Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 609, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886681

RESUMO

Adhesins are crucial factors in the virulence of bacterial pathogens such as Escherichia coli. However, to date no resources have been dedicated to the detailed analysis of E. coli adhesins. Here, we provide adhesiomeR software that enables characterization of the complete adhesin repertoire, termed the adhesiome. AdhesiomeR incorporates the most comprehensive database of E. coli adhesins and facilitates an extensive analysis of adhesiome. We demonstrate that adhesiomeR achieves 98% accuracy when compared with experimental analyses. Based on analysis of 15,000 E. coli genomes, we define novel adhesiome profiles and clusters, providing a nomenclature for a unified comparison of E. coli adhesiomes.


Assuntos
Adesinas de Escherichia coli , Escherichia coli , Software , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/classificação , Genoma Bacteriano , Biologia Computacional/métodos
2.
Avian Pathol ; 53(5): 380-389, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38572655

RESUMO

Infectious bronchitis virus (IBV) strains of genotype GVIII have been emerging in Europe in the last decade, but no biological characterization has been reported so far. This paper reports the extensive genetic and biological characterization of IBV strain D2860 of genotype GVIII which was isolated from a Dutch layer flock that showed a drop in egg production. Whole genome sequencing showed that it has a high similarity (95%) to CK/DE/IB80/2016 (commonly known as IB80). Cross-neutralization tests with antigens and serotype-specific antisera of a panel of different non-GVIII genotypes consistently gave less than 2% antigenic cross-relationship with D2860. Five experiments using specified pathogen-free chickens of 0, 4, 29 and 63 weeks of age showed that D2860 was not able to cause clinical signs, drop in egg production, false layers or renal pathology. There was also a distinct lack of ciliostasis at both 5 and 8 days post-inoculation at any age, despite proof of infection by immunohistochemical (IHC) staining, RT-PCR and serology. IHC showed immunostaining between 5 and 8 days post inoculation in epithelial cells of sinuses and conchae, while only a few birds displayed immunostaining in the trachea. In vitro comparison of replication of D2860 and M41 in chicken embryo kidney cells at 37°C and at 41°C indicated that D2860 might have a degree of temperature sensitivity that might cause it to prefer the colder parts of the respiratory tract.


Assuntos
Galinhas , Infecções por Coronavirus , Genótipo , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/imunologia , Animais , Galinhas/virologia , Doenças das Aves Domésticas/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Organismos Livres de Patógenos Específicos , Feminino , Filogenia , Genoma Viral/genética , Replicação Viral , Traqueia/virologia
3.
Plant Dis ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082928

RESUMO

Clubroot, caused by Plasmodiophora brassicae, is a globally destructive soil-borne disease affecting cruciferous plants. Here, the predominant pathotypes of P. brassicae in six cities within Zhejiang Province were identified using the Williams and European Clubroot Differential (ECD) systems. A phylogenetic analysis of P. brassicae isolates infecting cruciferous crops worldwide was conducted using MEGA, and their ITS2 secondary structures were predicted through the ITS2 database. Accessions of B. rapa, B. oleracea, B. juncea, and Eruca sativa Mill. were employed to assess clubroot resistance. The results revealed that the prevalent pathotypes in Zhejiang Province were pathotype 1, ECD20/31/12 and ECD24/16/30; pathotype 3, ECD20/15/4; pathotype 8, ECD16/0/0 and ECD24/0/0; and pathotype 2, ECD16/15/15. Isolates from distinct genera of Brassicaceae formed separate branches in the evolutionary tree. Moreover, isolates of Brassica crops from Zhejiang Province exhibited homology with those from other global regions, a finding corroborated by their ITS2 secondary structure. Approximately 80% and 95% of B. rapa and B. juncea crops displayed susceptible phenotypes for pathotype 8, ECD16/0/0, whereas approximately 60% of B. oleracea crops exhibited resistance. Furthermore, three Brassica crop accessions showed significant variation in resistance to the pathogen, both among morphological and geographical origin groups. This study contributes to understanding the distribution of diverse P. brassicae pathotypes in different regions of Zhejiang Province and facilitates the identification of Brassica crops with potential disease resistance suitable for cultivation in the province.

4.
Genomics ; 115(5): 110699, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597791

RESUMO

Ascochyta blight (AB) is a major disease in chickpeas (Cicer arietinum L.) that can cause a yield loss of up to 100%. Chickpea germplasm collections at the center of origin offer great potential to discover novel sources of resistance to pests and diseases. Herein, 189 Cicer arietinum samples were genotyped via genotyping by sequencing. This chickpea collection was phenotyped for resistance to an aggressive Turkish Didymella rabiei Pathotype IV isolate. Genome-wide association studies based on different models revealed 19 single nucleotide polymorphism (SNP) associations on chromosomes 1, 2, 3, 4, 7, and 8. Although eight of these SNPs have been previously reported, to the best of our knowledge, the remaining ten were associated with AB resistance for the first time. The regions identified in this study can be addressed in future studies to reveal the genetic mechanism underlying AB resistance and can also be utilized in chickpea breeding programs to improve AB resistance in new chickpea varieties.


Assuntos
Cicer , Cicer/genética , Mapeamento Cromossômico , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Genótipo , Doenças das Plantas/genética , Melhoramento Vegetal
5.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673937

RESUMO

As a fruit tree with great economic value, apple is widely cultivated in China. However, apple leaf spot disease causes significant damage to apple quality and economic value. In our study, we found that MdMYB6-like is a transcription factor without auto-activation activity and with three alternative spliced variants. Among them, MdMYB6-like-ß responded positively to the pathogen infection. Overexpression of MdMYB6-like-ß increased the lignin content of leaves and improved the pathogenic resistance of apple flesh callus. In addition, all three alternative spliced variants of MdMYB6-like could bind to the promoter of MdBGLU H. Therefore, we believe that MdMYB6-like plays an important role in the infection process of the pathogen and lays a solid foundation for breeding disease-resistant cultivars of apple in the future.


Assuntos
Alternaria , Resistência à Doença , Malus , Fatores de Transcrição , Alternaria/patogenicidade , Alternaria/genética , Processamento Alternativo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Malus/microbiologia , Malus/genética , Malus/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Folhas de Planta/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
BMC Microbiol ; 23(1): 133, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193946

RESUMO

BACKGROUND: Streptococcus suis is a zoonotic pathogen that causes substantial economic losses in the pig industry and contributes to human infections worldwide, especially in Southeast Asia. Recently, a multiplex polymerase chain reaction (PCR) process was developed to distinguish disease-associated and non-disease-associated pathotypes of S. suis European strains. Herein, we evaluated the ability of this multiplex PCR approach to distinguish pathotypes of S. suis in Thailand. RESULTS: This study was conducted on 278 human S. suis isolates and 173 clinically healthy pig S. suis isolates. PCR identified 99.3% of disease-associated strains in the human isolates and 11.6% of non-disease-associated strains in the clinically healthy pig isolates. Of the clinically healthy pig S. suis isolates, 71.1% were classified as disease-associated. We also detected undetermined pathotype forms in humans (0.7%) and pigs (17.3%). The PCR assay classified the disease-associated isolates into four types. Statistical analysis revealed that human S. suis clonal complex (CC) 1 isolates were significantly associated with the disease-associated type I, whereas CC104 and CC25 were significantly associated with the disease-associated type IV. CONCLUSION: Multiplex PCR cannot differentiate non-disease-associated from disease-associated isolates in Thai clinically healthy pig S. suis strains, although the method works well for human S. suis strains. This assay should be applied to pig S. suis strains with caution. It is highly important that multiplex PCR be validated using more diverse S. suis strains from different geographic areas and origins of isolation.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Humanos , Animais , Streptococcus suis/genética , Tailândia , Infecções Estreptocócicas/veterinária , Reação em Cadeia da Polimerase Multiplex
7.
Vet Res ; 54(1): 101, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904195

RESUMO

Infectious bursal disease (IBD) is an avian viral disease caused in chickens by infectious bursal disease virus (IBDV). IBDV strains (Avibirnavirus genus, Birnaviridae family) exhibit different pathotypes, for which no molecular marker is available yet. The different pathotypes, ranging from sub-clinical to inducing immunosuppression and high mortality, are currently determined through a 10-day-long animal experiment designed to compare mortality and clinical score of the uncharacterized strain with references strains. Limits of this protocol lie within standardization and the extensive use of animal experimentation. The aim of this study was to establish a predictive model of viral pathotype based on a minimum number of early parameters measured during infection, allowing faster pathotyping of IBDV strains with improved ethics. We thus measured, at 2 and 4 days post-infection (dpi), the blood concentrations of various immune and coagulation related cells, the uricemia and the infectious viral load in the bursa of Fabricius of chicken infected under standardized conditions with a panel of viruses encompassing the different pathotypes of IBDV. Machine learning algorithms allowed establishing a predictive model of the pathotype based on early changes of the blood cell formula, whose accuracy reached 84.1%. Its accuracy to predict the attenuated and strictly immunosuppressive pathotypes was above 90%. The key parameters for this model were the blood concentrations of B cells, T cells, monocytes, granulocytes, thrombocytes and erythrocytes of infected chickens at 4 dpi. This predictive model could be a second option to traditional IBDV pathotyping that is faster, and more ethical.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Galinhas , Bolsa de Fabricius , Linfócitos B , Contagem de Células Sanguíneas/veterinária , Infecções por Birnaviridae/veterinária
8.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754368

RESUMO

Escherichia coli survive in various hosts and environments due to their highly diversified genome. These bacteria have coevolved with humans, colonized a broad range of hosts, and survive as a commensal organism or pathogen. Escherichia coli that adopted a pathogenic lifecycle in avian hosts typically belong to phylogroups B2 and D. Phylogenic investigations discovered these E. coli are noticeably overlapped with the phylogroup of E. coli infecting humans. This overlapping is possibly due to a parallel evolution in both hosts from a common ancestor, which indicates a high zoonotic potential of avian pathogenic E. coli (APEC). However, some contrasting evidence of other phylogroups infecting the avian host has also been reported in recent studies indicating phylogroups of E. coli are not definitive, only suggestive to their virulence in chickens. Furthermore, virulence-associated genes that contribute to bacterial features necessary to establish APEC infection, are predominantly located in plasmids. Therefore, phylogenetic classification based on chromosomal markers is often inadequate to identify APEC. Moreover, E. coli can obtain virulent plasmids from other bacteria, which further complicates the link between phylogenetic classification and pathotype. Previous research has reported an array of virulence-associated genes highly prevalent only in APEC isolates. Function of these genes are possibly a prerequisite to establishing APEC infections in chickens. Consequently, these genes can be used to distinguish APEC from environmental, commensal, intestinal, and other extraintestinal E. coli. Therefore, we have extensively reviewed previous literature to compile the virulence-associated genes that are highly prevalent in APEC compared to other E. coli. From this review, we have identified 10 key virulence-associated genes (iss,tsh,iroN, episomal/chromosomal ompT,iutA,cvaC,hlyF,iucD,papG allel(II/III), and papC) that are frequently reported in APEC isolates than nonpathogenic E. coli. A compilation of these research findings can be crucial to the molecular identification of APEC. Furthermore, it can serve as a guideline for future investigation and aid in formulation of intervention strategies.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Humanos , Escherichia coli/genética , Virulência/genética , Galinhas/microbiologia , Filogenia , Doenças das Aves Domésticas/microbiologia , Infecções por Escherichia coli/microbiologia , Fatores de Virulência/genética
9.
Phytopathology ; 113(6): 953-959, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36441870

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) is a major rice pathogen, and its genome harbors extensive inter-strain and inter-lineage variations. The emergence of highly virulent pathotypes of Xoo that can overcome major resistance (R) genes deployed in rice breeding programs is a grave threat to rice cultivation. The present study reports on a long-read Oxford nanopore-based complete genomic investigation of Xoo isolates from 11 pathotypes that are reported based on their reaction toward 10 R genes. The investigation revealed remarkable variation in the genome structure in the strains belonging to different pathotypes. Furthermore, transcription activator-like effector (TALE) proteins secreted by the type III secretion system display marked variation in content, genomic location, classes, and DNA-binding domain. We also found the association of tal genes in the vicinity of regions with genome structural variations. Furthermore, in silico analysis of the genome-wide rice targets of TALEs allowed us to understand the emergence of pathotypes compatible with major R genes. Long-read, cost-effective sequencing technologies such as nanopore can be a game changer in the surveillance of major and emerging pathotypes. The resource and findings will be invaluable in the management of Xoo and in appropriate deployment of R genes in rice breeding programs.


Assuntos
Oryza , Xanthomonas , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Doenças das Plantas/genética , Melhoramento Vegetal , Xanthomonas/genética , Oryza/genética
10.
Plant Dis ; 107(6): 1785-1793, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36415892

RESUMO

Phytophthora root and stem rot (PRR), caused by Phytophthora sojae, is one of the most devastating oomycete diseases of soybean in Illinois. Single resistant genes (Rps) are used to manage this pathogen but P. sojae has adapted to Rps, causing failure of resistance in many regions. In addition to P. sojae, recent reports indicate that P. sansomeana could also cause root rot in soybean. Soil samples and symptomatic plants were collected across 40 Illinois counties between 2016 and 2018. P. sojae (77%) was more abundant than P. sansomeana (23%) across Illinois fields. Both species were characterized by virulence, aggressiveness, and fungicide sensitivity. Virulence of all P. sojae isolates was evaluated using the hypocotyl inoculation technique in 13 soybean differentials. Aggressiveness was evaluated in the greenhouse by inoculating a susceptible cultivar and measuring root and shoot dry weight. On average, P. sojae isolates were able to cause disease on six soybean differentials. P. sojae was more aggressive than P. sansomeana. All isolates were sensitive to azoxystrobin, ethaboxam, mefenoxam, and metalaxyl. The characterization of the population of species associated with PRR will inform management decisions for this disease in Illinois.


Assuntos
Fungicidas Industriais , Phytophthora , Resistência à Doença/genética , Glycine max/genética , Fungicidas Industriais/farmacologia , Phytophthora/genética , Virulência , Illinois
11.
Vet Res ; 53(1): 23, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303917

RESUMO

Streptococcus suis is a significant economic and welfare concern in the swine industry. Pan-genome analysis provides an in-silico approach for the discovery of genes involved in pathogenesis in bacterial pathogens. In this study, we performed pan-genome analysis of 208 S. suis isolates classified into the pathogenic, possibly opportunistic, and commensal pathotypes to identify novel candidate virulence-associated genes (VAGs) of S. suis. Using chi-square tests and LASSO regression models, three accessory pan-genes corresponding to S. suis strain P1/7 markers SSU_RS09525, SSU_RS09155, and SSU_RS03100 (>95% identity) were identified as having a significant association with the pathogenic pathotype. The proposed novel SSU_RS09525 + /SSU_RS09155 + /SSU_RS03100 + genotype identified 96% of the pathogenic pathotype strains, suggesting a novel genotyping scheme for predicting the pathogenicity of S. suis isolates in North America. In addition, mobile genetic elements carrying antimicrobial resistance genes (ARGs) and VAGs were identified but did not appear to play a major role in the spread of ARGs and VAGs.


Assuntos
Streptococcus suis , Doenças dos Suínos , Animais , Genoma Bacteriano , Genótipo , Streptococcus suis/genética , Suínos , Doenças dos Suínos/microbiologia , Virulência/genética
12.
Mol Biol Rep ; 49(6): 5483-5494, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35478296

RESUMO

The fundamental concepts of the genetics, race classification and epidemiology of the Wheat spike blast causing fungus Magnaporthe oryzae pathotype Triticum (MoT) are still evolving despite of its discovery in 1985 in Brazil for the first time. The fungus seems to defy the research progress that is being made globally by continuously evolving into pathotypes which have already overcome the much celebrated 2NS resistance in wheat lines as well as few of the initially effective fungicides. The compartmentalized i.e. two speed genome of the MoT, conferring the fungus an evolutionary advantage, has emerged as a challenge for the wheat spike blast researchers complicating its already difficult management. The airborne fungus with a range of alternative hosts is finding new geographical niches situated on different continents and is a matter of great apprehension among the nations whose food security is primarily dependent on wheat. The wheat blast outbreak in Bangladesh during 2016 was attributed to an isolate from Latin America escaping through a seed import consignment while the latest Zambian outbreak is still to be studied in detail regarding its origin and entry. The challenges in dealing wheat spike blast are not only on the level of genetics and epidemiology alone but also on the levels of policy making regarding international seed movement and research collaborations. The present review deals with these issues mainly concerning the effective management and controlling the international spread of this deadly disease of wheat, with a particular reference to India. We describe the origin, taxonomy, epidemiology and symptomology of MoT and briefly highlight its impact and management practices from different countries. We also discuss the advances in genomics and genome editing technologies that can be used to develop elite wheat genotypes resistant against different stains of wheat spike blast.


Assuntos
Magnaporthe , Triticum , Ascomicetos , Engenharia Genética , Magnaporthe/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
13.
J Appl Microbiol ; 133(6): 3490-3501, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648155

RESUMO

AIMS: E. coli are ubiquitously present bacterial pathogens that cause septicaemia, diarrhoea and other clinical illness in farm animals. Many pathogen factors can be associated with disease conditions. Currently, studies inferring E. coli genetic factors associated with infection in bovines are limited. Hence, the present study envisaged to determine the pathogen genetic factors associated with bovine disease conditions. METHOD AND RESULTS: The comparative genomic analysis involved genome sequence data of 135 diseased and 145 healthy bovine origin E. coli strains. Phylogroups A and C, as well as pathotypes ExPEC and EPEC, were found to have a strong connection with bovine disease strains. STEC strains, including EHEC, seem to play a less important role in bovine disease. Sequence types (STs) predominant among strains from diarrhoeal origin were ST 301 (CC 165) and ST 342. Correlation of core genome phylogeny with accessory gene-based clustering, phylogroups and pathotypes indicated lineage-specific virulence factors mostly associated with disease conditions. CONCLUSIONS: Comparative genomic analysis was applied to infer genetic factors significant in bovine disease origin E. coli strains. Isolates from bovine disease origin were enriched for the phylogroups A and C, and for the pathotypes ExPEC and EPEC. However, there was minimal evidence of STEC involvement. The study also indicated predominant genetic lineages and virulence genes (pap, sfa and afa) associated with disease origin strains. SIGNIFICANCE AND IMPACT OF STUDY: The study revealed significant pathotypes, phylogroups, serotypes and sequence types associated with bovine disease conditions. These identified genetic factors can be applied for disease diagnosis, implementing vaccines and therapeutic measures. In addition, E. coli isolates from the bovine species revealed a complex pattern of disease epidemiology.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Animais , Bovinos , Escherichia coli , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Genômica/métodos , Diarreia/microbiologia , Proteínas de Escherichia coli/genética , Fatores de Virulência/genética , Doenças dos Bovinos/microbiologia , Filogenia
14.
Phytopathology ; 112(6): 1201-1207, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34844415

RESUMO

Based on phylo-taxonogenomics criteria, we present amended descriptions for 20 pathovars to Xanthomonas citri. Incidentally, 18 were first reported from India. Seven out of twenty are classified as X. axonopodis, 12 out of 20 as X. campestris, and one as X. cissicola. In this study, we have generated genome sequence data of four pathovars, and the genomes of the remaining 16 were used from the published data. Comprehensive genome-based phylogenomic and taxonogenomic analyses reveal that all these pathovars belong to X. citri and need to reconcile their taxonomic status. This proposal will aid in systematic studies of a major species and its constitutent members that infect economically important plants.


Assuntos
Doenças das Plantas , Xanthomonas , Filogenia , Plantas , Xanthomonas/genética
15.
Phytopathology ; 112(7): 1444-1453, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35050682

RESUMO

In India, systematic wheat yellow rust survey and pathotype (race) analysis work began in 1930. However, information on population structure and genetic diversity of yellow rust pathogen has not been available. To address this, we conducted studies on population structure and genetic diversity of Puccinia striiformis f. sp. tritici (Pst) pathotypes using 38 simple sequence repeat primer-pairs. Bayesian assignment and discriminant analysis of principal components indicated the presence of two distinct Pst subpopulations (Pop1 and Pop2) along with 37.9% admixed pathotypes. The unweighted pair-group method with arithmetic mean also categorized these pathotypes into two major clusters. Principal coordinates analysis explained 20.06 and 12.50% variance in horizontal and vertical coordinates, respectively. Index of association (IA) and the standardized index of association ([Formula: see text]) values showed that Pst subpopulations reproduced asexually (clonally). In total, 102 alleles were detected, with the expected heterozygosity (Hexp) per locus ranging from 0.13 to 0.73, with a mean of 0.47. The average polymorphic information content value of 0.40 indicated high genetic diversity among pathotypes. Analysis of molecular variance revealed 12% of the total variance between subpopulations, 11% among the pathotypes of each subpopulation, and 77% within pathotypes. A significant moderate level of genetic differentiation (FST = 0.122, P < 0.001) and gene flow (Nm = 1.80) were observed between subpopulations. The Pst virulence phenotypes showed a weak positive correlation (R2 = 0.027, P < 0.02) with molecular genotypes.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , Teorema de Bayes , Variação Genética , Repetições de Microssatélites/genética , Doenças das Plantas , Puccinia , Triticum/genética
16.
Phytopathology ; 112(11): 2329-2340, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35657702

RESUMO

We describe a standard method for characterizing the virulence profile of Plasmopara viticola, the causal agent of grapevine downy mildew. We used 33 European strains to inoculate six grapevine varieties carrying the principal factors for resistance to downy mildew (Rpv1, Rpv3.1, Rpv3.2, Rpv5, Rpv6, Rpv10, and Rpv12) and the susceptible Vitis vinifera 'Chardonnay'. For each interaction, we characterized the level of sporulation by image analysis and the intensity of the grapevine hypersensitive response by visual score. We propose a definition for the breakdown of grapevine quantitative resistances combining these two traits. Among the 33 strains analyzed, 28 are virulent on at least one resistance factor. We identified five different pathotypes across the 33 strains analyzed: two pathotypes overcoming a single resistance factor (vir3.1 and vir3.2) and three complex pathotypes overcoming multiple resistance factors (vir3.1,3.2; vir3.2,12; vir3.1,3.2,10). Our findings confirm the widespread occurrence of P. viticola strains overcoming the Rpv3 haplotypes (28 strains). We also detected the first breakdown of resistance to the Rpv10 by a strain from Germany and the breakdown of Rpv12 factors by a strain from Hungary. The pathotyping method proposed here and the associated differential host range lay the groundwork for the early detection of resistance breakdown in grapevines. This approach will also facilitate the monitoring of the evolution of P. viticola populations at large spatial scales. This is an essential step forward to promoting durable management of the resistant grapevine varieties currently available.


Assuntos
Oomicetos , Peronospora , Vitis , Resistência à Doença/genética , Doenças das Plantas , Oomicetos/genética , Peronospora/genética , Vitis/fisiologia
17.
Plant Dis ; 106(6): 1700-1712, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34931892

RESUMO

Wheat blast (WB), caused by Magnaporthe oryzae Triticum pathotype, recently emerged as a destructive disease that threatens global wheat production. Because few sources of genetic resistance have been identified in wheat, genetic transformation of wheat with rice blast resistance genes could expand resistance to WB. We evaluated the presence/absence of homologs of rice blast effector genes in Triticum isolates with the aim of identifying avirulence genes in field populations whose cognate rice resistance genes could potentially confer resistance to WB. We also assessed presence of the wheat pathogen AVR-Rmg8 gene and identified new alleles. A total of 102 isolates collected in Brazil, Bolivia, and Paraguay from 1986 to 2018 were evaluated by PCR using 21 pairs of gene-specific primers. Effector gene composition was highly variable, with homologs to AvrPiz-t, AVR-Pi9, AVR-Pi54, and ACE1 showing the highest amplification frequencies (>94%). We identified Triticum isolates with a functional AvrPiz-t homolog that triggers Piz-t-mediated resistance in the rice pathosystem and produced transgenic wheat plants expressing the rice Piz-t gene. Seedlings and heads of the transgenic lines were challenged with isolate T25 carrying functional AvrPiz-t. Although slight decreases in the percentage of diseased spikelets and leaf area infected were observed in two transgenic lines, our results indicated that Piz-t did not confer useful WB resistance. Monitoring of avirulence genes in populations is fundamental to identifying effective resistance genes for incorporation into wheat by conventional breeding or transgenesis. Based on avirulence gene distributions, rice resistance genes Pi9 and Pi54 might be candidates for future studies.


Assuntos
Resistência à Doença , Doenças das Plantas , Ascomicetos , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
18.
Plant Dis ; 106(1): 57-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34420358

RESUMO

A series of greenhouse experiments was conducted to evaluate the effect of Plasmodiophora brassicae virulence on clubroot development and propagation of resting spores in 86 plant species from 19 botanical families. Plants were artificially inoculated with two isolates of P. brassicae, which were virulent on clubroot-resistant oilseed rape cultivar Mendel [pathotype 1; P1 (+)] or avirulent on this cultivar (P1). Clubroot severity and the number of resting spores inside the roots were assessed 35 days post inoculation. Typical clubroot symptoms were observed only in the Brassicaceae family. P1 (+)-inoculated species exhibited more severe symptoms (two- to 10-fold more severe), bigger galls (1.1- to 5.8-fold heavier), and greater numbers of resting spores than the P1-inoculated plants. Among all Brassica species, Bunias orientalis, Coronopus squamatus, and Raphanus sativus were fully resistant against both isolates, whereas Camelina sativa, Capsella bursa-pastoris, Coincya monensis, Descurainia sophia, Diplotaxis muralis, Erucastrum gallicum, Neslia paniculata, Sinapis alba, Sinapis arvensis, Sisymbrium altissimum, Sisymbrium loeselii, and Thlaspi arvense were highly susceptible. Conringia orientalis, Diplotaxis tenuifolia, Hirschfeldia incana, Iberis amara, Lepidium campestre, and N. paniculata were completely or partially resistant to P1 isolate but highly susceptible to P1 (+). These results suggest that the basis for resistance in these species may be similar to that found in some commercial cultivars, and that these species could contribute to the buildup of inoculum of virulent pathotypes. Furthermore, the pathogen DNA was detected in Alopecurus myosuroides, Phacelia tanacetifolia, Papaver rhoeas, and Pisum sativum. It can be concluded that the number and diversity of hosts for P. brassicae are greater than previously reported.


Assuntos
Brassica napus , Doenças das Plantas/parasitologia , Plasmodioforídeos , Brassica napus/parasitologia , Especificidade de Hospedeiro , Plasmodioforídeos/patogenicidade , Virulência
19.
Plant Dis ; 106(2): 425-431, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34184554

RESUMO

Identifying the pathotype structure of a Phytophthora sojae population is crucial for the effective management of Phytophthora stem and root rot of soybean (PRR). P. sojae has been successfully managed with major resistance genes, partial resistance, and fungicide seed treatments. However, prolonged use of resistance genes or fungicides can cause pathogen populations to adapt over time, rendering resistance genes or fungicides ineffective. A statewide survey was conducted to characterize this pathotype structure and fungicide sensitivity of P. sojae within Michigan. Soil samples were collected from 69 fields with a history of PRR and fields having consistent plant stand establishment issues. Eighty-three isolates of P. sojae were obtained, and hypocotyl inoculations were performed on 14 differential soybean cultivars, all of which carry a single Rps gene or no resistance gene. The survey identified a loss of effectiveness of Rps genes 1b, 1k, 3b, and 6, compared with a previous survey conducted in Michigan from 1993 to 1997. Three effective resistance genes were identified for P. sojae management in Michigan; Rps 3a, 3c, and 4. Additionally, the effective concentration of common seed treatment fungicides to inhibit mycelial growth by 50% (EC50) was determined. No P. sojae isolates were insensitive to the tested chemistries with mean EC50 values of 2.60 × 10-2 µg/ml for ethaboxam, 3.03 × 10-2 µg/ml for mefenoxam, 2.88 × 10-4 µg/ml for oxathiapiprolin, and 5.08 × 10-2 µg/ml for pyraclostrobin. Results suggest that while there has been a significant shift in Rps gene effectiveness, seed treatments are still effective for early season management of this disease.


Assuntos
Fungicidas Industriais , Phytophthora , Fungicidas Industriais/farmacologia , Michigan , Phytophthora/genética , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Glycine max/genética
20.
J Basic Microbiol ; 62(2): 185-196, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34913505

RESUMO

Bacterial blight (BB) of rice is a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo). The evolution of new pathogenic races of bacterial blight pathogen is always a potential threat for rice production. The deployment of pathotype-specific resistant genes in the host plants is a feasible strategy to develop BB-resistant varieties. Therefore, continuous disease monitoring, identification of Xoo pathotypes, and their distribution are crucial to managing BB. In this study, 71 Xoo isolates were collected from the Godavari delta in Andhra Pradesh (India) and their virulence profiles on rice BB differentials were characterized. Data revealed that different International Rice Bacterial Blight (IRBB) lines with single BB resistance genes were susceptible to 73.2%-97.2% of the isolates, except IRBB13 (possessing BB resistance gene, xa13) which showed a moderately susceptible or susceptible reaction to 47.9% of the isolates. Three gene combination rice differentials like IRBB56 (Xa4 + xa5 + xa13), IRBB57 (Xa4 + xa5 + Xa21), IRBB58 (Xa4 + xa13 + Xa21), and IRBB59 (xa5 + xa13 + Xa21) showed very broad-spectrum resistance to majority of the Xoo isolates from the region. None of the tested Xoo isolates were virulent on IRBB58 (Xa4 + xa13 + Xa21), IRBB60 (Xa4 + xa5 + xa13 + Xa21), and IRBB66 (Xa4 + xa5 + Xa7 + xa13 + Xa21). Based on the virulence reaction, 71 Xoo isolates were grouped into 10 major pathotypes. Highly virulent pathotypes viz., IXoPt # 14, 17, 19, and 22 can break the resistance of major BB-resistant genes and were commonly distributed throughout the surveyed regions. Genotypic data of 71 Xoo isolates using J3 primer divided them into three major clusters. Cluster I consisted of 24 Xoo isolates that belonged to pathotype IXoPt-19. Cluster II consisted of 41 Xoo isolates belonging to seven different pathotypes, and Cluster III was composed of six isolates from three different pathotypes. The findings of this study will be helpful to develop rice varieties with pathotype-specific broad-spectrum resistance against BB.


Assuntos
Oryza , Xanthomonas , Genótipo , Doenças das Plantas , Xanthomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA