Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Annu Rev Cell Dev Biol ; 36: 219-236, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603615

RESUMO

As cells grow, the size and number of their internal organelles increase in order to keep up with increased metabolic requirements. Abnormal size of organelles is a hallmark of cancer and an important aspect of diagnosis in cytopathology. Most organelles vary in either size or number, or both, as a function of cell size, but the mechanisms that create this variation remain unclear. In some cases, organelle size appears to scale with cell size through processes of relative growth, but in others the size may be set by either active measurement systems or genetic programs that instruct organelle biosynthetic activities to create organelles of a size appropriate to a given cell type.


Assuntos
Frações Subcelulares/metabolismo , Animais , Humanos , Modelos Biológicos , Organelas/metabolismo
2.
EMBO J ; 43(3): 414-436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233576

RESUMO

Mitotic centrosomes assemble when centrioles recruit large amounts of pericentriolar material (PCM) around themselves. In early C. elegans embryos, mitotic centrosome size appears to be set by the limiting amount of a key component. In Drosophila syncytial embryos, thousands of mitotic centrosomes are assembled as the embryo proceeds through 13 rounds of rapid nuclear division, driven by a core cell cycle oscillator. These divisions slow during nuclear cycles 11-13, and we find that centrosomes respond by reciprocally decreasing their growth rate, but increasing their growth period-so that they grow to a relatively consistent size at each cycle. At the start of each cycle, moderate CCO activity initially promotes centrosome growth, in part by stimulating Polo/PLK1 recruitment to centrosomes. Later in each cycle, high CCO activity inhibits centrosome growth by suppressing the centrosomal recruitment and/or maintenance of centrosome proteins. Thus, in fly embryos, mitotic centrosome size appears to be regulated predominantly by the core cell cycle oscillator, rather than by the depletion of a limiting component.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Caenorhabditis elegans/metabolismo , Centrossomo/metabolismo , Centríolos/metabolismo , Ciclo Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mitose
3.
Semin Cell Dev Biol ; 133: 53-64, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35148938

RESUMO

During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.


Assuntos
Organelas , Animais , Tamanho das Organelas , Xenopus laevis , Tamanho Celular
4.
Traffic ; 20(9): 674-696, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31314175

RESUMO

Mechanisms that control lysosomal function are essential for cellular homeostasis. Lysosomes adapt in size and number to cellular needs but little is known about the underlying molecular mechanism. We demonstrate that the late endosomal/lysosomal multimeric BLOC-1-related complex (BORC) regulates the size of these organelles via PIKfyve-dependent phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2 ] production. Deletion of the core BORC component Diaskedin led to increased levels of PI(3,5)P2 , suggesting activation of PIKfyve, and resulted in enhanced lysosomal reformation and subsequent reduction in lysosomal size. This process required AMP-activated protein kinase (AMPK), a known PIKfyve activator, and was additionally dependent on the late endosomal/lysosomal adaptor, mitogen-activated protein kinases and mechanistic target of rapamycin activator (LAMTOR/Ragulator) complex. Consistently, in response to glucose limitation, AMPK activated PIKfyve, which induced lysosomal reformation with increased baseline autophagy and was coupled to a decrease in lysosomal size. These adaptations of the late endosomal/lysosomal system reversed under glucose replete growth conditions. In summary, our results demonstrate that BORC regulates lysosomal reformation and size in response to glucose availability.


Assuntos
Endossomos/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Autofagia , Células HEK293 , Células HeLa , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo
5.
J Cell Sci ; 129(14): 2817-28, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27252384

RESUMO

Cells control the size of their compartments relative to cell volume, but there is also size control within each organelle. Yeast vacuoles neither burst nor do they collapse into a ruffled morphology, indicating that the volume of the organellar envelope is adjusted to the amount of content. It is poorly understood how this adjustment is achieved. We show that the accumulating content of yeast vacuoles activates fusion of other vacuoles, thus increasing the volume-to-surface ratio. Synthesis of the dominant compound stored inside vacuoles, polyphosphate, stimulates binding of the chaperone Sec18/NSF to vacuolar SNAREs, which activates them and triggers fusion. SNAREs can only be activated by lumenal, not cytosolic, polyphosphate (polyP). Control of lumenal polyP over SNARE activation in the cytosol requires the cytosolic cyclin-dependent kinase Pho80-Pho85 and the R-SNARE Nyv1. These results suggest that cells can adapt the volume of vacuoles to their content through feedback from the vacuole lumen to the SNAREs on the cytosolic surface of the organelle.


Assuntos
Fusão de Membrana , Tamanho das Organelas , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Citosol/metabolismo , Modelos Biológicos , Polifosfatos/metabolismo , Ligação Proteica , Proteínas de Transporte Vesicular/metabolismo
6.
J Cell Sci ; 127(Pt 1): 250-7, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24190882

RESUMO

Regulation of the size and abundance of membrane compartments is a fundamental cellular activity. In Saccharomyces cerevisiae, disruption of the ADP-ribosylation factor 1 (ARF1) gene yields larger and fewer Golgi cisternae by partially depleting the Arf GTPase. We observed a similar phenotype with a thermosensitive mutation in Nmt1, which myristoylates and activates Arf. Therefore, partial depletion of Arf is a convenient tool for dissecting mechanisms that regulate Golgi structure. We found that in arf1Δ cells, late Golgi structure is particularly abnormal, with the number of late Golgi cisternae being severely reduced. This effect can be explained by selective changes in cisternal maturation kinetics. The arf1Δ mutation causes early Golgi cisternae to mature more slowly and less frequently, but does not alter the maturation of late Golgi cisternae. These changes quantitatively explain why late Golgi cisternae are fewer in number and correspondingly larger. With a stacked Golgi, similar changes in maturation kinetics could be used by the cell to modulate the number of cisternae per stack. Thus, the rates of processes that transform a maturing compartment can determine compartmental size and copy number.


Assuntos
Fator 1 de Ribosilação do ADP/genética , Regulação Fúngica da Expressão Gênica , Complexo de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fator 1 de Ribosilação do ADP/deficiência , Transporte Biológico , Complexo de Golgi/ultraestrutura , Mutação , Ácidos Mirísticos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Proc Biol Sci ; 283(1831)2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27194700

RESUMO

We investigate the effects of trophic lifestyle and two types of major evolutionary transitions in individuality-the endosymbiotic acquisition of organelles and development of multicellularity-on organellar and cellular metabolism and allometry. We develop a quantitative framework linking the size and metabolic scaling of eukaryotic cells to the abundance, size and metabolic scaling of mitochondria and chloroplasts and analyse a newly compiled, unprecedented database representing unicellular and multicellular cells covering diverse phyla and tissues. Irrespective of cellularity, numbers and total volumes of mitochondria scale linearly with cell volume, whereas chloroplasts scale sublinearly and sizes of both organelles remain largely invariant with cell size. Our framework allows us to estimate the metabolic scaling exponents of organelles and cells. Photoautotrophic cells and organelles exhibit photosynthetic scaling exponents always less than one, whereas chemoheterotrophic cells and organelles have steeper respiratory scaling exponents close to one. Multicellularity has no discernible effect on the metabolic scaling of organelles and cells. In contrast, trophic lifestyle has a profound and uniform effect, and our results suggest that endosymbiosis fundamentally altered the metabolic scaling of free-living bacterial ancestors of mitochondria and chloroplasts, from steep ancestral scaling to a shallower scaling in their endosymbiotic descendants.


Assuntos
Evolução Biológica , Cloroplastos/metabolismo , Eucariotos/fisiologia , Mitocôndrias/metabolismo , Simbiose , Modelos Biológicos
8.
New Phytol ; 209(2): 576-89, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26542980

RESUMO

Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morphological and cellular phenotypes of the wild-type and mutant strains. The mutant grew more slowly and the development of gametophores was retarded. Mutant chloronemal filaments contained large cellular structures which excluded all other cellular organelles. Expression of fluorescent reporter proteins revealed that the mutant strain had greatly enlarged peroxisomes up to 10 µm in diameter. Expression of a vacuolar membrane marker confirmed that the enlarged structures were not vacuoles, or peroxisomes sequestered within vacuoles as a result of pexophagy. Phypa_PEX11 targeted to peroxisome membranes could rescue the knock out phenotype and interacted with Fission1 on the peroxisome membrane. Moss PEX11 functions in peroxisome division similar to PEX11 in other organisms but the mutant phenotype is more extreme and environmentally determined, making P. patens a powerful system in which to address mechanisms of peroxisome proliferation and division.


Assuntos
Bryopsida/citologia , Bryopsida/genética , Peroxissomos/genética , Proteínas de Plantas/genética , Bryopsida/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Família Multigênica , Mutação , Peroxinas , Peroxissomos/metabolismo , Peroxissomos/patologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Saccharomyces cerevisiae/genética
9.
Proc Natl Acad Sci U S A ; 110(30): 12337-42, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836633

RESUMO

Specification of organelle size is crucial for cell function, yet we know little about the molecular mechanisms that report and regulate organelle growth and steady-state dimensions. The biflagellated green alga Chlamydomonas requires continuous-length feedback to integrate the multiple events that support flagellar assembly and disassembly and at the same time maintain the sensory and motility functions of the organelle. Although several length mutants have been characterized, the requisite molecular reporter of length has not been identified. Previously, we showed that depletion of Chlamydomonas aurora-like protein kinase CALK inhibited flagellar disassembly and that a gel-shift-associated phosphorylation of CALK marked half-length flagella during flagellar assembly. Here, we show that phosphorylation of CALK on T193, a consensus phosphorylation site on the activation loop required for kinase activity, is distinct from the gel-shift-associated phosphorylation and is triggered when flagellar shortening is induced, thereby implicating CALK protein kinase activity in the shortening arm of length control. Moreover, CALK phosphorylation on T193 is dynamically related to flagellar length. It is reduced in cells with short flagella, elevated in the long flagella mutant, lf4, and dynamically tracks length during both flagellar assembly and flagellar disassembly in WT, but not in lf4. Thus, phosphorylation of CALK in its activation loop is implicated in the disassembly arm of a length feedback mechanism and is a continuous and dynamic molecular marker of flagellar length during both assembly and disassembly.


Assuntos
Biomarcadores , Flagelos , Organelas , Proteínas Quinases/metabolismo , Ativação Enzimática , Fosforilação
10.
Evolution ; 78(3): 442-452, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38113239

RESUMO

The largest cells are orders of magnitude bigger than the smallest cells. Organelle content scales to maintain cell function, with different organelles increasing in volume, length, or number as cells increase in size. Scaling may also reflect functional demands placed on organelles by increased cell size. Amphibians exhibit exceptional diversity in cell size. Using transmission electron microscopy, we analyzed 3 species whose enterocyte cell volumes range from 228 to 10,593 µm3. We show that nuclear volume increases by an increase in radius while mitochondrial volume increases by an increase in total network length; the endoplasmic reticulum and Golgi apparatus, with their complex shapes, are intermediate. Notably, all 4 organelle types increase in total volume proportional to cell volume, despite variation in functional (i.e., metabolic, transport) demands. This pattern suggests that organellar building blocks are incorporated into more or larger organelles following the same rules across species that vary ~50-fold in cell sizes, consistent with a "limited precursor" model for organellar scaling that, in turn, assumes equivalent cytoplasmic concentrations of organellar building block proteins. Taken together, our results lead us to hypothesize that salamanders have evolved increased biosynthetic capacity to maintain functional protein concentrations despite huge cell volumes.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Animais , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Tamanho Celular
11.
FEBS Lett ; 598(3): 283-301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994551

RESUMO

Reprogramming organelle size has been proposed as a potential therapeutic approach. However, there have been few reports of nucleolar size reprogramming. We addressed this question in Saccharomyces cerevisiae by studying mutants having opposite effects on the nucleolar size. Mutations in genes involved in nuclear functions (KAR3, CIN8, and PRP45) led to enlarged nuclei/nucleoli, whereas mutations in secretory pathway family genes, namely the Rab-GTPases YPT6 and YPT32, reduced nucleolar size. When combined with mutations leading to enlarged nuclei/nucleoli, the YPT6 or YPT32 mutants can effectively reprogram the nuclear/nucleolar size almost back to normal. Our results further indicate that null mutation of YPT6 causes secretory stress that indirectly influences nuclear localization of Maf1, the negative regulator of RNA Polymerase III, which might reduce the nucleolar size by inhibiting nucleolar transcript enrichment.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutação , Transporte Biológico , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cinesinas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo
12.
Elife ; 112022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35856499

RESUMO

The size of the nucleus scales robustly with cell size so that the nuclear-to-cell volume ratio (N/C ratio) is maintained during cell growth in many cell types. The mechanism responsible for this scaling remains mysterious. Previous studies have established that the N/C ratio is not determined by DNA amount but is instead influenced by factors such as nuclear envelope mechanics and nuclear transport. Here, we developed a quantitative model for nuclear size control based upon colloid osmotic pressure and tested key predictions in the fission yeast Schizosaccharomyces pombe. This model posits that the N/C ratio is determined by the numbers of macromolecules in the nucleoplasm and cytoplasm. Osmotic shift experiments showed that the fission yeast nucleus behaves as an ideal osmometer whose volume is primarily dictated by osmotic forces. Inhibition of nuclear export caused accumulation of macromolecules in the nucleoplasm, leading to nuclear swelling. We further demonstrated that the N/C ratio is maintained by a homeostasis mechanism based upon synthesis of macromolecules during growth. These studies demonstrate the functions of colloid osmotic pressure in intracellular organization and size control.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
13.
Philos Trans R Soc Lond B Biol Sci ; 375(1792): 20190159, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31884913

RESUMO

Cilia and flagella are ideal model organelles in which to study the general question of organelle size control. Flagellar microtubules are steady-state structures whose size is set by the balance of assembly and disassembly. Assembly requires intraflagellar transport (IFT), and measurements of IFT have shown that the rate of entry of IFT particles into the flagellum is a decreasing function of length. It has been proposed that this length dependence of IFT may be the basis for flagellar length control. Here, we test this idea by showing that three different long-flagella mutations in Chlamydomonas all cause increased IFT injection, thus confirming that IFT can influence length control. However, quantitative comparisons with mathematical models suggest that the increase in injection is not sufficient to explain the full increase in length seen in these mutants; hence, some other mechanism may be at work. One alternative mechanism that has been proposed is length-regulated binding of tubulin to the IFT particles. However, we find that the apparent length dependence of tubulin loading that has previously been reported may actually reflect length-dependent organization of IFT trains. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.


Assuntos
Chlamydomonas/fisiologia , Flagelos/fisiologia , Chlamydomonas/genética , Flagelos/genética , Microtúbulos/metabolismo , Modelos Teóricos , Mutação/fisiologia , Transporte Proteico , Tubulina (Proteína)/metabolismo
14.
Wiley Interdiscip Rev Dev Biol ; 9(5): e376, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32003549

RESUMO

Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.


Assuntos
Desenvolvimento Embrionário , Tamanho das Organelas , Animais , Estruturas da Membrana Celular/metabolismo , Estruturas da Membrana Celular/ultraestrutura , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
15.
J Thromb Haemost ; 18(1): 243-254, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31519030

RESUMO

BACKGROUND: The secretory granules of endothelial cells, Weibel-Palade bodies, are released in response to numerous extracellular signals. Their cargo is critical to many vascular functions including hemostasis and inflammation. This presents a fundamental problem: how can these cells initiate tailor-made responses from the release of a single type of organelle, each with similar cargo? Each cell contains Weibel-Palade bodies in a wide range of sizes, and we have shown that experimentally shortening these organelles disproportionately reduces their ability to initiate hemostasis in vitro, leaving leukocyte recruitment unaffected. Could the production of this range of sizes underpin differential responses? OBJECTIVES: To determine whether different agonists drive the exocytosis of different sizes of Weibel-Palade bodies. METHODS: We used a high-throughput automated unbiased imaging workflow to analyze the sizes of Weibel-Palade bodies within human umbilical vein endothelial cells (HUVECs) before and after agonist activation to determine changes in organelle size distributions. RESULTS: We found that a subset of agonists differentially evoke the release of the longest, most pro-hemostatic organelles. Inhibiting the release of these longest organelles by just 15% gives a fall of 60% in an assay of secreted von Willebrand factor (vWF) function. CONCLUSIONS: The size-selection of granules for exocytosis represents a novel layer of control, allowing endothelial cells to provide diverse responses to different signals via the release of a single type of organelle.


Assuntos
Vesículas Secretórias , Corpos de Weibel-Palade , Células Cultivadas , Exocitose , Hemostasia , Humanos , Fator de von Willebrand
16.
Dev Cell ; 49(5): 786-801.e6, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31056345

RESUMO

How can anterograde membrane trafficking be modulated by physiological cues? A screen of Golgi-associated proteins revealed that the ARF-GEF GBF1 can selectively modulate the ER-Golgi trafficking of prohaemostatic von Willebrand factor (VWF) and extracellular matrix (ECM) proteins in human endothelial cells and in mouse fibroblasts. The relationship between levels of GBF1 and the trafficking of VWF into forming secretory granules confirmed GBF1 is a limiting factor in this process. Further, GBF1 activation by AMPK couples its control of anterograde trafficking to physiological cues; levels of glucose control GBF1 activation in turn modulating VWF trafficking into secretory granules. GBF1 modulates both ER and TGN exit, the latter dramatically affecting the size of the VWF storage organelles, thereby influencing the hemostatic capacity of the endothelium. The role of AMPK as a central integrating element of cellular pathways with intra- and extra-cellular cues can now be extended to modulation of the anterograde secretory pathway.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fator de von Willebrand/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/genética , Proteínas Quinases Ativadas por AMP/genética , Animais , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Membranas Intracelulares/metabolismo , Camundongos , Fosforilação , Transporte Proteico , Fator de von Willebrand/genética
17.
Elife ; 82019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31855176

RESUMO

With eight flagella of four different lengths, the parasitic protist Giardia is an ideal model to evaluate flagellar assembly and length regulation. To determine how four different flagellar lengths are maintained, we used live-cell quantitative imaging and mathematical modeling of conserved components of intraflagellar transport (IFT)-mediated assembly and kinesin-13-mediated disassembly in different flagellar pairs. Each axoneme has a long cytoplasmic region extending from the basal body, and transitions to a canonical membrane-bound flagellum at the 'flagellar pore'. We determined that each flagellar pore is the site of IFT accumulation and injection, defining a diffusion barrier functionally analogous to the transition zone. IFT-mediated assembly is length-independent, as train size, speed, and injection frequencies are similar for all flagella. We demonstrate that kinesin-13 localization to the flagellar tips is inversely correlated to flagellar length. Therefore, we propose a model where a length-dependent disassembly mechanism controls multiple flagellar lengths within the same cell.


Assuntos
Flagelos/fisiologia , Giardia/genética , Giardia/metabolismo , Cinesinas/genética , Axonema/genética , Axonema/metabolismo , Chlamydomonas reinhardtii , Cílios/genética , Citoplasma/genética , Citoplasma/metabolismo , Difusão , Flagelos/genética , Giardia/crescimento & desenvolvimento , Cinesinas/metabolismo , Modelos Teóricos , Transporte Proteico/genética
18.
Elife ; 72018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323637

RESUMO

Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting.


Assuntos
Extratos Celulares/análise , Microtúbulos/metabolismo , Oócitos/metabolismo , Multimerização Proteica , Fuso Acromático/metabolismo , Xenopus laevis , Animais , Microscopia , Ligação Proteica
19.
Cell Syst ; 4(5): 559-567.e14, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28544883

RESUMO

How the size of micrometer-scale cellular structures such as the mitotic spindle, cytoskeletal filaments, the nucleus, the nucleolus, and other non-membrane bound organelles is controlled despite a constant turnover of their constituent parts is a central problem in biology. Experiments have implicated the limiting-pool mechanism: structures grow by stochastic addition of molecular subunits from a finite pool until the rates of subunit addition and removal are balanced, producing a structure of well-defined size. Here, we consider these dynamics when multiple filamentous structures are assembled stochastically from a shared pool of subunits. Using analytical calculations and computer simulations, we show that robust size control can be achieved only when a single filament is assembled. When multiple filaments compete for monomers, filament lengths exhibit large fluctuations. These results extend to three-dimensional structures and reveal the physical limitations of the limiting-pool mechanism of size control when multiple organelles are assembled from a shared pool of subunits.


Assuntos
Tamanho Celular , Biologia Computacional/métodos , Organelas/metabolismo , Citoesqueleto de Actina/química , Actinas/análise , Fenômenos Biofísicos , Simulação por Computador , Citoesqueleto/química , Modelos Biológicos , Biologia de Sistemas/métodos
20.
Annu Rev Biophys ; 45: 85-116, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27145876

RESUMO

Cells contain elaborate and interconnected networks of protein polymers, which make up the cytoskeleton. The cytoskeleton governs the internal positioning and movement of vesicles and organelles and controls dynamic changes in cell polarity, shape, and movement. Many of these processes require tight control of the size and shape of cytoskeletal structures, which is achieved despite rapid turnover of their molecular components. Here we review mechanisms by which cells control the size of filamentous cytoskeletal structures, from the point of view of simple quantitative models that take into account stochastic dynamics of their assembly and disassembly. Significantly, these models make experimentally testable predictions that distinguish different mechanisms of length control. Although the primary focus of this review is on cytoskeletal structures, we believe that the broader principles and mechanisms discussed herein will apply to a range of other subcellular structures whose sizes are tightly controlled and are linked to their functions.


Assuntos
Citoesqueleto/ultraestrutura , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiologia , Citoesqueleto de Actina/ultraestrutura , Animais , Citoesqueleto/química , Citoesqueleto/fisiologia , Microtúbulos/química , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA