Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant Cell Environ ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935876

RESUMO

In Chlamydomonas, the directly light-gated, plasma membrane-localized cation channels channelrhodopsins ChR1 and ChR2 are the primary photoreceptors for phototaxis. Their targeting and abundance is essential for optimal movement responses. However, our knowledge how Chlamydomonas achieves this is still at its infancy. Here we show that ChR1 internalization occurs via light-stimulated endocytosis. Prior or during endocytosis ChR1 is modified and forms high molecular mass complexes. These are the solely detectable ChR1 forms in extracellular vesicles and their abundance therein dynamically changes upon illumination. The ChR1-containing extracellular vesicles are secreted via the plasma membrane and/or the ciliary base. In line with this, ciliogenesis mutants exhibit increased ChR1 degradation rates. Further, we establish involvement of the cysteine protease CEP1, a member of the papain-type C1A subfamily. ΔCEP1-knockout strains lack light-induced ChR1 degradation, whereas ChR2 degradation was unaffected. Low light stimulates CEP1 expression, which is regulated via phototropin, a SPA1 E3 ubiquitin ligase and cyclic AMP. Further, mutant and inhibitor analyses revealed involvement of the small GTPase ARL11 and SUMOylation in ChR1 targeting to the eyespot and cilia. Our study thus defines the degradation pathway of this central photoreceptor of Chlamydomonas and identifies novel elements involved in its homoeostasis and targeting.

2.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699809

RESUMO

Mayflies are typically negatively phototactic during larval development, whereas the adults possess positive phototaxis. However, no extensive research has been done into the wavelength dependence of phototaxis in any mayfly larvae. We measured the repellency rate of Ephoron virgo larvae to light as a function of wavelength in the 368-743 nm spectral range. We established that the magnitude of repellence increased with decreasing wavelength and the maximal responses were elicited by 400 nm violet light. This wavelength dependence of phototaxis is similar to the recently reported spectral sensitivity of positive phototaxis of the twilight-swarming E. virgo adults. Negative phototaxis not only facilitates predation evasion: avoidance of the blue-violet spectral range could also promote the larvae to withdraw towards the river midline in the case of a drop in the water level, when the underwater light becomes enriched with shorter wavelengths as a result of the decreasing depth of overhead river water.


Assuntos
Larva , Luz , Fototaxia , Animais , Larva/fisiologia , Larva/crescimento & desenvolvimento , Fototaxia/fisiologia , Ephemeroptera/fisiologia
3.
J Exp Biol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155640

RESUMO

Understanding how internal states like satiety are connected to animal behavior is a fundamental question in neuroscience. Hydra vulgaris, a freshwater cnidarian with only twelve neuronal cell types, serves as a tractable model system for studying state-dependent behaviors. We find that starved Hydra consistently move towards light, while fed Hydra do not. By modeling this behavior as a set of three sequences of head orientation, jump distance, and jump rate, we demonstrate that the satiety state only affects the rate of the animal jumping to a new position, while the orientation and jump distance are unaffected. These findings yield insights into how internal states in a simple organism, Hydra, affect specific elements of a behavior, and offer general principles for studying the relationship between state-dependent behaviors and their underlying molecular mechanisms.

4.
Microb Ecol ; 87(1): 40, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351424

RESUMO

It has long been hypothesized that benthic motile pennate diatoms use phototaxis to optimize photosynthesis and minimize photoinhibitory damage by adjusting their position within vertical light gradients in coastal benthic sediments. However, experimental evidence to test this hypothesis remains inconclusive, mainly due to methodological difficulties in studying cell behavior and photosynthesis over realistic spatial microscale gradients of irradiance and cell position. In this study, a novel experimental approach was developed and used to test the hypothesis of photosynthesis optimization through motility, based on the combination of single-cell in vivo chlorophyll fluorometry and microfluidic chips. The approach allows the concurrent study of behavior and photosynthetic activity of individual cells of the epipelic diatom species Craspedostauros britannicus exposed to a light microgradient of realistic dimensions, simulating the irradiance and distance scales of light microgradients in benthic sediments. Following exposure to light, (i) cells explored their light environment before initiating light-directed motility; (ii) cells used motility to lower their light dose, when exposed to the highest light intensities; and (iii) motility was combined with reversible non-photochemical quenching, to allow cells to avoid photoinhibition. The results of this proof-of-concept study not only strongly support the photoprotective nature of photobehavior in the studied species but also revealed considerable variability in how individual cells reacted to a light microgradient. The experimental setup can be readily applied to study motility and photosynthetic light responses of other diatom species or natural assemblages, as well as other photoautotrophic motile microorganisms, broadening the toolset for experimental microbial ecology research.


Assuntos
Diatomáceas , Diatomáceas/fisiologia , Fotossíntese , Clorofila , Luz , Movimento Celular
5.
Med Vet Entomol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044406

RESUMO

Blow flies (Diptera: Calliphoridae) are arguably the most important providers of an estimate of minimum post-mortem interval in forensic investigations. They usually undergo a post-feeding dispersal from the body. While previous studies have looked at dispersal of groups of larvae, recording the dispersal activity of individual larvae has not previously been demonstrated. A servosphere was used here to record the speed, directionality and phototaxis of individual post-feeding larvae of two species of blow fly on a smooth plastic surface over time. The servosphere rotates to compensate for the movement of an insect placed at its apex, thereby enabling its unimpeded locomotion in any direction to be studied and behavioural changes to external stimuli recorded. To our knowledge, the servosphere has not previously been used to study apodous insects. The objective of our study was to compare dispersal behaviour of Calliphora vicina Robineau-Desvoidy and Protophormia terraenovae (Robineau-Desvoidy), both common primary colonisers of human and animal cadavers, but showing different post-feeding dispersal strategies. Larvae of C. vicina generally disperse from the body while those of P. terraenovae remain on or close to the body. Our aims were to study (1) changes in dispersal speed over a 1-h period; (2) changes in dispersal speed once a day for 4 days, between the end of feeding and onset of pupariation; and (3) response of dispersing larvae to light. We demonstrated that (1) the movement of three C. vicina larvae tracked for 1 continuous hour on 1 day slowed from an average of 3 to <1.7 mms-1; (2) the average speed of 20 larvae of C. vicina (4.08 mms-1) recorded for 5 min once per day over a 4-day period between onset of dispersal and pupariation was significantly greater than that of P. terraenovae (2.36 mms-1; p < 0.0001), but that speed of both species increased slightly over the 4 days; (3) the responses of larvae of C. vicina to changes in light direction from the four cardinal directions of the compass, showed that they exhibited a strong negative phototactic response within 5 s, turning to move at approximately 180° away from the new light position. While conducted to observe larval calliphorid post-feeding behaviour, the results of this proof of concept study show that apodous insects can be studied on a servosphere to produce both qualitative and quantitative data.

6.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617216

RESUMO

Background: Marine organisms with sessile adults commonly possess motile larval stages that make settlement decisions based on integrating environmental sensory cues. Phototaxis, the movement toward or away from light, is a common behavioral characteristic of aquatic and marine metazoan larvae, and of algae, protists, and fungi. In cnidarians, behavioral genomic investigations of motile planulae larvae have been conducted in anthozoans (corals and sea anemones) and scyphozoans (true jellyfish), but such studies are presently lacking in hydrozoans. Here, we examined the behavioral genomics of phototaxis in planulae of the hydrozoan Hydractinia symbiolongicarpus. Results: A behavioral phototaxis study of day 3 planulae indicated preferential phototaxis to green (523 nm) and blue (470 nm) wavelengths of light, but not red (625 nm) wavelengths. A developmental transcriptome study where planula larvae were collected from four developmental time points for RNA-seq revealed that many genes critical to the physiology and development of ciliary photosensory systems are dynamically expressed in planula development and correspond to the expression of phototactic behavior. Microscopical investigations using immunohistochemistry and in situ hybridization demonstrated that several transcripts with predicted function in photoreceptors, including cnidops class opsin, CNG ion channel, and CRX-like transcription factor, localize to ciliated bipolar sensory neurons of the aboral sensory neural plexus, which is associated with the direction of phototaxis and the site of settlement. Conclusions: The phototactic preference displayed by planulae is consistent with the shallow sandy marine habitats they experience in nature. Our genomic investigations add further evidence of similarities between cnidops-mediated photoreceptors of hydrozoans and other cnidarians and ciliary photoreceptors as found in the eyes of humans and other bilaterians, suggesting aspects of their shared evolutionary history.

7.
Biomolecules ; 14(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38540747

RESUMO

Age-dependent changes in the transcription levels of 5-day-old Euglena gracilis cells, which showed positive gravitaxis, 6-day-old cells without gravitactic orientation, and older cells (9- and 11-day-old, which displayed a precise negative gravitaxis) were determined through microarray analysis. Hierarchical clustering of four independent cell cultures revealed pronounced similarities in transcription levels at the same culture age, which proves the reproducibility of the cultivation method. Employing the non-oriented cells from the 6-day-old culture as a reference, about 2779 transcripts were found to be differentially expressed. While positively gravitactic cells (5-day-old culture) showed only minor differences in gene expression compared to the 6-day reference, pronounced changes of mRNAs (mainly an increase) were found in older cells compared to the reference culture. Among others, genes coding for adenylyl cyclases, photosynthesis, and metabolic enzymes were identified to be differentially expressed. The investigated cells were grown in batch cultures, so variations in transcription levels most likely account for factors such as nutrient depletion in the medium and self-shading. Based on these findings, a particular transcript (e.g., transcript 19556) was downregulated using the RNA interference technique. Gravitaxis and phototaxis were impaired in the transformants, indicating the role of this transcript in signal transduction. Results of the experiment are discussed regarding the increasing importance of E. gracilis in biotechnology as a source of valuable products and the possible application of E. gracilis in life-support systems.


Assuntos
Euglena gracilis , Euglena gracilis/genética , Reprodutibilidade dos Testes , Fototaxia , Fotossíntese , Transdução de Sinais
8.
J Plankton Res ; 46(2): 174-182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572125

RESUMO

The tidal occurrence of larval fishes was investigated in the permanently open Kowie Estuary on the warm-temperate coast of South Africa. Larval fishes were sampled in the mouth region using two drifting light traps deployed on the ebb and flood tides every second night for two consecutive 14-day periods, coinciding with the dark moon phase. A total of 553 larval fishes were caught, representing nine families and 26 species, of which Blenniidae and Clupeidae dominated. The prevalence of different estuarine association fish guilds was also tide-specific. Marine and estuarine species, such as Omobranchus woodi, were more dominant during flood tides, while marine straggler species, such as Sardinops sagax, which are not dependent on estuaries, were dominant on the ebb tide. Marine estuarine-dependents were only present during flood tides, potentially indicating ingress and entrainment within the estuary. The results confirm that light trap catches yield a different composition of species compared to towed ichthyoplankton net studies. Additionally, drifting light traps allow for better targeting of species with a phototactic response and reduction of incidental catch. Consequently, a mixture of gear is encouraged for more comprehensive surveys of larval fish occurrence.

9.
Animals (Basel) ; 14(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891590

RESUMO

The phototactic behavior of insects is commonly used to manage pest populations in practical production. However, this elusive behavior is not yet fully understood. Investigating whether the opsin genes play a crucial role in phototaxis is an intriguing topic. Vespinae (Hymenoptera: Vespidae) are a common group of social wasps that are closely associated with human activities. Efficiently controlling wasp populations while maintaining ecological balance is a pressing global challenge that still has to be resolved. This research aims to explore the phototactic behavior and key opsin genes associated with Vespinae. We found significant differences in the photophilic rates of Vespula germanica and Vespa analis under 14 different light conditions, indicating that their phototactic behavior is rhythmic. The results also showed that the two species exhibited varying photophilic rates under different wavelengths of light, suggesting that light wavelength significantly affects their phototactic behavior. Additionally, the opsin genes of the most aggressive hornet, Vespa basalis, have been sequenced. There are only two opsin genes, one for UV light and the other for blue light, and Vespa basalis lacks long-wavelength visual proteins. However, they exhibit peak phototaxis for long-wavelength light and instead have the lowest phototaxis for UV light. This suggests that the visual protein genes have a complex regulatory mechanism for phototactic behavior in Vespinae. Additionally, visual protein sequences have a high degree of homology among Hymenoptera. Despite the hypotheses put forward by some scholars regarding phototaxis, a clear and complete explanation of insect phototaxis is still lacking to date. Our findings provide a strong theoretical basis for further investigation of visual expression patterns and phototactic mechanisms in Vespinae.

10.
Animals (Basel) ; 14(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891630

RESUMO

Personality, which matters for animal welfare, demonstrates behavioral differences. Light is one of the most important factors in aquaculture. However, how fish personality affects light color selection is unclear. In this study, we tested the personality of yellow catfish Pelteobagrus fulvidraco juveniles and then quantified the selective behaviors of different personalities under six light colors: violet (410-420 nm), yellow (580-590 nm), green (550-560 nm), red (620-630 nm), blue (470-480 nm), and white. The results showed that juveniles preferred the yellow and green light over the other colors of light, probably due to different reasons. The average cumulative dwell time in yellow (32.81 ± 5.22%), green (21.81 ± 3.58%), and red (26.36 ± 4.89%) lights was significantly longer than the other light colors, and the average visit frequency in green light (32.00 ± 4.93%) was the most. Juveniles had the longest total moved distance in green light. Moreover, the results demonstrated that shy and bold individuals had the same preference for the green light. Bold individuals could find the preferred light colors rapidly and make quick decisions for light color selection. After identifying the preferred light colors, bold individuals reduced the frequency of exploration. This study provides a theoretical basis for the welfare of juvenile yellow catfish in aquaculture.

11.
Microlife ; 5: uqae012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887653

RESUMO

Photosynthetic cyanobacteria exhibit phototaxis, utilizing type IV pili (T4P) to navigate either toward or away from a light source. The Tax1 system is a chemotaxis-like signal transduction pathway that controls the switch in cell polarity, which is crucial for positive phototaxis in Synechocystis sp. PCC 6803. The system consists of the blue/green light sensor PixJ, which controls the histidine kinase PixL and two CheY-like response regulators, PixG and PixH. However, the molecular mechanism by which Tax1 regulates T4P activity and polarity is poorly understood. Here, we investigated the phosphotransfer between PixL and its cognate response regulators in vitro and analyzed the localization and function of wild-type and phosphorylation-deficient PixG and PixH during phototaxis. We found that both PixG and PixH are phosphorylated by PixL but have different roles in phototaxis regulation. Only phosphorylated PixG interacts with the T4P motor protein PilB1 and localizes to the leading cell pole under directional light, thereby promoting positive phototaxis. In contrast, PixH is a negative regulator of PixG phosphorylation and inhibits positive phototaxis. We also demonstrated that the C-terminal receiver domain of PixL is essential for positive phototaxis, and modulates the kinase activity of PixL. Our findings reveal the molecular basis of positive phototaxis regulation by the Tax1 system and provide insights into the division of labor between PatA-type and CheY-like response regulators in cyanobacterial chemotaxis-like systems. Furthermore, these findings highlight similarities in the regulation of movement direction during twitching motility in phototactic and chemotactic bacteria.

12.
R Soc Open Sci ; 11(1): 231517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38204784

RESUMO

Many animals show an aversion to bright, open spaces, with significant variability seen across species, populations and individuals within populations. Although there is much interest in the underlying causes of this behaviour, few studies have been able to systematically isolate the role of heritable and environmental effects. Here, we addressed this gap using a common garden experiment with cavefish. Specifically, we bred and cross-bred cave loaches (Barbatula barbatula), Europe's only known cavefish, in the laboratory, raised the offspring in complete darkness or normal light conditions, and studied their light avoidance behaviour. Cavefish spent much more time in a light area and ventured further out, while surface fish spent considerable time in risk-assessment behaviour between the light and dark areas. Hybrids behaved most similarly to cavefish. Light treatment and eye quality and lens size only had a modest effect. Our results suggest light avoidance behaviour of cavefish has a heritable basis and is fundamentally linked to increased boldness rather than reduced vision, which is likely adaptive given the complete lack of macropredators in the cave environment. Our study provides novel experimental insights into the behavioural divergence of cavefish and contributes to our broader understanding of the evolution of boldness and behavioural adaptation.

13.
Zebrafish ; 21(1): 15-27, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377346

RESUMO

The marine medaka is emerging as a potential behavioral model organism for ocean studies, namely on marine ecotoxicology. However, not much is known on the behavior of the species and behavioral assays lack standardization. This study assesses the marine medaka as a potential model for chemical communication. We investigated how short exposure to visual and chemical cues mediated the stress response to social isolation with the light/dark preference test (LDPT) and the open field test (OFT). After a 5-day isolation period, and 1 h before testing, isolated fish were randomly assigned to one of four groups: (1) placed in visual contact with conspecifics; (2) exposed to a flow of holding water from a group of conspecifics; (3) exposed to both visual and chemical cues from conspecifics; or (4) not exposed to any stimuli (controls). During the LDPT, the distance traveled and transitions between zones were more pronounced in animals exposed to the conspecific's chemical stimuli. The time spent in each area did not differ between the groups, but a clear preference for the bright area in all animals indicates robust phototaxis. During the OFT, animals exposed only to chemical cues initially traveled more than those exposed to visual or both stimuli, and displayed lower thigmotaxis. Taken together, results show that chemical cues play a significant role in exploratory behavior in this species and confirm the LDPT and OFT as suitable tests for investigating chemical communication in this species.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Sinais (Psicologia) , Peixe-Zebra , Isolamento Social , Poluentes Químicos da Água/toxicidade
14.
Bioresour Technol ; 394: 130241, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142911

RESUMO

Rotifer reproduction control in open microalgae cultivation systems poses a significant challenge for large-scale industries. Conventional methods, such as electric, meshing, and chemical techniques, are often expensive, ineffective, and may have adverse environmental-health impacts. This study investigated a promising control technique through light-induced phototaxis to concentrate rotifers in a specific spot, where they were electroshocked by local-limited exposure dose. The results showed that the rotifers had the most pronounced positive and negative phototropism with phototaxis rates of 66.7 % and -78.8 %, respectively, at blue-light irradiation of 30 µmol∙m-2∙s-1 and red-light irradiation of 22.5 µmol∙m-2∙s-1 for 20 min. The most effective electroshock configuration employed 1200 V/cm for 15 min with a 1-second cycle time and a 10 % duty cycle, resulting in a 75.0 % rotifer removal rate without impacting microalgae growth. The combination of the two light beams could effectively lead rotifers to designated areas where they were electrocuted successfully.


Assuntos
Microalgas , Lagoas , Fototaxia , Eletrochoque , Luz Azul , Biomassa
15.
Insects ; 15(7)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39057265

RESUMO

In this study, the morphology and ultrastructure of the compound eye of Asi. xanthospilota were examined by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-computed tomography (µCT), and 3D reconstruction. Spectral sensitivity was investigated by electroretinogram (ERG) tests and phototropism experiments. The compound eye of Asi. xanthospilota is of the apposition type, consisting of 611.00 ± 17.53 ommatidia in males and 634.8 0 ± 24.73 ommatidia in females. Each ommatidium is composed of a subplano-convex cornea, an acone consisting of four cone cells, eight retinular cells along with the rhabdom, two primary pigment cells, and about 23 secondary pigment cells. The open type of rhabdom in Asi. xanthospilota consists of six peripheral rhabdomeres contributed by the six peripheral retinular cells (R1~R6) and two distally attached rhabdomeric segments generated solely by R7, while R8 do not contribute to the rhabdom. The orientation of microvilli indicates that Asi. xanthospilota is unlikely to be a polarization-sensitive species. ERG testing showed that both males and females reacted to stimuli from red, yellow, green, blue, and ultraviolet light. Both males and females exhibited strong responses to blue and green light but weak responses to red light. The phototropism experiments showed that both males and females exhibited positive phototaxis to all five lights, with blue light significantly stronger than the others.

16.
R Soc Open Sci ; 11(6): 240007, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39100151

RESUMO

Flying animals have had to evolve robust and effective guidance strategies for dealing with habitat clutter. Birds and insects use optic flow expansion cues to sense and avoid obstacles, but orchid bees have also been shown to use brightness cues during gap negotiation. Such brightness cues might therefore be of general importance in structuring visually guided flight behaviours. To test the hypothesis that brightness cues also affect gap negotiation behaviours in birds, we presented captive zebra finches Taeniopygia guttata with a symmetric or asymmetric background brightness distribution on the other side of a tunnel. The background brightness conditions influenced both the birds' decision to enter the tunnel aperture, and their flight direction upon exit. Zebra finches were more likely to initiate flight through the tunnel if they could see a bright background through it; they were also more likely to fly to the bright side upon exiting. We found no evidence of the centring response that would be expected if optic flow cues were balanced bilaterally during gap negotiation. Instead, the birds entered the tunnel by targeting a clearance of approximately one wing length from its near edge. Brightness cues therefore affect how zebra finches structure their flight when negotiating gaps in enclosed environments.

17.
Adv Healthc Mater ; : e2401383, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155411

RESUMO

Thrombosis presents a critical health threat globally, with high mortality and incidence rates. Clinical treatment faces challenges such as low thrombolytic agent bioavailability, thrombosis recurrence, ischemic hypoxia damage, and neural degeneration. This study developed biocompatible Chlamydomonas Reinhardtii micromotors (CHL) with photo/magnetic capabilities to address these needs. These CHL micromotors, equipped with phototaxis and photosynthesis abilities, offer promising solutions. A core aspect of this innovation involves incorporating polysaccharides (glycol chitosan (GCS) and fucoidan (F)) into ferric Metal-organic frameworks (MOFs), loaded with urokinase (UK), and subsequently self-assembled onto the multimodal CHL, forming a core-shell microstructure (CHL@GCS/F-UK-MOF). Under light-navigation, CHL@GCS/F-UK-MOF is shown to penetrate thrombi, enhancing thrombolytic biodistribution. Combining CHL@GCS/F-UK-MOF with the magnetic hyperthermia technique achieves stimuli-responsive multiple-release, accelerating thrombolysis and rapidly restoring blocked blood vessels. Moreover, this approach attenuates thrombi-induced ischemic hypoxia disorder and tissue damage. The photosynthetic and magnetotherapeutic properties of CHL@GCS/F-UK-MOF, along with their protective effects, including reduced apoptosis, enhanced behavioral function, induced Heat Shock Protein (HSP), polarized M2 macrophages, and mitigated hypoxia, are confirmed through biochemical, microscopic, and behavioral assessments. This multifunctional biomimetic platform, integrating photo-magnetic techniques, offers a comprehensive approach to cardiovascular management, advancing related technologies.

18.
Soft Robot ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133138

RESUMO

Many organisms move directly toward light for prey hunting or navigation, which is called phototaxis. Mimicking this behavior in robots is crucially important in the energy industry and environmental exploration. However, the phototaxis robots with rigid bodies and sensors still face challenges in adapting to unstructured environments, and the soft phototaxis robots often have high requirements for light sources with limited locomotion performance. Here, we report a 3.5 g soft microrobot that can perceive the azimuth angle of light sources and exhibit rapid phototaxis locomotion autonomously enabled by three-dimensional flexible optoelectronics and compliant shape memory alloy (SMA) actuators. The optoelectronics is assembled from a planar patterned flexible circuit with miniature photodetectors, introducing the self-occlusion to light, resulting in high sensing ability (error < 3.5°) compared with the planar counterpart. The actuator produces a straightening motion driven by an SMA wire and is then returned to a curled shape by a prestretched elastomer layer. The actuator exhibits rapid actuation within 0.1 s, a significant degree of deformation (curvature change of ∼87 m-1) and a blocking force of ∼0.4 N, which is 68 times its own weight. Finally, we demonstrated the robot is capable of autonomously crawling toward a moving light source in a hybrid aquatic-terrestrial environment without human intervention. We envision that our microrobot could be widely used in autonomous light tracking applications.

19.
Front Aging ; 5: 1374905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055970

RESUMO

Introduction: Centella asiatica (CA) is known in Ayurvedic medicine as a rejuvenating herb with particular benefits in the nervous system. Two groups of specialized metabolites found in CA and purported to contribute to its beneficial effects are triterpenes (TTs) and caffeoylquinic acids (CQAs). In order to evaluate the role and interactions of TTs and CQAs in the effects of CA, we examined the neurotrophic effects of a water extract of CA (CAW) and combinations of its TT and CQA components in mouse primary hippocampal neurons in vitro and in Drosophila melanogaster flies in vivo. Methods: Primary hippocampal neurons were isolated from mouse embryos and exposed in vitro for 5 days to CAW (50 µg/mL), mixtures of TTs, CQAs or TT + CQA components or to 4 TTs or 8 individual CQA compounds of CAW. Dendritic arborization was evaluated using Sholl analysis. Drosophila flies were aged to 28 days and treated for 2 weeks with CAW (10 mg/mL) in the food, mixtures of TTs, CQAs or TT + CQA and individual TT and CQA compounds. TTs and CQAs were tested at concentrations matching their levels in the CAW treatment used. After 2 weeks of treatment, Drosophila aged 42 days were evaluated for phototaxis responses. Results: In mouse primary hippocampal neurons, CAW (50 µg/mL), the TT mix, CQA mix, all individual TTs and most CQAs significantly increased dendritic arborization to greater than control levels. However, the TT + CQA combination significantly decreased dendritic arborization. In Drosophila, a marked age-related decline in fast phototaxis response was observed in both males and females over a 60 days period. However, resilience to this decline was afforded in both male and female flies by treatment from 28 days onwards with CAW (10 mg/mL), or equivalent concentrations of mixed TTs, mixed CQAs and a TT + CQA mix. Of all the individual compounds, only 1,5-diCQA slowed age-related decline in phototaxis in male and female flies. Discussion: This study confirmed the ability of CAW to increase mouse neuronal dendritic arborization, and to provide resilience to age-related neurological decline in Drosophila. The TT and CQA components both contribute to these effects but do not have a synergistic effect. While individual TTs and most individual CQAs increased dendritic arborization at CAW equivalent concentrations, in the Drosophila model, only 1,5-diCQA was able to slow down the age-related decline in phototaxis. This suggests that combinations (or potentially higher concentrations) of the other compounds are needed to provide resilience in this model.

20.
Insects ; 15(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921148

RESUMO

Phthorimaea absoluta (Meyrick) is an invasive pest that has caused damage to tomatoes and other crops in China since 2017. Pest control is mainly based on chemical methods that pose significant threats to food safety and environmental and ecological security. Light-induced control, a green prevention and control technology, has gained attention recently. However, current light-trapping technology is non-specific, attracting targeted pests alongside natural enemies and non-target organisms. In this study, we characterized the phototactic behavior of tomato leaf miners for the development a specific light-trapping technology for pest control. In situ hybridization revealed opsin expression throughout the body. Furthermore, we investigated the tropism of pests (wild T. absoluta, Toxoptera graminum, and Bemisia tabaci) and natural enemies (Nesidiocoris tenuis and Trichogramma pintoi) using a wavelength-lamp tropism experiment. We found that 365 ± 5 nm light could accurately trap wild P. absoluta without trapping natural enemies and other insects. Finally, we analyzed the phototactic behavior of the mutant strains LW2(-/-) and BL(-/-). LW2 and BL mutants showed significant differences in phototactic behavior. The LW2(-/-) strain was attracted to light at 390 ± 5 nm and the BL(-/-) strain was unresponsive to any light. Our findings will help to develop specific light-trapping technology for controlling tomato leaf miners, providing a basis for understanding pest population dynamics and protecting crops against natural enemies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA