Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38771245

RESUMO

Arterial spin-labeled perfusion and blood oxygenation level-dependent functional MRI are indispensable tools for noninvasive human brain imaging in clinical and cognitive neuroscience, yet concerns persist regarding the reliability and reproducibility of functional MRI findings. The circadian rhythm is known to play a significant role in physiological and psychological responses, leading to variability in brain function at different times of the day. Despite this, test-retest reliability of brain function across different times of the day remains poorly understood. This study examined the test-retest reliability of six repeated cerebral blood flow measurements using arterial spin-labeled perfusion imaging both at resting-state and during the psychomotor vigilance test, as well as task-induced cerebral blood flow changes in a cohort of 38 healthy participants over a full day. The results demonstrated excellent test-retest reliability for absolute cerebral blood flow measurements at rest and during the psychomotor vigilance test throughout the day. However, task-induced cerebral blood flow changes exhibited poor reliability across various brain regions and networks. Furthermore, reliability declined over longer time intervals within the day, particularly during nighttime scans compared to daytime scans. These findings highlight the superior reliability of absolute cerebral blood flow compared to task-induced cerebral blood flow changes and emphasize the importance of controlling time-of-day effects to enhance the reliability and reproducibility of future brain imaging studies.


Assuntos
Encéfalo , Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Descanso , Humanos , Masculino , Feminino , Adulto , Circulação Cerebrovascular/fisiologia , Reprodutibilidade dos Testes , Descanso/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/irrigação sanguínea , Adulto Jovem , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão/métodos , Desempenho Psicomotor/fisiologia , Ritmo Circadiano/fisiologia , Nível de Alerta/fisiologia
2.
Magn Reson Med ; 92(2): 631-644, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38469930

RESUMO

PURPOSE: Perfusion MRI reveals important tumor physiological and pathophysiologic information, making it a critical component in managing brain tumor patients. This study aimed to develop a dual-echo 3D spiral technique with a single-bolus scheme to simultaneously acquire both dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) data and overcome the limitations of current EPI-based techniques. METHODS: A 3D spiral-based technique with dual-echo acquisition was implemented and optimized on a 3T MRI scanner with a spiral staircase trajectory and through-plane SENSE acceleration for improved speed and image quality, in-plane variable-density undersampling combined with a sliding-window acquisition and reconstruction approach for increased speed, and an advanced iterative deblurring algorithm. Four volunteers were scanned and compared with the standard of care (SOC) single-echo EPI and a dual-echo EPI technique. Two patients were scanned with the spiral technique during a preload bolus and compared with the SOC single-echo EPI collected during the second bolus injection. RESULTS: Volunteer data demonstrated that the spiral technique achieved high image quality, reduced geometric artifacts, and high temporal SNR compared with both single-echo and dual-echo EPI. Patient perfusion data showed that the spiral acquisition achieved accurate DSC quantification comparable to SOC single-echo dual-dose EPI, with the additional DCE information. CONCLUSION: A 3D dual-echo spiral technique was developed to simultaneously acquire both DSC and DCE data in a single-bolus injection with reduced contrast use. Preliminary volunteer and patient data demonstrated increased temporal SNR, reduced geometric artifacts, and accurate perfusion quantification, suggesting a competitive alternative to SOC-EPI techniques for brain perfusion MRI.


Assuntos
Algoritmos , Neoplasias Encefálicas , Encéfalo , Meios de Contraste , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Artefatos , Masculino , Feminino , Adulto , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos
3.
NMR Biomed ; 37(9): e5166, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38654579

RESUMO

Arterial spin labeling (ASL) and dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) have shown potential for differentiating tumor progression from pseudoprogression. For pseudocontinuous ASL with a single postlabeling delay, the presence of delayed arterial transit times (ATTs) could affect the evaluation of ASL-MRI perfusion data. In this study, the influence of ATT artifacts on the perfusion assessment and differentiation between tumor progression and pseudoprogression were studied. This study comprised 66 adult patients (mean age 60 ± 13 years; 40 males) with a histologically confirmed glioblastoma who received postoperative radio (chemo)therapy. ASL-MRI and DSC-MRI scans were acquired at 3 months postradiotherapy as part of the standard clinical routine. These scans were visually scored regarding (i) the severity of ATT artifacts (%) on the ASL-MRI scans only, scored by two neuroradiologists; (ii) perfusion of the enhancing tumor lesion; and (iii) radiological evaluation of tumor progression versus pseudoprogression by one neuroradiologist. The final outcome was based on combined clinical and radiological follow-up until 9 months postradiotherapy. ATT artifacts were identified in all patients based on the mean scores of two raters. A significant difference between the radiological evaluation of ASL-MRI and DSC-MRI was observed only for ASL images with moderate ATT severity (30%-65%). The perfusion assessment showed ASL-MRI tending more towards hyperperfusion than DSC-MRI in the case of moderate ATT artifacts. In addition, there was a significant difference between the prediction of tumor progression with ASL-MRI and the final outcome in the case of severe ATT artifacts (McNemar test, p = 0.041). Despite using ASL imaging parameters close to the recommended settings, ATT artifacts frequently occur in patients with treated brain tumors. Those artifacts could hinder the radiological evaluation of ASL-MRI data and the detection of true disease progression, potentially affecting treatment decisions for patients with glioblastoma.


Assuntos
Neoplasias Encefálicas , Progressão da Doença , Glioblastoma , Marcadores de Spin , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Pessoa de Meia-Idade , Masculino , Feminino , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética , Idoso , Artefatos , Adulto , Fatores de Tempo , Diagnóstico Diferencial , Angiografia por Ressonância Magnética , Artérias/diagnóstico por imagem , Artérias/patologia
4.
J Magn Reson Imaging ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39238277

RESUMO

BACKGROUND: The specific patterns of subependymal enhancement (SE) that frequently occur as radiation-induced changes in high-grade gliomas following radiotherapy are often overlooked. Perfusion MRI may offer a diagnostic clue. PURPOSE: To distinguish between radiation-induced SE and progression in adult high-grade diffuse gliomas after standard treatment. STUDY TYPE: Retrospective. POPULATION: Ninety-four consecutive high-grade diffuse glioma patients (mean age, 55 ± 14 years; 54 [57.4%] males) with new SE identified in follow-up MRI after completion of surgery plus chemoradiation: progression (N = 74) vs. regression (N = 20). FIELD STRENGTH/SEQUENCE: 3 T, gradient-echo dynamic susceptibility contrast-enhanced MRI, 3D gradient-echo contrast-enhanced T1-weighted imaging. ASSESSMENT: To differentiate between radiation changes and progression in SE evaluation, multivariable logistic regression was performed using significant variables among SE appearance interval, IDH mutation, morphological features, and rCBV. Cox regression was performed to predict the tumor progression. For the added value of the rCBV, a log-rank test was conducted between the multivariable logistic regression models with and without the rCBV. STATISTICAL TESTS: Logistic regression, Cox regression, receiver operating characteristic analysis, log-rank test. RESULTS: 38.3% (36/94) patients had first specific SE (9.2 ± 9.5 months after surgery), which disappeared in 21.3% (20/94) after 5.8 ± 5.8 months after initial appearance on post-radiation MRI. IDH mutation, elongated, small lesions with lower rCBV tended to regress: IDH mutation, elongation, diameter, and rCBV_p95; odds ratio, 0.32, 1.92, 1.70, and 2.47, respectively. Qualitative evaluation of shape revealed that thin and curvilinear-shaped SE tended to regress, indicating a significant correlation with quantitative shape features (r = 0.31). In Cox regression, rCBV and lesion shape were significant (hazard ratio = 1.09 and 0.54, respectively). For sub-centimeter lesions, the rCBV showed added value in predicting outcomes (area under the curve, 0.873 vs. 0.836; log-rank test). DATA CONCLUSION: Smaller, elongated lesions with lower rCBV and IDH mutation are associated with regression when differentiating radiation changes from progression in high-grade glioma with post-radiotherapy SE. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.

5.
J Cardiovasc Magn Reson ; : 101082, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142567

RESUMO

BACKGROUND: Fully automatic analysis of myocardial perfusion MRI datasets enables rapid and objective reporting of stress/rest studies in patients with suspected ischemic heart disease. Developing deep learning techniques that can analyze multi-center datasets despite limited training data and variations in software (pulse sequence) and hardware (scanner vendor) is an ongoing challenge. METHODS: Datasets from 3 medical centers acquired at 3T (n = 150 subjects; 21,150 first-pass images) were included: an internal dataset (inD; n = 95) and two external datasets (exDs; n = 55) used for evaluating the robustness of the trained deep neural network (DNN) models against differences in pulse sequence (exD-1) and scanner vendor (exD-2). A subset of inD (n = 85) was used for training/validation of a pool of DNNs for segmentation, all using the same spatiotemporal U-Net architecture and hyperparameters but with different parameter initializations. We employed a space-time sliding-patch analysis approach that automatically yields a pixel-wise "uncertainty map" as a byproduct of the segmentation process. In our approach, dubbed Data Adaptive Uncertainty-Guided Space-time (DAUGS) analysis, a given test case is segmented by all members of the DNN pool and the resulting uncertainty maps are leveraged to automatically select the "best" one among the pool of solutions. For comparison, we also trained a DNN using the established approach with the same settings (hyperparameters, data augmentation, etc.). RESULTS: The proposed DAUGS analysis approach performed similarly to the established approach on the internal dataset (Dice score for the testing subset of inD: 0.896 ± 0.050 vs. 0.890 ± 0.049; p = n.s.) whereas it significantly outperformed on the external datasets (Dice for exD-1: 0.885 ± 0.040 vs. 0.849 ± 0.065, p < 0.005; Dice for exD-2: 0.811 ± 0.070 vs. 0.728 ± 0.149, p < 0.005). Moreover, the number of image series with "failed" segmentation (defined as having myocardial contours that include bloodpool or are noncontiguous in ≥1 segment) was significantly lower for the proposed vs. the established approach (4.3% vs. 17.1%, p < 0.0005). CONCLUSIONS: The proposed DAUGS analysis approach has the potential to improve the robustness of deep learning methods for segmentation of multi-center stress perfusion datasets with variations in the choice of pulse sequence, site location or scanner vendor.

6.
Neuroradiology ; 66(4): 557-566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38273103

RESUMO

PURPOSE: To determine the relationship between intravoxel incoherent motion (IVIM) MRI parameters and clinical changes post-tap test (TT) in idiopathic normal-pressure hydrocephalus (iNPH) patients. METHODS: Forty-four probable iNPH patients underwent 3 T MRI before and after TT. IVIM parameters were calculated from eight different bilateral regions of interest in basal ganglia, centrum semiovale, and corona radiata. Patients were categorized based on TT response into positive (group 1) and negative (group 2) groups. A Welch two-sample t-test was used to compare differences in D, D*, f, and ADC between the two groups, while a paired t-test was employed to assess the changes within each group before and after TT. These parameters were then correlated with clinical results. RESULTS: In the lenticular and thalamic nuclei, D value was significantly lower in the group 1 compared to group 2 both pre- and post-TT (p = 0.002 and p = 0.007 respectively). Post-TT, the positive response group exhibited a notably reduced D* value (p = 0.012) and significantly higher f values (p = 0.028). In the corona radiata and centrum semiovale, a significant post-TT reduction in D* was observed in the positive response group (p = 0.017). Within groups, the positive response cohort showed a significant post-TT increase in ADC (p < 0.001) and a decrease in D* (p = 0.007). CONCLUSION: IVIM permits the acquisition of important non-invasive information about tissue and vascularization in iNPH patients. Enhanced perfusion in the lenticular and thalamic nuclei may suggest the role of re-established microvascular and glymphatic pathways, potentially elucidating the functional improvement in motor function after TT in iNPH patients.


Assuntos
Hidrocefalia , Substância Branca , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Perfusão , Movimento (Física)
7.
Neuroradiology ; 66(3): 317-323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183424

RESUMO

PURPOSE: After standard treatment for glioblastoma, perfusion MRI remains challenging for differentiating tumor progression from post-treatment changes. Our objectives were (1) to correlate rCBV values at diagnosis and at first tumor progression and (2) to analyze the relationship of rCBV values at tumor recurrence with enhancing volume, localization of tumor progression, and time elapsed since the end of radiotherapy in tumor recurrence. METHODS: Inclusion criteria were (1) age > 18 years, (2) histologically confirmed glioblastoma treated with STUPP regimen, and (3) tumor progression according to RANO criteria > 12 weeks after radiotherapy. Co-registration of segmented enhancing tumor VOIs with dynamic susceptibility contrast perfusion MRI was performed using Olea Sphere software. For tumor recurrence, we correlated rCBV values with enhancing tumor volume, with recurrence localization, and with time elapsed from the end of radiotherapy to progression. Analyses were performed with SPSS software. RESULTS: Sixty-four patients with glioblastoma were included in the study. Changes in rCBV values between diagnosis and first tumor progression were significant (p < 0.001), with a mean and median decreases of 32% and 46%, respectively. Mean rCBV values were also different (p < 0.01) when tumors progressed distally (radiation field rCBV values of 1.679 versus 3.409 distally). However, changes and, therefore, low rCBV values after radiotherapy in tumor recurrence were independent of time. CONCLUSION: Chemoradiation alters tumor perfusion and rCBV values may be decreased in the setting of tumor progression. Changes in rCBV values with respect to diagnosis, with low rCBV in tumor progression, are independent of time but related to the site of recurrence.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Adulto , Pessoa de Meia-Idade , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Recidiva Local de Neoplasia/diagnóstico por imagem , Meios de Contraste , Quimiorradioterapia , Imageamento por Ressonância Magnética/métodos
8.
BMC Med Imaging ; 24(1): 70, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519901

RESUMO

OBJECTIVE: Perfusion MRI is of great benefit in the post-treatment evaluation of brain tumors. Interestingly, dynamic susceptibility contrast-enhanced (DSC) perfusion has taken its place in routine examination for this purpose. The use of arterial spin labeling (ASL), a perfusion technique that does not require exogenous contrast material injection, has gained popularity in recent years. The aim of the study was to compare two different perfusion techniques, ASL and DSC, using qualitative and quantitative measurements and to investigate the diagnostic effectiveness of both. The fact that the number of patients is higher than in studies conducted with 3D pseudo-continious ASL (pCASL), the study group is heterogeneous as it consists of patients with both metastases and glial tumors, the use of 3D Turbo Gradient Spin Echo (TGSE), and the inclusion of visual (qualitative) assessment make our study unique. METHODS: Ninety patients, who were treated for malignant brain tumor, were enrolled in the retrospective study. DSC Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF) and ASL CBF maps of each case were obtained. In qualitative analysis, the lesions of the cases were visually classified as treatment-related changes (TRC) and relapse/residual mass (RRT). In the quantitative analysis, three regions of interest (ROI) measurements were taken from each case. The average of these measurements was compared with the ROI taken from the contralateral white matter and normalized values (n) were obtained. These normalized values were compared across events. RESULTS: Uncorrected DSC normalized CBV (nCBV), DSC normalized CBF (nCBF) and ASL nCBF values of RRT cases were higher than those of TRC cases (p < 0.001). DSC nCBV values were correlated with DSC nCBF (r: 0.94, p < 0.001) and correlated with ASL nCBF (r: 0.75, p < 0.001). Similarly, ASL nCBF was positively correlated with DSC nCBF (r: 0.79 p < 0.01). When the ROC curve parameters were evaluated, the cut-off values were determined as 1.211 for DSC nCBV (AUC: 0.95, 93% sensitivity, 82% specificity), 0.896 for DSC nCBF (AUC; 0.95, 93% sensitivity, 82% specificity), and 0.829 for ASL nCBF (AUC: 0.84, 78% sensitivity, 75% specificity). For qualitative evaluation (visual evaluation), inter-observer agreement was found to be good for ASL CBF (0.714), good for DSC CBF (0.790), and excellent for DSC CBV (0.822). Intra-observer agreement was also evaluated. For the first observer, good agreement was found in ASL CBF (0.626, 70% sensitive, 93% specific), in DSC CBF (0.713, 76% sensitive, 95% specific), and in DSC CBV (0.755, 87% sensitive - 88% specific). In the second observer, moderate agreement was found in ASL CBF (0.584, 61% sensitive, 97% specific) and DSC CBF (0.649, 65% sensitive, 100% specific), and excellent agreement in DSC CBV (0.800, 89% sensitive, 90% specific). CONCLUSION: It was observed that uncorrected DSC nCBV, DSC nCBF and ASL nCBF values were well correlated with each other. In qualitative evaluation, inter-observer and intra-observer agreement was higher in DSC CBV than DSC CBF and ASL CBF. In addition, DSC CBV is found more sensitive, ASL CBF and DSC CBF are found more specific for both observers. From a diagnostic perspective, all three parameters DSC CBV, DSC CBF and ASL CBF can be used, but it was observed that the highest rate belonged to DSC CBV.


Assuntos
Neoplasias Encefálicas , Meios de Contraste , Humanos , Marcadores de Spin , Estudos Retrospectivos , Recidiva Local de Neoplasia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Perfusão
9.
Alzheimers Dement ; 20(1): 459-471, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37679610

RESUMO

INTRODUCTION: Capillary dysfunction, characterized by disturbances in capillary blood flow distribution, might be an overlooked factor in the development of Alzheimer's disease (AD). This study investigated microvascular blood flow in preclinical and prodromal AD individuals. METHODS: Using dynamic susceptibility contrast magnetic resonance imaging and positron emission tomography, we examined alterations in microvascular circulation and levels of Aß deposition in two independent cohorts of APOE ε4 carriers. RESULTS: Capillary dysfunction was elevated in both prodromal and preclinical AD individuals compared to age-matched controls. Additionally, the prodromal group exhibited higher levels of capillary dysfunction compared to the preclinical group. DISCUSSION: These findings suggest that capillary dysfunction can be detected at the preclinical stage of AD and indicates a worsening of capillary dysfunction throughout the AD continuum. Understanding the interaction between capillary dysfunction and Aß could provide insights into the relationship between cardiovascular risk factors and the development of AD. HIGHLIGHTS: Alzheimer's disease (AD) is associated with disturbances in microvascular circulation. Capillary dysfunction can be detected in preclinical AD. As cognitive symptoms progress in prodromal AD, capillary dysfunction worsens. Capillary dysfunction may impede the clearance of beta-amyloid (Aß). Capillary dysfunction might contribute to the development of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Tomografia por Emissão de Pósitrons/métodos
10.
Neuroimage ; 275: 120167, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187365

RESUMO

Altered blood flow in the human brain is characteristic of typical aging. However, numerous factors contribute to inter-individual variation in patterns of blood flow throughout the lifespan. To better understand the mechanisms behind such variation, we studied how sex and APOE genotype, a primary genetic risk factor for Alzheimer's disease (AD), influence associations between age and brain perfusion measures. We conducted a cross-sectional study of 562 participants from the Human Connectome Project - Aging (36 to >90 years of age). We found widespread associations between age and vascular parameters, where increasing age was associated with regional decreases in cerebral blood flow (CBF) and increases in arterial transit time (ATT). When grouped by sex and APOE genotype, interactions between group and age demonstrated that females had relatively greater CBF and lower ATT compared to males. Females carrying the APOEε4 allele showed the strongest association between CBF decline and ATT incline with age. This demonstrates that sex and genetic risk for AD modulate age-associated patterns of cerebral perfusion measures.


Assuntos
Envelhecimento , Circulação Cerebrovascular , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Envelhecimento/genética , Apolipoproteínas E/genética , Encéfalo/fisiologia , Circulação Cerebrovascular/genética , Estudos Transversais , Genótipo , Imageamento por Ressonância Magnética , Marcadores de Spin
11.
NMR Biomed ; 36(5): e4884, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36453877

RESUMO

The peritumoral vasogenic edema (PVE) in brain tumors exhibits varied characteristics. Brain metastasis (BM) and meningioma barely have tumor cells in PVE, while glioblastoma (GB) show tumor cell infiltration in most subjects. The purpose of this study was to investigate the PVE of these three pathologies using radiomics features in FLAIR images, with the hypothesis that the tumor cells might influence textural variation. Ex vivo experimentation of radiomics analysis of T1-weighted images of the culture medium with and without suspended tumor cells was also attempted to infer the possible influence of increasing tumor cells on radiomics features. This retrospective study involved magnetic resonance (MR) images acquired using a 3.0-T MR machine from 83 patients with 48 GB, 21 BM, and 14 meningioma. The 93 radiomics features were extracted from each subject's PVE mask from three pathologies using T1-dynamic contrast-enhanced MR imaging. Statistically significant (< 0.05, independent samples T-test) features were considered. Features maps were also computed for qualitative investigation. The same was carried out for T1-weighted cell line images but group comparison was carried out using one-way analysis of variance. Further, a random forest (RF)-based machine learning model was designed to classify the PVE of GB and BM. Texture-based variations, especially higher nonuniformity values, were observed in the PVE of GB. No significance was observed between BM and meningioma PVE. In cell line images, the culture medium had higher nonuniformity and was considerably reduced with increasing cell densities in four features. The RF model implemented with highly significant features provided improved area under the curve results. The possible infiltrative tumor cells in the PVE of the GB are likely influencing the texture values and are higher in comparison with BM PVE and may be of value in the differentiation of solitary metastasis from GB. However, the robustness of the features needs to be investigated with a larger cohort and across different scanners in the future.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Meníngeas , Meningioma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Perfusão , Edema
12.
J Magn Reson Imaging ; 57(4): 1229-1240, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35993510

RESUMO

BACKGROUND: Dynamic contrast-enhanced MRI (DCE-MRI) has seen increasing use for quantification of low level of blood-brain barrier (BBB) leakage in various pathological disease states and correlations with clinical outcomes. However, currently there exists limited studies on reproducibility in healthy controls, which is important for the establishment of a normality threshold for future research. PURPOSE: To investigate the reproducibility of DCE-MRI and to evaluate the effect of arterial input function (AIF) selection and manual region of interests (ROI) delineation vs. automated global segmentation. STUDY TYPE: Prospective. POPULATION: A total of 16 healthy controls; 11 females; mean age 28.7 years (SD 10.1). FIELD STRENGTH/SEQUENCE: A 3T; GE DCE; 3D TFE T1WI. 2D TSE T2. ASSESSMENT: The influx constant Ki , a measure of BBB permeability, and Vp , the blood plasma volume, was calculated using the Patlak model. Cerebral blood flow (CBF) was calculated using Tikhonov model free deconvolution. Manual tissue ROIs, drawn by H.J.S. (30+ years of experience), were compared to automatic tissue segmentation. STATISTICAL TESTS: Intraclass correlation coefficient (ICC) and repeatability coefficient (RC) was used to assess reproducibility. Bland-Altman plots were used to evaluate agreement between measurements day 1 vs. day 2, and manual vs. segmentation method. RESULTS: Ki showed excellent reproducibility in both white and gray matter with an ICC between 0.79 and 0.82 and excellent agreement between manual ROI and automatic segmentation, with an ICC of 0.89 for Ki in WM. Furthermore, Ki values in gray and white matter conforms with histological tissue characteristics, where gray matter generally has a 2-fold higher vessel density. The highest reproducibility measures of Ki (ICC = 0.83), CBF (ICC = 0.77) and Vd (ICC = 0.83) was obtained with the AIF sampled in the internal carotid artery (ICA). DATA CONCLUSION: DCE-MRI shows excellent reproducibility of pharmacokinetic variables derived from healthy controls. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Encéfalo , Meios de Contraste , Feminino , Humanos , Adulto , Reprodutibilidade dos Testes , Estudos Prospectivos , Meios de Contraste/farmacocinética , Imageamento por Ressonância Magnética/métodos , Perfusão
13.
J Magn Reson Imaging ; 57(2): 456-469, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35726646

RESUMO

BACKGROUND: A typical stroke MRI protocol includes perfusion-weighted imaging (PWI) and MR angiography (MRA), requiring a second dose of contrast agent. A deep learning method to acquire both PWI and MRA with single dose can resolve this issue. PURPOSE: To acquire both PWI and MRA simultaneously using deep learning approaches. STUDY TYPE: Retrospective. SUBJECTS: A total of 60 patients (30-73 years old, 31 females) with ischemic symptoms due to occlusion or ≥50% stenosis (measured relative to proximal artery diameter) of the internal carotid artery, middle cerebral artery, or anterior cerebral artery. The 51/1/8 patient data were used as training/validation/test. FIELD STRENGTH/SEQUENCE: A 3 T, time-resolved angiography with stochastic trajectory (contrast-enhanced MRA) and echo planar imaging (dynamic susceptibility contrast MRI, DSC-MRI). ASSESSMENT: We investigated eight different U-Net architectures with different encoder/decoder sizes and with/without an adversarial network to generate perfusion maps from contrast-enhanced MRA. Relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), mean transit time (MTT), and time-to-max (Tmax ) were mapped from DSC-MRI and used as ground truth to train the networks and to generate the perfusion maps from the contrast-enhanced MRA input. STATISTICAL TESTS: Normalized root mean square error, structural similarity (SSIM), peak signal-to-noise ratio (pSNR), DICE, and FID scores were calculated between the perfusion maps from DSC-MRI and contrast-enhanced MRA. One-tailed t-test was performed to check the significance of the improvements between networks. P values < 0.05 were considered significant. RESULTS: The four perfusion maps were successfully extracted using the deep learning networks. U-net with multiple decoders and enhanced encoders showed the best performance (pSNR 24.7 ± 3.2 and SSIM 0.89 ± 0.08 for rCBV). DICE score in hypo-perfused area showed strong agreement between the generated perfusion maps and the ground truth (highest DICE: 0.95 ± 0.04). DATA CONCLUSION: With the proposed approach, dynamic angiography MRI may provide vessel architecture and perfusion-relevant parameters simultaneously from a single scan. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 5.


Assuntos
Aprendizado Profundo , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Angiografia , Perfusão , Angiografia por Ressonância Magnética/métodos , Circulação Cerebrovascular/fisiologia , Meios de Contraste
14.
J Neurooncol ; 163(2): 417-427, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37294422

RESUMO

PURPOSE: There is limited knowledge about the associations between sodium and proton MRI measurements in brain tumors. The purpose of this study was to quantify intra- and intertumoral correlations between sodium, diffusion, and perfusion MRI in human gliomas. METHODS: Twenty glioma patients were prospectively studied on a 3T MRI system with multinuclear capabilities. Three mutually exclusive tumor volumes of interest (VOIs) were segmented: contrast-enhancing tumor (CET), T2/FLAIR hyperintense non-enhancing tumor (NET), and necrosis. Median and voxel-wise associations between apparent diffusion coefficient (ADC), normalized relative cerebral blood volume (nrCBV), and normalized sodium measurements were quantified for each VOI. RESULTS: Both relative sodium concentration and ADC were significantly higher in areas of necrosis compared to NET (P = 0.003 and P = 0.008, respectively) and CET (P = 0.02 and P = 0.02). Sodium concentration was higher in CET compared to NET (P = 0.04). Sodium and ADC were higher in treated compared to treatment-naïve gliomas within NET (P = 0.006 and P = 0.01, respectively), and ADC was elevated in CET (P = 0.03). Median ADC and sodium concentration were positively correlated across patients in NET (r = 0.77, P < 0.0001) and CET (r = 0.84, P < 0.0001), but not in areas of necrosis (r = 0.45, P = 0.12). Median nrCBV and sodium concentration were negatively correlated across patients in areas of NET (r=-0.63, P = 0.003). Similar associations were observed when examining voxel-wise correlations within VOIs. CONCLUSION: Sodium MRI is positively correlated with proton diffusion MRI measurements in gliomas, likely reflecting extracellular water. Unique areas of multinuclear MRI contrast may be useful in future studies to understand the chemistry of the tumor microenvironment.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Prótons , Imageamento por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética , Perfusão , Necrose , Microambiente Tumoral
15.
Neuroradiology ; 65(3): 559-568, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36301349

RESUMO

PURPOSE: There remains no consensus normal-appearing white matter (NAWM) normalization method to compute normalized relative cerebral blood volume (nrCBV) and apparent diffusion coefficient (nADC) in brain tumors. This reader study explored nrCBV and nADC differences using different NAWM normalization methods. METHODS: Thirty-five newly diagnosed glioma patients were studied. For each patient, two readers created four NAWM regions of interests: (1) a single plane in the centrum semiovale (CSOp), (2) 3 spheres in the centrum semiovale (CSOs), (3) a single plane in the slice of the tumor center (TUMp), and (4) 3 spheres in the slice of the tumor center (TUMs). Readers repeated NAWM segmentations 1 month later. Differences in nrCBV and nADC of the FLAIR hyperintense tumor, inter-/intra-reader variability, and time to segment NAWM were assessed. As a validation step, the diagnostic performance of each method for IDH-status prediction was evaluated. RESULTS: Both readers obtained significantly different nrCBV (P < .001), nADC (P < .001), and time to segment NAWM (P < .001) between the four normalization methods. nrCBV and nADC were significantly different between CSO and TUM methods, but not between planar and spherical methods in the same NAWM region. Broadly, CSO methods were quicker than TUM methods, and spherical methods were quicker than planar methods. For all normalization techniques, inter-reader reproducibility and intra-reader repeatability were excellent (intraclass correlation coefficient > 0.9), and the IDH-status predictive performance remained similar. CONCLUSION: The selected NAWM region significantly impacts nrCBV and nADC values. CSO methods, particularly CSOs, may be preferred because of time reduction, similar reader variability, and similar diagnostic performance compared to TUM methods.


Assuntos
Neoplasias Encefálicas , Substância Branca , Humanos , Substância Branca/patologia , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Encefálicas/patologia , Perfusão , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
16.
J Integr Neurosci ; 22(3): 73, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37258452

RESUMO

Lesions of the central nervous system (CNS) can present with numerous and overlapping radiographical and clinical features that make diagnosis difficult based exclusively on history, physical examination, and traditional imaging modalities. Given that there are significant differences in optimal treatment protocols for these various CNS lesions, rapid and non-invasive diagnosis could lead to improved patient care. Recently, various advanced magnetic resonance imaging (MRI) techniques showed promising methods to differentiate between various tumors and lesions that conventional MRI cannot define by comparing their physiologic characteristics, such as vascularity, permeability, oxygenation, and metabolism. These advanced MRI techniques include dynamic susceptibility contrast MRI (DSC), diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) MRI, Golden-Angle Radial Sparse Parallel imaging (GRASP), Blood oxygen level-dependent functional MRI (BOLD fMRI), and arterial spin labeling (ASL) MRI. In this article, a narrative review is used to discuss the current trends in advanced MRI techniques and potential future applications in identifying difficult-to-distinguish CNS lesions. Advanced MRI techniques were found to be promising non-invasive modalities to differentiate between paraganglioma, schwannoma, and meningioma. They are also considered promising methods to differentiate gliomas from lymphoma, post-radiation changes, pseudoprogression, demyelination, and metastasis. Advanced MRI techniques allow clinicians to take advantage of intrinsic biological differences in CNS lesions to better identify the etiology of these lesions, potentially leading to more effective patient care and a decrease in unnecessary invasive procedures. More clinical studies with larger sample sizes should be encouraged to assess the significance of each advanced MRI technique and the specificity and sensitivity of each radiologic parameter.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Neoplasias Meníngeas , Humanos , Neoplasias Encefálicas/metabolismo , Imageamento por Ressonância Magnética/métodos , Glioma/metabolismo
17.
Magn Reson Med ; 88(3): 1140-1155, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35608225

RESUMO

PURPOSE: The synergistic use of k-t undersampling and multiband (MB) imaging has the potential to provide extended slice coverage and high spatial resolution for first-pass perfusion MRI. The low-rank plus sparse (L + S) model has shown excellent performance for accelerating single-band (SB) perfusion MRI. METHODS: A MB data consistency method employing ESPIRiT maps and through-plane coil information was developed. This data consistency method was combined with the temporal L + S constraint to form the slice-L + S method. Slice-L + S was compared to SB L + S and the sequential operations of split slice-GRAPPA and SB L + S (seq-SG-L + S) using synthetic data formed from multislice SB images. Prospectively k-t undersampled MB data were also acquired and reconstructed using seq-SG-L + S and slice-L + S. RESULTS: Using synthetic data with total acceleration rates of 6-12, slice-L + S outperformed SB L + S and seq-SG-L + S (N = 7 subjects) with respect to normalized RMSE and the structural similarity index (P < 0.05 for both). For the specific case with MB factor = 3 and rate 3 undersampling, or for SB imaging with rate 9 undersampling (N = 7 subjects), the normalized RMSE values were 0.037 ± 0.007, 0.042 ± 0.005, and 0.031 ± 0.004; and the structural similarity index values were 0.88 ± 0.03, 0.85 ± 0.03, and 0.89 ± 0.02 for SB L + S, seq-SG-L + S, and slice-L + S, respectively (P < 0.05 for both). For prospectively undersampled MB data, slice-L + S provided better image quality than seq-SG-L + S for rate 6 (N = 7) and rate 9 acceleration (N = 7) as scored by blinded experts. CONCLUSION: Slice-L + S outperformed SB-L + S and seq-SG-L + S and provides 9 slice coverage of the left ventricle with a spatial resolution of 1.5 mm × 1.5 mm with good image quality.


Assuntos
Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Perfusão
18.
J Magn Reson Imaging ; 55(6): 1710-1722, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34741576

RESUMO

BACKGROUND: Arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning (DL) often faces insufficient training data from patients. One solution is to train DL models using healthy subjects' data which are more widely available and transfer them to patients' data. PURPOSE: To evaluate the transferability of a DL-based ASL MRI denoising method (DLASL). STUDY TYPE: Retrospective. SUBJECTS: Four hundred and twenty-eight subjects (189 females) from three cohorts. FIELD STRENGTH/SEQUENCE: 3 T two-dimensional (2D) echo-planar imaging (EPI)-based pseudo-continuous ASL (PCASL) and 2D EPI-based pulsed ASL (PASL) sequences. ASSESSMENT: DLASL was trained using young healthy adults' PCASL data (Dataset 1: 250/30 subjects as training/validation set) and was directly transferred (DTF) to PCASL data from Dataset 2 (45 subjects test set) of normal controls (NC) and Alzheimer's disease (AD) groups. DLASL was fine-tuned (DLASLFT) and tested on PASL data from Dataset 3 (103 subjects test set) of NC and AD. An existing non-DL method (NonDL) was used for comparison. Cerebral blood flow (CBF) images from ASL MRI were compared between NC and AD to assess characteristic hypoperfusion (lower CBF) patterns in AD. CBF image quality and CBF map sensitivity for detecting hypoperfusion using peak t-value and suprathreshold cluster size are outcome measures. STATISTICAL TESTS: Paired t-test, two-sample t-test, one-way analysis of variance, and Tukey honestly significant difference, and linear mixed-effects models were used. P < 0.05 was considered statistically significant. RESULTS: Mean contrast-to-noise ratio (CNR) of Dataset 2 showed that DTF outperformed NonDL (AD: 3.38 vs. 2.64, NC: 3.80 vs. 3.36). On Dataset 3, DLASLFT outperformed NonDL measured by mean CNR (AD: 2.45 vs. 1.87, NC: 2.54 vs. 2.17) and mean radiologic score (2.86 vs. 2.44). Image quality improvement was significant on both test sets. DTF and DLASLFT improved sensitivity for detecting AD-related hypoperfusion patterns compared with NonDL. DATA CONCLUSION: We demonstrated the DLASL's transferability across different ASL sequences and different populations. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Adulto , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/patologia , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Perfusão , Estudos Retrospectivos , Marcadores de Spin
19.
Neuroradiology ; 64(9): 1737-1745, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35237848

RESUMO

PURPOSE: Multiple burr hole surgery is considered to be an option for achieving indirect revascularization in patients with ischemic Moyamoya disease (MMD). We aimed to investigate the efficacy of stand-alone multiple burr hole surgery for salvage revascularization in patients with MMD by assessing the hemodynamic changes via normalized time-to-peak (nTTP) analysis and independent component analysis (ICA) of preoperative and postoperative dynamic susceptibility contrast (DSC) perfusion MRI data. METHODS: The DSC perfusion MRI data of 25 hemispheres from 21 patients with MMD, who underwent multiple burr hole surgery for salvage revascularization due to persistent or recurrent symptoms after primary revascularization with modified encephaloduroarteriosynangiosis (mEDAS), were analyzed. The nTTP, which was measured using the region of interests covering the entire surgical hemisphere, was compared between the preoperative and postoperative images. ICA was used to compare the relative arterial and venous components of the surgical hemispheres between the respective preoperative and postoperative images. RESULTS: The median postoperative nTTP (1.80 s) was significantly shorter than the median preoperative nTTP (4.10 s) (P < 0.001). The postoperative relative arterial component of the surgical hemisphere (median: 0.04) was significantly higher than the preoperative relative arterial component (median: - 0.02, P < 0.001). In contrast, the postoperative relative venous component of the surgical hemisphere (median: - 0.05) was significantly lower than the preoperative value (median: 0.05, P < 0.001). CONCLUSION: The improvement in cerebral perfusion parameters observed on postoperative DSC perfusion MRI demonstrated that stand-alone multiple burr hole surgery could be a favorable salvage revascularization technique after mEDAS failure in patients with ischemic MMD.


Assuntos
Revascularização Cerebral , Doença de Moyamoya , Revascularização Cerebral/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/cirurgia , Perfusão
20.
MAGMA ; 35(1): 153-162, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34951690

RESUMO

OBJECTIVE: We tried to reveal how the normal appearing white matter (NAWM) was affected in patients with glioblastoma treated with chemo-radiotherapy (CRT) in the period following the treatment, by multiparametric MRI. MATERIALS AND METHODS: 43 multiparametric MRI examinations of 17 patients with glioblastoma treated with CRT were examined. A total of six different series or maps were analyzed in the examinations: Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) maps, Gradient Echo (GRE) sequence, Dynamic susceptibility contrast (DSC) and Arterial spin labeling (ASL) perfusion sequences. Each sequence in each examination was examined in detail with 14 Region of Interest (ROI) measurements. The obtained values were proportioned to the contralateral NAWM values and the results were recorded as normalized values. Time dependent changes of normalized values were statistically analyzed. RESULTS: The most prominent changes in follow-up imaging occurred in the perilesional region. In perilesional NAWM, we found a decrease in normalized FA (nFA), rCBV (nrCBV), rCBF (nrCBF), ASL (nASL)values (p < 0.005) in the first 3 months after treatment, followed by a plateau and an increase approaching pretreatment values, although it did not reach. Similar but milder findings were present in other NAWM areas. In perilesional NAWM, nrCBV values were found to be positively high correlated with nrCBF and nASL, and negatively high correlated with nADC values (r: 0.963, 0.736, - 0.973, respectively). We also found high correlations between the mean values of nrCBV, nrCBF, nASL in other NAWM areas (r: 0.891, 0.864, respectively). DISCUSSION: We showed that both DSC and ASL perfusion values decreased correlatively in the first 3 months and showed a plateau after 1 year in patients with glioblastoma treated with CRT, unlike the literature. Although it was not as evident as perfusion MRI, it was observed that the ADC values also showed a plateau pattern following the increase in the first 3 months. Further studies are needed to explain late pathophysiological changes. Because of the high correlation, our results support ASL perfusion instead of contrast enhanced perfusion methods.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Substância Branca , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Imagem de Difusão por Ressonância Magnética , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Humanos , Imageamento por Ressonância Magnética/métodos , Perfusão , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA