RESUMO
Phagocytosis is a critical immune function for infection control and tissue homeostasis. During phagocytosis, pathogens are internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors are required to disrupt the biogenesis of phagolysosomes. In contrast, we present here that physical forces from motile pathogens during cell entry divert them away from the canonical degradative pathway. This altered fate begins with the force-induced remodeling of the phagocytic synapse formation. We used the parasite Toxoplasma gondii as a model because live Toxoplasma actively invades host cells using gliding motility. To differentiate the effects of physical forces from virulence factors in phagocytosis, we employed magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophages. Experiments and computer simulations show that large propulsive forces hinder productive activation of receptors by preventing their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites are engulfed into vacuoles that fail to mature into degradative units, similar to the live motile parasite's intracellular pathway. Using yeast cells and opsonized beads, we confirmed that this mechanism is general, not specific to the parasite used. These results reveal new aspects of immune evasion by demonstrating how physical forces during active cell entry, independent of virulence factors, enable pathogens to circumvent phagolysosomal degradation.
Assuntos
Parasitos , Toxoplasma , Animais , Internalização do Vírus , Fagocitose , Macrófagos , Fatores de VirulênciaRESUMO
Functional heterogeneity in tissue macrophage populations has often been traced to developmental and spatial cues. Upon tissue damage, macrophages are exposed to soluble mediators secreted by activated cells, which shape their polarisation. Interestingly, macrophages are concomitantly exposed to a variety of different dying cells, which carry miscellaneous signals and that need to be recognised and promptly up-taken by professional phagocytes. This review discusses how differences in the nature of the dying cells, like their morphological and biochemical features as well as the specificity of phagocytic receptor usage on macrophages, might contribute to the transcriptional and functional heterogeneity observed in phagocytic cells in the tissue.
Assuntos
Apoptose/fisiologia , Fígado/fisiologia , Macrófagos/fisiologia , Heterogeneidade Genética , Humanos , Transdução de SinaisRESUMO
Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the 'resting' stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells.