Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(14): 5859-5865, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35793541

RESUMO

Picocavities are sub-nanometer-scale optical cavities recently found to trap light, which are formed by single-atom defects on metallic facets. Here, we develop simple picocavity models and discuss what is known and unknown about this new domain of atom-scale optics, as well as the challenges for developing comprehensive theories. We provide simple analytic expressions for many of their key properties and discuss a range of applications from molecular electronics to photocatalysis where picocavities are important.


Assuntos
Óptica e Fotônica , Análise Espectral Raman
2.
Nano Lett ; 21(17): 7221-7227, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428071

RESUMO

Optical spectromicroscopies, which can reach atomic resolution due to plasmonic enhancement, are perturbed by spontaneous intensity modifications. Here, we study such fluctuations in plasmonic electroluminescence at the single-atom limit profiting from the precision of a low-temperature scanning tunneling microscope. First, we investigate the influence of a controlled single-atom transfer from the tip to the sample on the plasmonic properties of the junction. Next, we form a well-defined atomic contact of several quanta of conductance. In contact, we observe changes of the electroluminescence intensity that can be assigned to spontaneous modifications of electronic conductance, plasmonic excitation, and optical antenna properties all originating from minute atomic rearrangements at or near the contact. Our observations are relevant for the understanding of processes leading to spontaneous intensity variations in plasmon-enhanced atomic-scale spectroscopies such as intensity blinking in picocavities.

3.
Nano Lett ; 20(8): 5879-5884, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32678605

RESUMO

Tip-enhanced Raman scattering (TERS) in ångström-scale plasmonic cavities has drawn increasing attention. However, Raman scattering at vanishing cavity distances remains unexplored. Here, we show the evolution of TERS in transition from the tunneling regime to atomic point contact (APC). A stable APC is reversibly formed in the junction between an Ag tip and ultrathin ZnO or NaCl films on the Ag(111) surface at 10 K. An abrupt increase of the TERS intensity occurs upon APC formation for ZnO, but not for NaCl. This remarkable observation is rationalized by a difference in hybridization between the Ag tip and these films, which determines the contribution of charge transfer enhancement in the fused plasmonic junction. The strong hybridization between the Ag tip and ZnO is corroborated by the appearance of a new vibrational mode upon APC formation, whereas it is not observed for the chemically inert NaCl.

4.
ACS Nano ; 18(14): 9773-9783, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38529815

RESUMO

In this Perspective, we provide an overview of the core concepts around surface-enhanced Raman spectroscopy (SERS) enhancement factors (EFs), including both theoretical and experimental considerations: EF definitions, the distinction between maximum and average EFs, EF distribution and hot-spot localization, EF measurement and its order of magnitude. We then highlight some of the current challenges in this field, focusing on a selection of topics that we feel are both topical and important: analyte-capture onto a SERS substrate, surface-enhanced resonant Raman scattering, orientation/tensorial effects, and nonradiative effects. We hope this Perspective can provide a platform to reflect on the past 50 years of SERS and its future.

5.
Adv Sci (Weinh) ; 10(11): e2207178, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36737852

RESUMO

Bottom-up assembly of nanoparticle-on-mirror (NPoM) nanocavities enables precise inter-metal gap control down to ≈ 0.4 nm for confining light to sub-nanometer scales, thereby opening opportunities for developing innovative nanophotonic devices. However limited understanding, prediction, and optimization of light coupling and the difficulty of controlling nanoparticle facet shapes restricts the use of such building blocks. Here, an ultraprecise symmetry-breaking plasmonic nanocavity based on gold nanodecahedra is presented, to form the nanodecahedron-on-mirror (NDoM) which shows highly consistent cavity modes and fields. By characterizing > 20 000 individual NDoMs, the variability of light in/output coupling is thoroughly explored and a set of robust higher-order plasmonic whispering gallery modes uniquely localized at the edges of the triangular facet in contact with the metallic substrate is found. Assisted by quasinormal mode simulations, systematic elaboration of NDoMs is proposed to give nanocavities with near hundred-fold enhanced radiative efficiencies. Such systematically designed and precisely-assembled metallic nanocavities will find broad application in nanophotonic devices, optomechanics, and surface science.

6.
ACS Nano ; 17(11): 10172-10180, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37183801

RESUMO

Electromagnetic fields can be confined in the presence of metal nanostructures. Recently, subnanometer scale confinement has been demonstrated to occur at atomic protrusions on plasmonic nanostructures. Such an extreme field may dominate atomic-scale light-matter interactions in "picocavities". However, it remains to be elucidated how atomic-level structures and electron transport affect plasmonic properties of a picocavity. Here, using low-temperature optical scanning tunneling microscopy (STM), we investigate inelastic light scattering (ILS) in the vicinity of a single-atom quantum point contact (QPC). A vibration mode localized at the single Ag adatom on the Ag(111) surface is resolved in the ILS spectrum, resulting from tip-enhanced Raman scattering (TERS) by the atomically confined plasmonic field in the STM junction. Furthermore, we trace how TERS from the single adatom evolves as a function of the gap distance. The exceptional stability of the low-temperature STM allows to examine distinctly different electron transport regimes of the picocavity, namely, in the tunneling and QPC regimes. This measurement shows that the vibration mode localized at the adatom and its TERS intensity exhibits a sharp change upon the QPC formation, indicating that the atomic-level structure has a crucial impact on the plasmonic properties. To gain microscopic insights into picocavity optomechanics, we scrutinize the structure and plasmonic field in the STM junction using time-dependent density functional theory. The simulations reveal that atomic-scale structural relaxation at the single-atom QPC results in a discrete change of the plasmonic field strength, volume, and distribution as well as the vibration mode localized at the single atom. These findings give a qualitative explanation for the experimental observations. Furthermore, we demonstrate that strong ILS is a characteristic feature of QPC by continuously forming, breaking, and reforming the atomic contact and how the plasmonic resonance evolves throughout the nontunneling, tunneling, and QPC regimes.

7.
ACS Nano ; 14(8): 10562-10568, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32687323

RESUMO

Plasmonic nanoconstructs are widely exploited to confine light for applications ranging from quantum emitters to medical imaging and biosensing. However, accessing extreme near-field confinement using the surfaces of metallic nanoparticles often induces permanent structural changes from light, even at low intensities. Here, we report a robust and simple technique to exploit crystal facets and their atomic boundaries to prevent the hopping of atoms along and between facet planes. Avoiding X-ray or electron microscopy techniques that perturb these atomic restructurings, we use elastic and inelastic light scattering to resolve the influence of crystal habit. A clear increase in stability is found for {100} facets with steep inter-facet angles, compared to multiple atomic steps and shallow facet curvature on spherical nanoparticles. Avoiding atomic hopping allows Raman scattering on molecules with low Raman cross-section while circumventing effects of charging and adatom binding, even over long measurement times. These nanoconstructs allow the optical probing of dynamic reconstruction in nanoscale surface science, photocatalysis, and molecular electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA