Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.679
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 119(1): 84-99, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38578218

RESUMO

Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.


Assuntos
Fenilalanina , Folhas de Planta , Solanum lycopersicum , Compostos Orgânicos Voláteis , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Fenilalanina/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/parasitologia , Benzaldeídos/metabolismo , Benzaldeídos/farmacologia , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Acetaldeído/farmacologia , Mariposas/fisiologia , Mariposas/efeitos dos fármacos , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Manduca/fisiologia
2.
Methods ; 223: 95-105, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301751

RESUMO

DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described. The fluorescent human RPA described here will enable high-resolution structure-function analysis of RPA-ssDNA interactions.


Assuntos
DNA , Proteína de Replicação A , Humanos , Proteína de Replicação A/genética , DNA/genética , DNA de Cadeia Simples/genética , Aminoácidos , Bioensaio , Corantes
3.
Mol Plant Microbe Interact ; 37(4): 416-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38171485

RESUMO

Soybean cyst nematode (Heterodera glycines, soybean cyst nematode [SCN]) disease adversely affects the yield of soybean and leads to billions of dollars in losses every year. To control the disease, it is necessary to study the resistance genes of the plant and their mechanisms. Isoflavonoids are secondary metabolites of the phenylalanine pathway, and they are synthesized in soybean. They are essential in plant response to biotic and abiotic stresses. In this study, we reported that phenylalanine ammonia-lyase (PAL) genes GmPALs involved in isoflavonoid biosynthesis, can positively regulate soybean resistance to SCN. Our previous study demonstrated that the expression of GmPAL genes in the resistant cultivar Huipizhi (HPZ) heidou are strongly induced by SCN. PAL is the rate-limiting enzyme that catalyzes the first step of phenylpropanoid metabolism, and it responds to biotic or abiotic stresses. Here, we demonstrate that the resistance of soybeans against SCN is suppressed by PAL inhibitor l-α-(aminooxy)-ß-phenylpropionic acid (L-AOPP) treatment. Overexpression of eight GmPAL genes caused diapause of nematodes in transgenic roots. In a petiole-feeding bioassay, we identified that two isoflavones, daidzein and genistein, could enhance resistance against SCN and suppress nematode development. This study thus reveals GmPAL-mediated resistance against SCN, information that has good application potential. The role of isoflavones in soybean resistance provides new information for the control of SCN. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glycine max , Isoflavonas , Fenilalanina Amônia-Liase , Doenças das Plantas , Tylenchoidea , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Animais , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Resistência à Doença/genética , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
4.
Cancer Sci ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860412

RESUMO

Metastatic spinal tumors are increasingly prevalent due to advancements in cancer treatment, leading to prolonged survival rates. This rising prevalence highlights the need for developing more effective therapeutic approaches to address this malignancy. Boron neutron capture therapy (BNCT) offers a promising solution by delivering targeted doses to tumors while minimizing damage to normal tissue. In this study, we evaluated the efficacy and safety of BNCT as a potential therapeutic option for spine metastases in mouse models induced by A549 human lung adenocarcinoma cells. The animal models were randomly allocated into three groups: untreated (n = 10), neutron irradiation only (n = 9), and BNCT (n = 10). Each mouse was administered 4-borono-L-phenylalanine (250 mg/kg) intravenously, followed by measurement of boron concentrations 2.5 h later. Overall survival, neurological function of the hindlimb, and any adverse events were assessed post irradiation. The tumor-to-normal spinal cord and blood boron concentration ratios were 3.6 and 2.9, respectively, with no significant difference observed between the normal and compressed spinal cord tissues. The BNCT group exhibited significantly prolonged survival rates compared with the other groups (vs. untreated, p = 0.0015; vs. neutron-only, p = 0.0104, log-rank test). Furthermore, the BNCT group demonstrated preserved neurological function relative to the other groups (vs. untreated, p = 0.0004; vs. neutron-only, p = 0.0051, multivariate analysis of variance). No adverse events were observed post irradiation. These findings indicate that BNCT holds promise as a novel treatment modality for metastatic spinal tumors.

5.
BMC Plant Biol ; 24(1): 364, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702592

RESUMO

BACKGROUND: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS: The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS: While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.


Assuntos
Antimônio , Micorrizas , Olea , Poluentes do Solo , Micorrizas/fisiologia , Olea/microbiologia , Poluentes do Solo/metabolismo , Antimônio/metabolismo , Adaptação Fisiológica , Resíduos Industriais , Fotossíntese/efeitos dos fármacos , Biodegradação Ambiental , Biomassa
6.
BMC Plant Biol ; 24(1): 557, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877427

RESUMO

In the course of their life, plants face a multitude of environmental anomaly that affects their growth and production. In recent decades, lead (Pb) gained an increasing attention as it is among the most significant contaminants in the environment. Therefore, in this study the effects of Pb concentrations (0, 50 and 100 ppm) on Vicia faba plants and attempts to alleviate this stress using chitosan (Chs; 0 and 0.1%) were performed. The results validated that with increasing Pb concentrations, a decline in growth, pigments and protein contents was observed. In the same time, a significant upsurge in the stress markers, both malondialdehyde (MDA) and H2O2, was observed under Pb stress. Nonetheless, foliar spraying with Chs improves the faba bean growth, pigment fractions, protein, carbohydrates, reduces MDA and H2O2 contents and decreases Pb concentrations under Pb stress. Pb mitigation effects by Chs are probably related with the activity of antioxidant enzymes, phenylalanine ammonia lyase (PAL) and proline. The application of Chs enhanced the activities of peroxidase, catalase and PAL by 25.77, 17.71 and 20.07%, respectively at 100 ppm Pb compared to their control. Plant genomic material exhibits significant molecular polymorphism, with an average polymorphism of 91.66% across all primers. To assess the genetic distance created among treatments, the dendrogram was constructed and the results of the similarity index ranged from 0.75 to 0.95, indicating genetic divergence. Our research offers a thorough comprehension of the role of Chs in lessening the oxidative stress, which will encourage the use of Chs in agricultural plant protection.


Assuntos
Quitosana , Chumbo , Estresse Oxidativo , Vicia faba , Vicia faba/efeitos dos fármacos , Vicia faba/genética , Vicia faba/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Quitosana/farmacologia , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/genética
7.
J Neurosci Res ; 102(1): e25262, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849328

RESUMO

Mental imagery enables people to simulate experiences in their minds without the presence of an external stimulus. The underlying biochemical mechanisms are poorly understood but there is vague evidence that dopamine may play a significant role. A better understanding at the biochemical level could help to unravel the mechanisms of mental imagery and related phenomena such as aphantasia (= lack of voluntary mental imagery), but also opens up possibilities for interventions to enhance or restore mental imagery. To test the hypothesis that acute dopamine depletion leads to a decrease in the strength of mental imagery, N = 22 male participants will be administered an amino acid mixture containing branched-chain amino acids (BCAAs) and tryptophan (TRP) to transiently reduce dopamine synthesis and further N = 22 male participants will receive a placebo. Plasma prolactin (PRL) levels are determined as a peripheral marker of brain dopamine function. The strength of mental imagery will be measured before and after ingestion of the BCAA/TRP mixture using the method of mental imagery priming. Additional exploratory analyses will use genetic data to investigate possible effects of variations on dopaminergic gene loci (e.g., DAT1) on dopamine levels and strength of mental imagery. The results show […].


Assuntos
Aminoácidos , Dopamina , Humanos , Masculino , Dopamina/metabolismo , Triptofano/metabolismo , Aminoácidos de Cadeia Ramificada
8.
Mol Genet Metab ; 141(1): 108114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142628

RESUMO

Phenylketonuria is characterized by intellectual disability and behavioral, psychiatric, and movement disorders resulting from phenylalanine (Phe) accumulation. Standard-of-care treatment involves a Phe-restricted diet plus medical nutrition therapy (MNT), with or without sapropterin dihydrochloride, to reduce blood Phe levels. Pegvaliase is an injectable enzyme substitution treatment approved for adult patients with blood Phe >600 µmol/L despite ongoing management. A previous comparative effectiveness analysis using data from the Phase 3 PRISM trials of pegvaliase (NCT01819727 and NCT01889862) and the Phenylketonuria Demographics, Outcomes and Safety Registry (PKUDOS; NCT00778206) suggested that pegvaliase was more effective at lowering mean blood Phe levels than sapropterin + MNT or MNT alone at 1 and 2 years of treatment. The current work augments and complements the previous analysis by including additional follow-up from the completed studies, robust methods reflecting careful consideration of issues with the distribution of Phe, and alternative methods for adjustment that are important for control of potential confounding in comparative effectiveness. Median blood Phe levels were lower, and median intact protein intakes were higher, in the pegvaliase group (n = 183) than in the sapropterin + MNT (n = 82) and MNT (n = 67) groups at Years 1, 2, and 3. In the pegvaliase group, median blood Phe levels decreased from baseline (1244 µmol/L) to Year 1 (535 µmol/L), Year 2 (142 µmol/L), and Year 3 (167 µmol/L). In the sapropterin + MNT group, median blood Phe levels decreased from baseline (900 µmol/L) to Year 1 (588 µmol/L) and Year 2 (592 µmol/L), and increased at Year 3 (660 µmol/L). In the MNT group, median blood Phe levels decreased slightly from baseline (984 µmol/L) to Year 1 (939 µmol/L) and Year 2 (941 µmol/L), and exceeded baseline levels at Year 3 (1157 µmol/L). The model-estimated proportions of participants achieving blood Phe ≤600 µmol/L were 41%, 100%, and 100% in the pegvaliase group at Years 1, 2, and 3, respectively, compared with 55%, 58%, and 38% in the sapropterin + MNT group and 5%, 16%, and 0% in the MNT group. The estimated proportions of participants achieving more stringent blood Phe targets of ≤360 µmol/L and ≤120 µmol/L were also higher in the pegvaliase group than in the other groups at Years 2 and 3. Overall, our results indicate that, compared with standard therapy, pegvaliase induces a substantial, progressive, and sustained decrease in blood Phe levels - to a much greater extent than sapropterin + MNT or MNT alone - which is expected to improve long-term outcomes in patients with phenylketonuria.


Assuntos
Biopterinas/análogos & derivados , Terapia Nutricional , Fenilcetonúrias , Adulto , Humanos , Fenilcetonúrias/terapia , Fenilalanina Amônia-Liase , Fenilalanina , Proteínas Recombinantes
9.
Mol Genet Metab ; 141(3): 108122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184920

RESUMO

Phenylketonuria (PKU), a genetic disorder characterized by phenylalanine hydroxylase (PAH) deficiency and phenylalanine (Phe) accumulation, is primarily managed with a protein-restricted diet and PKU-specific medical foods. Pegvaliase is an enzyme substitution therapy approved for individuals with PKU and uncontrolled blood Phe concentrations (>600 µmol/L) despite prior management. This analysis assessed the effect of pegvaliase on dietary intake using data from the Phase 3 PRISM-1 (NCT01819727), PRISM-2 (NCT01889862), and 165-304 (NCT03694353) clinical trials. Participants (N = 250) had a baseline diet assessment, blood Phe ≥600 µmol/L, and had discontinued sapropterin; they were not required to follow a Phe-restricted diet. Outcomes were analyzed by baseline dietary group, categorized as >75%, some (>0% but ≤75%), or no protein intake from medical food. At baseline, mean age was 29.1 years, 49.2% were female, mean body mass index was 28.4 kg/m2, and mean blood Phe was 1237.0 µmol/L. Total protein intake was stable up to 48 months for all 3 baseline dietary groups. Over this time, intact protein intake increased in all groups, and medical protein intake decreased in those who consumed any medical protein at baseline. Of participants consuming some or >75% medical protein at baseline, 49.1% and 34.1% were consuming no medical protein at last assessment, respectively. Following a first hypophenylalaninemia (HypoPhe; 2 consecutive blood Phe measurements <30 µmol/L) event, consumption of medical protein decreased and consumption of intact protein increased. Substantial and sustained Phe reductions were achieved in all 3 baseline dietary groups. The probability of achieving sustained Phe response (SPR) at ≤600 µmol/L was significantly greater for participants consuming medical protein versus no medical protein in an unadjusted analysis, but no statistically significant difference between groups was observed for probability of achieving SPR ≤360 or SPR ≤120 µmol/L. Participants with alopecia (n = 49) had longer pegvaliase treatment durations, reached HypoPhe sooner, and spent longer in HypoPhe than those who did not have alopecia. Most (87.8%) had an identifiable blood Phe drop before their first alopecia episode, and 51.0% (n = 21/41) of first alopecia episodes with known duration resolved before the end of the HypoPhe episode. In conclusion, pegvaliase treatment allowed adults with PKU to lower their blood Phe, reduce their reliance on medical protein, and increase their intact and total protein intake. Results also suggest that HypoPhe does not increase the risk of protein malnutrition in adults with PKU receiving pegvaliase.


Assuntos
Fenilcetonúrias , Adulto , Humanos , Feminino , Masculino , Fenilalanina Amônia-Liase/uso terapêutico , Fenilalanina , Dieta com Restrição de Proteínas/efeitos adversos , Alopecia/tratamento farmacológico , Proteínas Recombinantes
10.
Mol Genet Metab ; 142(1): 108464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537426

RESUMO

Despite numerous studies in human patients and animal models for phenylketonuria (PKU; OMIM#261600), the pathophysiology of PKU and the underlying causes of brain dysfunction and cognitive problems in PKU patients are not well understood. In this study, lumbar cerebral spinal fluid (CSF) was obtained immediately after blood sampling from early-treated adult PKU patients who had fasted overnight. Metabolite and amino acid concentrations in the CSF of PKU patients were compared with those of non-PKU controls. The CSF concentrations and CSF/plasma ratios for glucose and lactate were found to be below normal, similar to what has been reported for glucose transporter1 (GLUT1) deficiency patients who exhibit many of the same clinical symptoms as untreated PKU patients. CSF glucose and lactate levels were negatively correlated with CSF phenylalanine (Phe), while CSF glutamine and glutamate levels were positively correlated with CSF Phe levels. Plasma glucose levels were negatively correlated with plasma Phe concentrations in PKU subjects, which partly explains the reduced CSF glucose concentrations. Although brain glucose concentrations are unlikely to be low enough to impair brain glucose utilization, it is possible that the metabolism of Phe in the brain to produce phenyllactate, which can be transported across the blood-brain barrier to the blood, may consume glucose and/or lactate to generate the carbon backbone for glutamate. This glutamate is then converted to glutamine and carries the Phe-derived ammonia from the brain to the blood. While this mechanism remains to be tested, it may explain the correlations of CSF glutamine, glucose, and lactate concentrations with CSF Phe.


Assuntos
Encéfalo , Glucose , Fenilalanina , Fenilcetonúrias , Humanos , Fenilcetonúrias/metabolismo , Fenilcetonúrias/líquido cefalorraquidiano , Glucose/metabolismo , Adulto , Masculino , Fenilalanina/líquido cefalorraquidiano , Fenilalanina/sangue , Fenilalanina/metabolismo , Feminino , Encéfalo/metabolismo , Ácido Láctico/líquido cefalorraquidiano , Ácido Láctico/metabolismo , Ácido Láctico/sangue , Adulto Jovem , Glutamina/metabolismo , Glutamina/líquido cefalorraquidiano , Glutamina/sangue , Glicemia/metabolismo
11.
Mol Genet Metab ; 142(1): 108361, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442492

RESUMO

INTRODUCTION: Phenylketonuria (PKU) requires regular phenylalanine monitoring to ensure optimal outcome. However, home sampling methods used for monitoring suffer high pre-analytical variability, inter-laboratory variability and turn-around-times, highlighting the need for alternative methods of home sampling or monitoring. METHODS: A survey was distributed through email and social media to (parents of) PKU patients and professionals working in inherited metabolic diseases in Denmark, The Netherlands, and United Kingdom regarding satisfaction with current home sampling methods and expectations for future point-of-care testing (POCT). RESULTS: 210 parents, 156 patients and 95 professionals completed the survey. Countries, and parents and patients were analysed together, in absence of significant group differences for most questions. Important results are: 1) Many patients take less home samples than advised. 2) The majority of (parents of) PKU patients are (somewhat) dissatisfied with their home sampling method, especially with turn-around-times (3-5 days). 3) 37% of professionals are dissatisfied with their home sampling method and 45% with the turn-around-times. 4) All responders are positive towards developments for POCT: 97% (n = 332) of (parents of) patients is willing to use a POC-device and 76% (n = 61) of professionals would recommend their patients to use a POC-device. 5) Concerns from all participants for future POC-devices are costs/reimbursements and accuracy, and to professionals specifically, accessibility to results, over-testing, patient anxiety, and patients adjusting their diet without consultation. CONCLUSION: The PKU community is (somewhat) dissatisfied with current home sampling methods, highlighting the need for alternatives of Phe monitoring. POCT might be such an alternative and the community is eager for its arrival.


Assuntos
Pais , Fenilcetonúrias , Testes Imediatos , Humanos , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/sangue , Masculino , Feminino , Inquéritos e Questionários , Pais/psicologia , Coleta de Amostras Sanguíneas , Reino Unido , Países Baixos , Adulto , Satisfação do Paciente , Fenilalanina/sangue , Dinamarca , Criança , Adolescente
12.
Mol Genet Metab ; 142(1): 108151, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522180

RESUMO

OBJECTIVE: The aim of this study is to present a series of case studies on the real-life use of pegvaliase in Italy in managing patients affected by phenylketonuria (PKU) and provide practical insight and support to healthcare professionals currently approaching and facing this novel enzyme substitution therapy. METHODS: A panel of 11 PKU experts from seven leading Italian treatment centers attended online virtual meetings with the aim of reviewing their clinical and practical experiences with pegvaliase based on occurred cases. In selecting the cases, specific consideration was given to the nationwide representation of the centers involved and to the number of patients with PKU managed. Cases were thoroughly reviewed, with comprehensive discussions enabling the identification of key take-home messages regarding pegvaliase therapy. RESULTS: The panel discussed 18 cases, 11 males and 7 females (age range 17-43 years). At the last follow-up (up to 111 weeks after pegvaliase initiation), 11 out of 18 patients (61%) reached Phe levels below 600 µmol/l. Outcomes varied significantly across cases. All cases underscore the potential of pegvaliase in reducing Phe levels, enhancing the quality of life, and promoting social skills and independence. Additionally, the cases highlight the challenges associated with pegvaliase therapy, including managing adverse events and ensuring patient motivation and adherence. CONCLUSION: This is the first report about the Italian experience of managing patients affected by PKU with pegvaliase. Given the limited real-world data on the use of pegvaliase in PKU management, this case series offers valuable insights into the practical implementation and management of pegvaliase therapy in this Country. Continued research and data collection will be crucial to confirm and progress with this treatment. Despite potential challenges, pegvaliase therapy represents a substantial promise in managing PKU in Italy. Patient education, personalized treatment approaches, and careful monitoring are important to ensure optimal patient outcomes.


Assuntos
Fenilalanina Amônia-Liase , Fenilalanina , Fenilcetonúrias , Humanos , Fenilcetonúrias/tratamento farmacológico , Masculino , Feminino , Adolescente , Adulto , Adulto Jovem , Itália , Fenilalanina Amônia-Liase/uso terapêutico , Fenilalanina Amônia-Liase/efeitos adversos , Terapia de Reposição de Enzimas , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/administração & dosagem , Qualidade de Vida , Resultado do Tratamento
13.
J Biol Inorg Chem ; 29(2): 243-250, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580821

RESUMO

Calmodulin (CaM) binds to a linker between the oxygenase and reductase domains of nitric oxide synthase (NOS) to regulate the functional conformational dynamics. Specific residues on the interdomain interface guide the domain-domain docking to facilitate the electron transfer in NOS. Notably, the docking interface between CaM and the heme-containing oxygenase domain of NOS is isoform specific, which is only beginning to be investigated. Toward advancing understanding of the distinct CaM-NOS docking interactions by infrared spectroscopy, we introduced a cyano-group as frequency-resolved vibrational probe into CaM individually and when associated with full-length and a bi-domain oxygenase/FMN construct of the inducible NOS isoform (iNOS). Site-specific, selective labeling with p-cyano-L-phenylalanine (CNF) by amber suppression of CaM bound to the iNOS has been accomplished by protein coexpression due to the instability of recombinant iNOS protein alone. We introduced CNF at residue 108, which is at the putative CaM-heme (NOS) docking interface. CNF was also introduced at residue 29, which is distant from the docking interface. FT IR data show that the 108 site is sensitive to CaM-NOS complex formation, while insensitivity to its association with the iNOS protein or peptide was observed for the 29 site. Moreover, narrowing of the IR bands at residue 108 suggests the C≡N probe experiences a more limited distribution of environments, indicating side chain restriction apparent for the complex with iNOS. This initial work sets the stage for residue-specific characterizations of structural dynamics of the docked states of NOS proteins.


Assuntos
Calmodulina , Espectrofotometria Infravermelho , Calmodulina/química , Calmodulina/metabolismo , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/metabolismo , Ligação Proteica , Simulação de Acoplamento Molecular
14.
Arch Biochem Biophys ; 756: 110019, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688397

RESUMO

Neutral endopeptidase or neprilysin (NEP) cleaves the natriuretic peptides, bradykinin, endothelin, angiotensin II, amyloid ß protein, substance P, etc., thus modulating their effects on heart, kidney, and other organs. NEP has a proven role in hypertension, heart disease, renal disease, Alzheimer's, diabetes, and some cancers. NEP inhibitor development has been in focus since the US FDA approved a combination therapy of angiotensin II type 1 receptor inhibitor (valsartan) and NEP inhibitor (sacubitril) for use in heart failure. Considering the importance of NEP inhibitors the present work focuses on the designing of a potential lead for NEP inhibition. A structure-based pharmacophore modelling approach was employed to identify NEP inhibitors from the pool of 1140 chemical entities obtained from the ZINC database. Based on the docking score and pivotal interactions, ten molecules were selected and subjected to binding free energy calculations and ADMET predictions. The top two compounds were studied further by molecular dynamics simulations to determine the stability of the ligand-receptor complex. ZINC0000004684268, a phenylalanine derivative, showed affinity and complex stability comparable to sacubitril. However, in silico studies indicated that it may have poor pharmacokinetic parameters. Therefore, the molecule was optimized using bioisosteric replacements, keeping the phenylalanine moiety intact, to obtain five potential lead molecules with an acceptable pharmacokinetic profile. The works thus open up the scope to further corroborate the present in silico findings with the biological analysis.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neprilisina , Neprilisina/antagonistas & inibidores , Neprilisina/química , Neprilisina/metabolismo , Humanos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Farmacóforo
15.
FASEB J ; 37(7): e23014, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37261736

RESUMO

Parenteral nutrition, received by many patients with intestinal failure, can induce hepatobiliary complications, which is termed as parenteral nutrition-associated liver disease (PNALD). The spectrum of PNALD ranges from cholestasis and steatosis to fibrosis and cirrhosis. Although many factors contribute to the pathogenesis of PNALD, the underlying mechanisms remain unclear. In this study, we performed targeted metabolomics to characterize the metabolomic profile in neonatal piglets receiving total parenteral nutrition (TPN) or enteral nutrition (EN) for 1 or 2 weeks. Overall, the metabolomic signature of TPN groups differed from EN groups at both time points. Among the 20 acylcarnitines identified, a majority of them were significantly reduced in TPN groups. KEGG pathway analysis showed that phenylalanine metabolism-associated pathways were dysregulated accompanied by more progressive liver steatosis associated with TPN. Next, we evaluated phenylalanine catabolism and its association with fatty acid oxidation in piglets and rats with PNALD. We showed that the hepatic expression of phenylalanine-degrading enzyme phenylalanine hydroxylase (PAH) was reduced and systemic phenylalanine levels were increased in both animal models of PNALD. Moreover, carnitine palmitoyltransferase 1A, a central regulator of fatty acid oxidation, was downregulated and its expression was negatively correlated with phenylalanine levels in TPN-fed animals. To explore the effects of phenylalanine accumulation on lipid metabolism, we treated HepG2 cells with phenylalanine co-cultured with sodium palmitate or soybean oil emulsion to induce lipid accumulation. We found that phenylalanine treatment exacerbated lipid accumulation by inhibiting fatty acid oxidation without affecting fatty acid synthesis. In summary, our findings establish a pathogenic role of increased phenylalanine levels in driving liver steatosis, linking dysregulation of phenylalanine catabolism with lipid accumulation in the context of PNALD.


Assuntos
Fígado Gorduroso , Hepatopatias , Animais , Suínos , Ratos , Animais Recém-Nascidos , Nutrição Parenteral Total/efeitos adversos , Fígado/metabolismo , Hepatopatias/patologia , Fígado Gorduroso/metabolismo , Óleo de Soja/efeitos adversos , Óleo de Soja/metabolismo , Ácido Palmítico/farmacologia , Metabolômica
16.
Biotechnol Bioeng ; 121(7): 2147-2162, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666765

RESUMO

P-coumaric acid (p-CA), a pant metabolite with antioxidant and anti-inflammatory activity, is extensively utilized in biomedicine, food, and cosmetics industry. In this study, a synthetic pathway (PAL) for p-CA was designed, integrating three enzymes (AtPAL2, AtC4H, AtATR2) into a higher l-phenylalanine-producing strain Escherichia coli PHE05. However, the lower soluble expression and activity of AtC4H in the PAL pathway was a bottleneck for increasing p-CA titers. To overcome this limitation, the soluble expression of AtC4H was enhanced through N-terminal modifications. And an optimal mutant, AtC4HL373T/G211H, which exhibited a 4.3-fold higher kcat/Km value compared to the wild type, was developed. In addition, metabolic engineering strategies were employed to increase the intracellular NADPH pool. Overexpression of ppnk in engineered E. coli PHCA20 led to a 13.9-folds, 1.3-folds, and 29.1% in NADPH content, the NADPH/NADP+ ratio and p-CA titer, respectively. These optimizations significantly enhance p-CA production, in a 5-L fermenter using fed-batch fermentation, the p-CA titer, yield and productivity of engineered strain E. coli PHCA20 were 3.09 g/L, 20.01 mg/g glucose, and 49.05 mg/L/h, respectively. The results presented here provide a novel way to efficiently produce the plant metabolites using an industrial strain.


Assuntos
Ácidos Cumáricos , Escherichia coli , Glucose , Engenharia Metabólica , Propionatos , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Cumáricos/metabolismo , Engenharia Metabólica/métodos , Glucose/metabolismo , Propionatos/metabolismo
17.
Biotechnol Bioeng ; 121(2): 784-794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37926950

RESUMO

Efficient co-utilization of mixed sugar feedstocks remains a biomanufacturing challenge, thus motivating ongoing efforts to engineer microbes for improved conversion of glucose-xylose mixtures. This study focuses on enhancing phenylalanine production by engineering Escherichia coli to efficiently co-utilize glucose and xylose. Flux balance analysis identified E4P flux as a bottleneck which could be alleviated by increasing the xylose-to-glucose flux ratio. A mutant copy of the xylose-specific activator (XylR) was then introduced into the phenylalanine-overproducing E. coli NST74, which relieved carbon catabolite repression and enabled efficient glucose-xylose co-utilization. Carbon contribution analysis through 13 C-fingerprinting showed a higher preference for xylose in the engineered strain (NST74X), suggesting superior catabolism of xylose relative to glucose. As a result, NST74X produced 1.76 g/L phenylalanine from a model glucose-xylose mixture; a threefold increase over NST74. Then, using biomass-derived sugars, NST74X produced 1.2 g/L phenylalanine, representing a 1.9-fold increase over NST74. Notably, and consistent with the carbon contribution analysis, the xylR* mutation resulted in a fourfold greater maximum rate of xylose consumption without significantly impeding the maximum rate of total sugar consumption (0.87 vs. 0.70 g/L-h). This study presents a novel strategy for enhancing phenylalanine production through the co-utilization of glucose and xylose in aerobic E. coli cultures, and highlights the potential synergistic benefits associated with using substrate mixtures over single substrates when targeting specific products.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Açúcares/metabolismo , Xilose/metabolismo , Biomassa , Fermentação , Glucose/metabolismo , Aminoácidos Aromáticos/metabolismo , Fenilalanina/metabolismo , Carbono/metabolismo , Fatores de Transcrição/genética , Proteínas de Escherichia coli/metabolismo
18.
Neurochem Res ; 49(5): 1150-1165, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38296858

RESUMO

Cannabis sativa has been used for improving sleep for long history. Cannabidiol (CBD) has drown much attention as a non-addictive psychoactive component in Cannabis sativa extract. However, the effects of CBD on sleep architecture and it's acting mechanism remains unclear. In the present study, we evaluated the sedative-hypnotic effect of cannabidiol (CBD), assessed the effects of CBD on sleep using a wireless physiological telemetry system. We further explored the therapeutic effects of CBD using 4-chloro-dl-phenylalanine (PCPA) induced insomnia model and changes in sleep latency, sleep duration and intestinal flora were evaluated. CBD shortened sleep latency and increases sleep duration in both normal and insomnia mice, and those effects were blocked by 5-HT1A receptor antagonist WAY100635. We determined that CBD increases 5-HT1A receptors expression and 5-HT content in the hypothalamus of PCPA-pretreated mice and affects tryptophan metabolism in the intestinal flora. These results showed that activation of 5-HT1A receptors is one of the potential mechanisms underlying the sedative-hypnotic effect of CBD. This study validated the effects of CBD on sleep and evaluated its potential therapeutic effects on insomnia.


Assuntos
Canabidiol , Distúrbios do Início e da Manutenção do Sono , Camundongos , Animais , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Serotonina/metabolismo , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Receptor 5-HT1A de Serotonina , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Antagonistas da Serotonina
19.
Mol Pharm ; 21(4): 1965-1976, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38516985

RESUMO

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) previously elucidated the interactions between excipients and proteins for liquid granulocyte colony stimulating factor (G-CSF) formulations, confirming predictions made using computational structure docking. More recently, solid-state HDX mass spectrometry (ssHDX-MS) was developed for proteins in the lyophilized state. Deuterium uptake in ssHDX-MS has been shown for various proteins, including monoclonal antibodies, to be highly correlated with storage stability, as measured by protein aggregation and chemical degradation. As G-CSF is known to lose activity through aggregation upon lyophilization, we applied the ssHDX-MS method with peptide mapping to four different lyophilized formulations of G-CSF to compare the impact of three excipients on local structure and exchange dynamics. HDX at 22 °C was confirmed to correlate well with the monomer content remaining after lyophilization and storage at -20 °C, with sucrose providing the greatest protection, and then phenylalanine, mannitol, and no excipient leading to progressively less protection. Storage at 45 °C led to little difference in final monomer content among the formulations, and so there was no discernible relationship with total deuterium uptake on ssHDX. Incubation at 45 °C may have led to a structural conformation and/or aggregation mechanism no longer probed by HDX at 22 °C. Such a conformational change was observed previously at 37 °C for liquid-formulated G-CSF using NMR. Peptide mapping revealed that tolerance to lyophilization and -20 °C storage was linked to increased stability in the small helix, loop AB, helix C, and loop CD. LC-MS HDX and NMR had previously linked loop AB and loop CD to the formation of a native-like state (N*) prior to aggregation in liquid formulations, suggesting a similar structural basis for G-CSF aggregation in the liquid and solid states.


Assuntos
Medição da Troca de Deutério , Fator Estimulador de Colônias de Granulócitos , Humanos , Deutério/química , Medição da Troca de Deutério/métodos , Excipientes/química , Fator Estimulador de Colônias de Granulócitos/química , Espectrometria de Massas/métodos , Proteínas/química
20.
Protein Expr Purif ; 219: 106461, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38460621

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy NMR is a well-established technique for probing protein structure, dynamics and conformational changes. Taking advantage of the high signal sensitivity and broad chemical shift range of 19F nuclei, 19F NMR has been applied to investigate protein function at atomic resolution. In this report, we extend the unnatural amino acid site-specific incorporation into V. natriegens, an alternate protein expression system. The unnatural amino acid L-4-trifluoromethylphenylalanine (tfmF) was site-specifically introduced into the mitogen-activated protein kinase MEKK3 in V. natriegens using genetically encoded technology, which will be an extensive method for in-cell protein structure and dynamic investigation.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina/genética , Flúor/química , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA