Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(32): e2310409, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38477694

RESUMO

Electrochemical nitrite reduction reaction ( NO 2 - RR ${\mathrm{NO}}_{\mathrm{2}}^{\mathrm{ - }}{\mathrm{RR}}$ ), as a green and sustainable ammonia synthesis technology, has broad application prospects and environmental friendliness. Herein, an unconventional p-d orbital hybridization strategy is reported to realize the fabrication of defect-rich CuSb porous nanonetwork (CuSb PNs) electrocatalyst for NO 2 - RR ${\mathrm{NO}}_{\mathrm{2}}^ - {\mathrm{RR}}$ . The crystalline/amorphous heterophase structure is cleverly introduced into the porous nanonetworks, and this defect-rich structure exposes more atoms and activated boundaries. CuSb PNs exhibit a large NH3 yield ( r N H 3 ${{r}_{{\mathrm{N}}{{{\mathrm{H}}}_{\mathrm{3}}}}}$ ) of 946.1 µg h-1 m cat - 1 ${\mathrm{m}}_{{\mathrm{cat}}}^{ - {\mathrm{1}}}$ and a high faradaic efficiency (FE) of 90.7%. Experimental and theoretical studies indicate that the excellent performance of CuSb PNs results from the defect-rich porous nanonetworks structure and the p-d hybridization of Cu and Sb elements. This work describes a powerful pathway for the fabrication of p-d orbital hybrid defect-rich porous nanonetworks catalysts, and provides hope for solving the problem of nitrogen oxide pollution in the field of environment and energy.

2.
Angew Chem Int Ed Engl ; : e202410251, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973470

RESUMO

Considering the substantial role of ammonia, developing highly efficient electrocatalysts for nitrate-to-ammonia conversion has attracted increasing interest. Herein, we proposed a feasible strategy of p-d orbital hybridization via doping p-block metals in an Ag host, which drastically promotes the performance of nitrate adsorption and disassociation. Typically, a Sn-doped Ag catalyst (SnAg) delivers a maximum Faradaic efficiency (FE) of 95.5 ± 1.85 % for NH3 at -0.4 V vs. RHE and reaches the highest NH3 yield rate to 482.3 ± 14.1 mg h-1 mgcat.-1. In a flow cell, the SnAg catalyst achieves a FE of 90.2 % at an ampere-level current density of 1.1 A cm-2 with an NH3 yield of 78.6 mg h-1 cm-2, during which NH3 can be further extracted to prepare struvite as high-quality fertilizer. A mechanistic study reveals that a strong p-d orbital hybridization effect in SnAg is beneficial for nitrite deoxygenation, a rate-determining step for NH3 synthesis, which as a general principle, can be further extended to Bi- and In-doped Ag catalysts. Moreover, when integrated into a Zn-nitrate battery, such a SnAg cathode contributes to a superior energy density of 639 Wh L-1, high power density of 18.1 mW cm-2, and continuous NH3 production.

3.
Angew Chem Int Ed Engl ; : e202407658, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982589

RESUMO

Metallene is considered as an emerging family of electrocatalysts due to its atomically layered structure and unique surface stress. Here we propose a strategy to modulate the Bader charge transfer (BCT) between Pd surface and oxygenated intermediates via p-d electronic interaction by introducing single-atomp-block metal (M = In, Sn, Pb, Bi) into Pd metallene nanosheets towards efficient oxygen reduction reaction (ORR). X-ray absorption and photoelectron spectroscopy suggests that doping p-block metals could facilitate electron transfer to Pd sites and thus downshift the d-band center of Pd and weaken the adsorption energy of O intermediates. Among them, the developed Bi-Pd metallene shows extraordinarily high ORR mass activity of 11.34 A mgPd-1 and 0.86 A mgPd-1 at 0.9 V and 0.95 V in alkaline solution, respectively, representing the best Pd-based ORR electrocatalysts ever reported. In the cathode of a Zinc-air battery, Bi-Pd metallene could achieve an open-circuit voltage of 1.546 V and keep stable for 760 h at 10 mA cm-2. Theoretical calculations suggest that the BCT between Pd surface and *OO intermediates greatly affects the bond length between them (dPd-*OO) and Bi doping could appropriately reduce the amount of BCT and stretch the dPd-*OO, thus enhancing the ORR activity.

4.
Angew Chem Int Ed Engl ; : e202410442, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993065

RESUMO

Renewable electricity driven electrosynthesis of cyclohexanone oxime (C6H11NO) from cyclohexanone (C6H10O) and nitrogen oxide (NOx) is a promising alternative to traditional environment-unfriendly industrial technologies for green synthesis of C6H11NO. Precisely controlling the reaction pathway of the C6H10O/NOx-involved electrochemical reductive coupling reaction is crucial for selectively producing C6H11NO, which is yet still challenging. Herein, we report a porous high-entropy alloy PdCuAgBiIn metallene (HEA-PdCuAgBiInene) to boost the electrosynthesis of C6H11NO from C6H10O and nitrite, achieving a high Faradaic efficiency (47.6%) and almost 100% yield under ambient conditions. In situ Fourier transform infrared spectroscopy and theoretical calculations demonstrate that unconventional orbital hybridization between d-block metals and p-block metals could regulate the local electronic structure of active sites and induce electron localization of electron-rich Pd sites, which tunes the active hydrogen supply and facilitates the generation and enrichment of key intermediates NH2OH* and C6H10O*, and efficiently promotes their C-N coupling to selectively produce C6H11NO.

5.
Adv Sci (Weinh) ; 11(19): e2309813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482730

RESUMO

Designing high efficiency platinum (Pt)-based catalysts for methanol oxidation reaction (MOR) with high "non-CO" pathway selectivity is strongly desired and remains a grand challenge. Herein, PtRuNiCoFeGaPbW HEA ultrathin nanowires (HEA-8 UNWs) are synthesized, featuring unique cascaded p-d orbital hybridization interaction by inducing dual p-block metals (Ga and Pb). In comparison with Pt/C, HEA-8 UNWs exhibit 15.0- and 4.2-times promotion of specific and mass activity for MOR. More importantly, electrochemical in situ FITR spectroscopy reveals that the production/adsorption of CO (CO*) intermediate is effectively avoided on HEA-8 UNWs, leading to the complete "non-CO" pathway for MOR. Theoretical calculations demonstrate the optimized electronic structure of HEA-8 UNWs can facilitates a lower energy barrier for the "non-CO" pathway in the MOR.

6.
Biosens Bioelectron ; 261: 116468, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852326

RESUMO

Rational design of peroxidase (POD)-like nanozymes with high activity and specificity still faces a great challenge. Besides, the investigations of nanozymes inhibitors commonly focus on inhibition efficiency, the interaction between nanozymes-involved catalytic reactions and inhibitors is rarely reported. In this work, we design a p-block metal Sn-doped Pt (p-d/PtSn) nanozymes with the selective enhancement of POD-like activity. The p-d orbital hybridization interaction between Pt and Sn can effectively optimize the electronic structure of PtSn nanozymes and thus selectively enhance POD-like activity. In addition, the antioxidants as nanozymes inhibitors can effectively inhibit the POD-like activity of p-d/PtSn nanozymes, which results in the fact that antioxidants absorbed on the p-d/PtSn surface can hinder the adsorption of hydrogen peroxide. The inhibition type (glutathione as a model molecule) is reversible mixed-inhibition with inhibition constants (Ki' and Ki) of 0.21 mM and 0.03 mM. Finally, based on the varying inhibition levels of antioxidant molecules, a colorimetric sensor array is constructed to distinguish and simultaneously detect five antioxidants. This work is expected to design highly active and specific nanozymes through p-d orbital hybrid engineering, and also provides insights into the interaction between nanozymes and inhibitors.


Assuntos
Antioxidantes , Técnicas Biossensoriais , Colorimetria , Platina , Colorimetria/métodos , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/análise , Técnicas Biossensoriais/métodos , Platina/química , Peroxidase/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Nanoestruturas/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA