitoquímicos/farmacologia
15.
Anim Biosci ; 36(4): 529-539, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36108687

RESUMO

The beef cattle industry in China has advanced remarkably since its reform and opening up; consequently, China has become the world's third-largest beef cattle producer. China is also one of the countries with the most substantial research input and output in the field of beef cattle feed and nutrition. The progress and innovation by China in the research field of beef cattle feed and nutrition have undoubtedly promoted the development of the domestic beef cattle industry. This review summarizes recent advances in feed resource development, nutrient requirements, and nutritional regulation of beef cattle in China. Limitations in current research and perspectives on future work are also discussed.

16.
Food Res Int ; 173(Pt 2): 113411, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803749

RESUMO

Scandal of detecting 1,2-propanediol (PD) in milk brought a crisis to the trust of consumers in dairy industry, and investigations focused effect of PD on digestive behavior of milk were still restricted. Long short-term memory amalgamated to quasi-targeted lipidomics was applied to monitor dynamics changes of lipids during digestion and the pseudo-first-order kinetic model elucidated that PD elevated the digestibility of lipid with the degradation rate (S-1) ranged from 4440.31 to 5665.59 and mediated the transition of α-helices (26.46% to 19.07% of pancreatic lipase and 29.89% to 23.37% of gastric lipase) covering active center in lipase to random curl (48.25% to 51.17% of pancreatic lipase and 41.58% to 44.57% of gastric lipase) and ß folding (9.14% to 4.67% of pancreatic lipase and 6.52% to 10.05% of gastric lipase), ultimately upregulating the lipase activity and further intervening lipid nutrients utilization in milk. This study provided a critical insight about the impact of PD contamination at trace concentrations on the nutritional value of milk fat during digestion.


Assuntos
Lipase , Propano , Lipase/metabolismo , Conformação Proteica em alfa-Hélice , Lipidômica , Memória de Curto Prazo , Digestão , Lipídeos
17.
Mar Biotechnol (NY) ; 24(4): 661-670, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35907166

RESUMO

Salmon is a rich source of health-promoting omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). The LC-PUFA biosynthetic pathway in Atlantic salmon is one of the most studied compared to other teleosts. This has largely been due to the massive replacement of LC-PUFA-rich ingredients in aquafeeds with terrestrial plant oils devoid of these essential fatty acids (EFA) which ultimately pushed dietary content towards the minimal requirement of EFA. The practice would also reduce tissue content of n-3 LC-PUFA compromising the nutritional value of salmon to the human consumer. These necessitated detailed studies of endogenous biosynthetic capability as a contributor to these EFA. This review seeks to provide a comprehensive and concise overview of the current knowledge about the molecular genetics of PUFA biosynthesis in Atlantic salmon, highlighting the enzymology and nutritional regulation as well as transcriptional control networks. Furthermore, we discuss the impact of genome duplication on the complexity of salmon LC-PUFA pathway and highlight probable implications on endogenous biosynthetic capabilities. Finally, we have also compiled and made available a large RNAseq dataset from 316 salmon liver samples together with an R-script visualization resource to aid in explorative and hypothesis-driven research into salmon lipid metabolism.


Assuntos
Ácidos Graxos Ômega-3 , Salmo salar , Animais , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Graxos/metabolismo , Humanos , Salmo salar/genética , Salmo salar/metabolismo
18.
J Gerontol A Biol Sci Med Sci ; 76(4): 601-610, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33053185

RESUMO

Calorie restriction (CR) remains the most robust intervention to extend life span and improve healthspan. Though the cerebellum is more commonly associated with motor control, it has strong links with the hypothalamus and is thought to be associated with nutritional regulation and adiposity. Using a global mass spectrometry-based metabolomics approach, we identified 756 metabolites that were significantly differentially expressed in the cerebellar region of the brain of C57BL/6J mice, fed graded levels of CR (10, 20, 30, and 40 CR) compared to mice fed ad libitum for 12 hours a day. Pathway enrichment indicated changes in the pathways of adenosine and guanine (which are precursors of DNA production), aromatic amino acids (tyrosine, phenylalanine, and tryptophan) and the sulfur-containing amino acid methionine. We also saw increases in the tricarboxylic acid cycle (TCA) cycle, electron donor, and dopamine and histamine pathways. In particular, changes in l-histidine and homocarnosine correlated positively with the level of CR and food anticipatory activity and negatively with insulin and body temperature. Several metabolic and pathway changes acted against changes seen in age-associated neurodegenerative disorders, including increases in the TCA cycle and reduced l-proline. Carnitine metabolites contributed to discrimination between CR groups, which corroborates previous work in the liver and plasma. These results indicate the conservation of certain aspects of metabolism across tissues with CR. Moreover, this is the first study to indicate CR alters the cerebellar metabolome, and does so in a graded fashion, after only a short period of restriction.


Assuntos
Regulação do Apetite , Restrição Calórica/métodos , Cerebelo/fisiologia , Envelhecimento Saudável/metabolismo , Hipotálamo/fisiologia , Metaboloma/fisiologia , Metabolômica/métodos , Transdução de Sinais/fisiologia , Animais , Fome/fisiologia , Longevidade , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle
19.
Gene ; 766: 145144, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32916248

RESUMO

The elongases of very long-chain fatty acids (Elovls) are involved in the rate-limiting of the carbon chain elongation reaction in fatty acid (FA) biosynthesis in vertebrates. One member of the Elovls family, Elovl4, has been regarded as a critical enzyme involved in the biosynthesis pathway of polyunsaturated fatty acids (PUFAs). To explore the role of Elovl4 in PUFA synthesis in Trachinotus ovatus, the cDNA of the Elovl4b gene is cloned from T. ovatus (ToElovl4b). The ORF of ToElovl4b was 918 bp and encoded 305 amino acid (aa) protein sequences. Sequence alignment showed that the deduced amino acids contained significant structural features of the Elovl4 family, such as a histidine box motif (HXXHH), multiple transmembrane domains and an endoplasmic reticulum (ER) retention signal. Moreover, phylogenetic analysis revealed that ToElovl4b was highly conserved with that of Rachycentron canadum Elovl4b. Moreover, heterologous expression in yeast demonstrated that ToElovl4b could efficiently elongate 18:2n-6, 18:3n-6 and 20:5n-3 FAs up to 20:2n-6, 20:3n-6 and 22:5n-3, respectively. Furthermore, the tissue expression profile indicated that mRNA expression of ToElovl4b was higher in the gonads and brain than in other tissues. Additionally, nutritional regulation suggested the highest mRNA levels of ToElovl4b in liver and brain were under feeding with 1:1 FO-SO (fish oil, FO; soybean oil, SO) and 1:1 FO-CO (corn oil, CO)), respectively. These new insights were useful for understanding the molecular basis and regulation of LC-PUFA biosynthesis in fish.


Assuntos
Proteínas de Peixes/genética , Peixes/genética , Peixes/metabolismo , Distribuição Tecidual/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Elongases de Ácidos Graxos/genética , Ácidos Graxos Insaturados/genética , Feminino , Fígado/metabolismo , Masculino , Filogenia , RNA Mensageiro/genética , Alinhamento de Sequência
20.
Anim Nutr ; 7(4): 1329-1336, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34786505

RESUMO

Heat stress is a very universal stress event in recent years. Various lines of evidence in the past literatures indicate that gut microbiota composition is susceptible to variable temperature. A varied microbiota is necessary for optimal regulation of host signaling pathways and disrupting microbiota-host homeostasis that induces disease pathology. The microbiota-gut-brain axis involves an interactive mode of communication between the microbes colonizing the gut and brain function. This review summarizes the effects of heat stress on intestinal function and microbiota-gut-brain axis. Heat stress negatively affects intestinal immunity and barrier functions. Microbiota-gut-brain axis is involved in the homeostasis of the gut microbiota, at the same time, heat stress affects the metabolites of microbiota which could alter the function of microbiota-gut-brain axis. We aim to bridge the evidence that the microbiota is adapted to survive and thrive in an extreme environment. Additionally, nutritional strategies for alleviating intestinal heat stress are introduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA