Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 49(2): 225-234.e4, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30119996

RESUMO

Antiviral immunity in Drosophila involves RNA interference and poorly characterized inducible responses. Here, we showed that two components of the IMD pathway, the kinase dIKKß and the transcription factor Relish, were required to control infection by two picorna-like viruses. We identified a set of genes induced by viral infection and regulated by dIKKß and Relish, which included an ortholog of STING. We showed that dSTING participated in the control of infection by picorna-like viruses, acting upstream of dIKKß to regulate expression of Nazo, an antiviral factor. Our data reveal an antiviral function for STING in an animal model devoid of interferons and suggest an evolutionarily ancient role for this molecule in antiviral immunity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/virologia , Quinase I-kappa B/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Infecções por Picornaviridae/imunologia , Animais , Linhagem Celular , Dicistroviridae/imunologia , Proteínas de Drosophila/genética , Quinase I-kappa B/genética , Proteínas de Membrana/genética , Fatores de Iniciação de Peptídeos/genética , Interferência de RNA , Fatores de Transcrição/metabolismo
2.
J Virol ; 98(7): e0052324, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38837378

RESUMO

The picornavirus genome encodes a large, single polyprotein that is processed by viral proteases to form an active replication complex. The replication complex is formed with the viral genome, host proteins, and viral proteins that are produced/translated directly from each of the viral genomes (viral proteins provided in cis). Efficient complementation in vivo of replication complex formation by viral proteins provided in trans, thus exogenous or ectopically expressed viral proteins, remains to be demonstrated. Here, we report an efficient trans complementation system for the replication of defective poliovirus (PV) mutants by a viral polyprotein precursor in HEK293 cells. Viral 3AB in the polyprotein, but not 2BC, was processed exclusively in cis. Replication of a defective PV replicon mutant, with a disrupted cleavage site for viral 3Cpro protease between 3Cpro and 3Dpol (3C/D[A/G] mutant) could be rescued by a viral polyprotein provided in trans. Only a defect of 3Dpol activity of the replicon could be rescued in trans; inactivating mutations in 2CATPase/hel, 3B, and 3Cpro of the replicon completely abrogated the trans-rescued replication. An intact N-terminus of the 3Cpro domain of the 3CDpro provided in trans was essential for the trans-active function. By using this trans complementation system, a high-titer defective PV pseudovirus (PVpv) (>107 infectious units per mL) could be produced with the defective mutants, whose replication was completely dependent on trans complementation. This work reveals potential roles of exogenous viral proteins in PV replication and offers insights into protein/protein interaction during picornavirus infection. IMPORTANCE: Viral polyprotein processing is an elaborately controlled step by viral proteases encoded in the polyprotein; fully processed proteins and processing intermediates need to be correctly produced for replication, which can be detrimentally affected even by a small modification of the polyprotein. Purified/isolated viral proteins can retain their enzymatic activities required for viral replication, such as protease, helicase, polymerase, etc. However, when these proteins of picornavirus are exogenously provided (provided in trans) to the viral replication complex with a defective viral genome, replication is generally not rescued/complemented, suggesting the importance of viral proteins endogenously provided (provided in cis) to the replication complex. In this study, I discovered that only the viral polymerase activity of poliovirus (PV) (the typical member of picornavirus family) could be efficiently rescued by exogenously expressed viral proteins. The current study reveals potential roles for exogenous viral proteins in viral replication and offers insights into interactions during picornavirus infection.


Assuntos
Poliovirus , Proteínas Virais , Replicação Viral , Poliovirus/genética , Poliovirus/fisiologia , Replicação Viral/genética , Humanos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Células HEK293 , Mutação , Teste de Complementação Genética , Poliproteínas/metabolismo , Poliproteínas/genética , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Proteases Virais 3C
3.
J Virol ; 98(7): e0049824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953667

RESUMO

Coxsackievirus B3 (CVB3) encodes proteinases that are essential for processing of the translated viral polyprotein. Viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. While some host protein substrates of the CVB3 3C and 2A cysteine proteinases have been identified, the full repertoire of targets is not known. Here, we utilize an unbiased quantitative proteomics-based approach termed terminal amine isotopic labeling of substrates (TAILS) to conduct a global analysis of CVB3 protease-generated N-terminal peptides in both human HeLa and mouse cardiomyocyte (HL-1) cell lines infected with CVB3. We identified >800 proteins that are cleaved in CVB3-infected HeLa and HL-1 cells including the viral polyprotein, known substrates of viral 3C proteinase such as PABP, DDX58, and HNRNPs M, K, and D and novel cellular proteins. Network and GO-term analysis showed an enrichment in biological processes including immune response and activation, RNA processing, and lipid metabolism. We validated a subset of candidate substrates that are cleaved under CVB3 infection and some are direct targets of 3C proteinase in vitro. Moreover, depletion of a subset of TAILS-identified target proteins decreased viral yield. Characterization of two target proteins showed that expression of 3Cpro-targeted cleaved fragments of emerin and aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 modulated autophagy and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, respectively. The comprehensive identification of host proteins targeted during virus infection provides insights into the cellular pathways manipulated to facilitate infection. IMPORTANCE: RNA viruses encode proteases that are responsible for processing viral proteins into their mature form. Viral proteases also target and cleave host cellular proteins; however, the full catalog of these target proteins is incomplete. We use a technique called terminal amine isotopic labeling of substrates (TAILS), an N-terminomics to identify host proteins that are cleaved under virus infection. We identify hundreds of cellular proteins that are cleaved under infection, some of which are targeted directly by viral protease. Revealing these target proteins provides insights into the host cellular pathways and antiviral signaling factors that are modulated to promote virus infection and potentially leading to virus-induced pathogenesis.


Assuntos
Infecções por Coxsackievirus , Enterovirus Humano B , Proteólise , Enterovirus Humano B/metabolismo , Humanos , Camundongos , Animais , Células HeLa , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/metabolismo , Proteínas Virais/metabolismo , Proteômica/métodos , Interações Hospedeiro-Patógeno , Proteases Virais 3C/metabolismo , Linhagem Celular , Proteases Virais/metabolismo , Poliproteínas/metabolismo
4.
J Virol ; 98(7): e0055624, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38888347

RESUMO

Enterovirus D68 (EV-D68) is a picornavirus associated with severe respiratory illness and a paralytic disease called acute flaccid myelitis in infants. Currently, no protective vaccines or antivirals are available to combat this virus. Like other enteroviruses, EV-D68 uses components of the cellular autophagy pathway to rewire membranes for its replication. Here, we show that transcription factor EB (TFEB), the master transcriptional regulator of autophagy and lysosomal biogenesis, is crucial for EV-D68 infection. Knockdown of TFEB attenuated EV-D68 genomic RNA replication but did not impact viral binding or entry into host cells. The 3C protease of EV-D68 cleaves TFEB at the N-terminus at glutamine 60 (Q60) immediately post-peak viral RNA replication, disrupting TFEB-RagC interaction and restricting TFEB transport to the surface of the lysosome. Despite this, TFEB remained mostly cytosolic during EV-D68 infection. Overexpression of a TFEB mutant construct lacking the RagC-binding domain, but not the wild-type construct, blocks autophagy and increases EV-D68 nonlytic release in H1HeLa cells but not in autophagy-defective ATG7 KO H1HeLa cells. Our results identify TFEB as a vital host factor regulating multiple stages of the EV-D68 lifecycle and suggest that TFEB could be a promising target for antiviral development against EV-D68. IMPORTANCE: Enteroviruses are among the most significant causes of human disease. Some enteroviruses are responsible for severe paralytic diseases such as poliomyelitis or acute flaccid myelitis. The latter disease is associated with multiple non-polio enterovirus species, including enterovirus D68 (EV-D68), enterovirus 71, and coxsackievirus B3 (CVB3). Here, we demonstrate that EV-D68 interacts with a host transcription factor, transcription factor EB (TFEB), to promote viral RNA(vRNA) replication and regulate the egress of virions from cells. TFEB was previously implicated in the viral egress of CVB3, and the viral protease 3C cleaves TFEB during infection. Here, we show that EV-D68 3C protease also cleaves TFEB after the peak of vRNA replication. This cleavage disrupts TFEB interaction with the host protein RagC, which changes the localization and regulation of TFEB. TFEB lacking a RagC-binding domain inhibits autophagic flux and promotes virus egress. These mechanistic insights highlight how common host factors affect closely related, medically important viruses differently.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Enterovirus Humano D , Infecções por Enterovirus , Replicação Viral , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Humanos , Enterovirus Humano D/fisiologia , Enterovirus Humano D/metabolismo , Enterovirus Humano D/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Proteases Virais 3C/metabolismo , Lisossomos/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Mielite/metabolismo , Mielite/virologia , Ligação Proteica , Células HEK293 , Doenças Neuromusculares , Viroses do Sistema Nervoso Central
5.
FASEB J ; 38(14): e23822, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39072864

RESUMO

Secondary and tertiary RNA structures play key roles in genome replication of single-stranded positive sense RNA viruses. Complex, functional structures are particularly abundant in the untranslated regions of picornaviruses, where they are involved in initiation of translation, priming of new strand synthesis and genome circularization. The 5' UTR of foot-and-mouth disease virus (FMDV) is predicted to include a c. 360 nucleotide-long stem-loop, termed the short (S) fragment. This structure is highly conserved and essential for viral replication, but the precise function(s) are unclear. Here, we used selective 2' hydroxyl acetylation analyzed by primer extension (SHAPE) to experimentally determine aspects of the structure, alongside comparative genomic analyses to confirm structure conservation from a wide range of field isolates. To examine its role in virus replication in cell culture, we introduced a series of deletions to the distal and proximal regions of the stem-loop. These truncations affected genome replication in a size-dependent and, in some cases, host cell-dependent manner. Furthermore, during the passage of viruses incorporating the largest tolerated deletion from the proximal region of the S fragment stem-loop, an additional mutation was selected in the viral RNA-dependent RNA polymerase, 3Dpol. These data suggest that the S fragment and 3Dpol interact in the formation of the FMDV replication complex.


Assuntos
Vírus da Febre Aftosa , Conformação de Ácido Nucleico , RNA Viral , Replicação Viral , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/fisiologia , Replicação Viral/genética , RNA Viral/genética , RNA Viral/metabolismo , Animais , Regiões 5' não Traduzidas , Febre Aftosa/virologia , Genoma Viral , Linhagem Celular , Cricetinae
6.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091472

RESUMO

Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Bactérias/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Evolução Biológica , Linhagem Celular , Regulação Viral da Expressão Gênica/genética , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Proteínas Imediatamente Precoces/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Viroses/genética , Viroses/metabolismo , Replicação Viral/fisiologia , Vírus/patogenicidade
7.
Proc Natl Acad Sci U S A ; 119(28): e2204511119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867748

RESUMO

Despite excellent vaccines, resurgent outbreaks of hepatitis A have caused thousands of hospitalizations and hundreds of deaths within the United States in recent years. There is no effective antiviral therapy for hepatitis A, and many aspects of the hepatitis A virus (HAV) replication cycle remain to be elucidated. Replication requires the zinc finger protein ZCCHC14 and noncanonical TENT4 poly(A) polymerases with which it associates, but the underlying mechanism is unknown. Here, we show that ZCCHC14 and TENT4A/B are required for viral RNA synthesis following translation of the viral genome in infected cells. Cross-linking immunoprecipitation sequencing (CLIP-seq) experiments revealed that ZCCHC14 binds a small stem-loop in the HAV 5' untranslated RNA possessing a Smaug recognition-like pentaloop to which it recruits TENT4. TENT4 polymerases lengthen and stabilize the 3' poly(A) tails of some cellular and viral mRNAs, but the chemical inhibition of TENT4A/B with the dihydroquinolizinone RG7834 had no impact on the length of the HAV 3' poly(A) tail, stability of HAV RNA, or cap-independent translation of the viral genome. By contrast, RG7834 inhibited the incorporation of 5-ethynyl uridine into nascent HAV RNA, indicating that TENT4A/B function in viral RNA synthesis. Consistent with potent in vitro antiviral activity against HAV (IC50 6.11 nM), orally administered RG7834 completely blocked HAV infection in Ifnar1-/- mice, and sharply reduced serum alanine aminotransferase activities, hepatocyte apoptosis, and intrahepatic inflammatory cell infiltrates in mice with acute hepatitis A. These results reveal requirements for ZCCHC14-TENT4A/B in hepatovirus RNA synthesis, and suggest that TENT4A/B inhibitors may be useful for preventing or treating hepatitis A in humans.


Assuntos
Proteínas Cromossômicas não Histona , DNA Polimerase Dirigida por DNA , Vírus da Hepatite A , Hepatite A , Proteínas Intrinsicamente Desordenadas , RNA Nucleotidiltransferases , RNA Viral , Replicação Viral , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Proteínas Cromossômicas não Histona/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Hepatite A/tratamento farmacológico , Hepatite A/metabolismo , Hepatite A/virologia , Vírus da Hepatite A/efeitos dos fármacos , Vírus da Hepatite A/genética , Vírus da Hepatite A/fisiologia , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Camundongos Mutantes , RNA Nucleotidiltransferases/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Receptor de Interferon alfa e beta/genética , Replicação Viral/efeitos dos fármacos
8.
J Biol Chem ; 299(11): 105287, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742919

RESUMO

The integrated stress response (ISR) protects cells from a variety of insults. Once elicited (e.g., by virus infections), it eventually leads to the block of mRNA translation. Central to the ISR are the interactions between translation initiation factors eIF2 and eIF2B. Under normal conditions, eIF2 drives the initiation of protein synthesis through hydrolysis of GTP, which becomes replenished by the guanine nucleotide exchange factor eIF2B. The antiviral branch of the ISR is activated by the RNA-activated kinase PKR which phosphorylates eIF2, thereby converting it into an eIF2B inhibitor. Here, we describe the recently solved structures of eIF2B in complex with eIF2 and a novel escape strategy used by viruses. While unphosphorylated eIF2 interacts with eIF2B in its "productive" conformation, phosphorylated eIF2 [eIF2(αP)] engages a different binding cavity on eIF2B and forces it into the "nonproductive" conformation that prohibits guanine nucleotide exchange factor activity. It is well established that viruses express so-called PKR antagonists that interfere with double-strand RNA, PKR itself, or eIF2. However recently, three taxonomically unrelated viruses were reported to encode antagonists targeting eIF2B instead. For one antagonist, the S segment nonstructural protein of Sandfly fever Sicilian virus, atomic structures showed that it occupies the eIF2(αP)-binding cavity on eIF2B without imposing a switch to the nonproductive conformation. S segment nonstructural protein thus antagonizes the activity of PKR by protecting eIF2B from inhibition by eIF2(αP). As the ISR and specifically eIF2B are central to neuroprotection and a wide range of genetic and age-related diseases, these developments may open new possibilities for treatments.


Assuntos
Fator de Iniciação 2B em Eucariotos , Fator de Iniciação 2 em Eucariotos , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosforilação , Biossíntese de Proteínas , RNA/metabolismo , Humanos , Animais
9.
J Virol ; 97(1): e0142622, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36475766

RESUMO

Group B enteroviruses, including coxsackievirus B3 (CVB3), can persistently infect cardiac tissue and cause dilated cardiomyopathy. Persistence is linked to 5' terminal deletions of viral genomic RNAs that have been detected together with minor populations of full-length genomes in human infections. In this study, we explored the functions and interactions of the different viral RNA forms found in persistently infected patients and their putative role(s) in pathogenesis. Since enterovirus cardiac pathogenesis is linked to the viral proteinase 2A, we investigated the effect of different terminal genomic RNA deletions on 2A activity. We discovered that 5' terminal deletions in CVB3 genomic RNAs decreased the levels of 2A proteinase activity but could not abrogate it. Using newly generated viral reporters encoding nano-luciferase, we found that 5' terminal deletions resulted in decreased levels of viral protein and RNA synthesis in singly transfected cardiomyocyte cultures. Unexpectedly, when full-length and terminally deleted forms were cotransfected into cardiomyocytes, a cooperative interaction was observed, leading to increased viral RNA and protein production. However, when viral infections were carried out in cells harboring 5' terminally deleted CVB3 RNAs, a decrease in infectious particle production was observed. Our results provide a possible explanation for the necessity of full-length viral genomes during persistent infection, as they would stimulate efficient viral replication compared to that of the deleted genomes alone. To avoid high levels of viral particle production that would trigger cellular immune activation and host cell death, the terminally deleted RNA forms act to limit the production of viral particles, possibly as trans-dominant inhibitors. IMPORTANCE Enteroviruses like coxsackievirus B3 are able to initiate acute infections of cardiac tissue and, in some cases, to establish a long-term persistent infection that can lead to serious disease sequelae, including dilated cardiomyopathy. Previous studies have demonstrated the presence of 5' terminally deleted forms of enterovirus RNAs in heart tissues derived from patients with dilated cardiomyopathy. These deleted RNAs are found in association with very low levels of full-length enterovirus genomic RNAs, an interaction that may facilitate continued persistence while limiting virus particle production. Even in the absence of detectable infectious virus particle production, these deleted viral RNA forms express viral proteinases at levels capable of causing viral pathology. Our studies provide mechanistic insights into how full-length and deleted forms of enterovirus RNA cooperate to stimulate viral protein and RNA synthesis without stimulating infectious viral particle production. They also highlight the importance of targeting enteroviral proteinases to inhibit viral replication while at the same time limiting the long-term pathologies they trigger.


Assuntos
Cardiomiopatia Dilatada , Infecções por Coxsackievirus , Enterovirus Humano B , Humanos , Antígenos Virais , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/virologia , Infecções por Coxsackievirus/complicações , Enterovirus Humano B/metabolismo , Genômica , Miócitos Cardíacos/virologia , Peptídeo Hidrolases , Infecção Persistente , RNA Viral/genética , Proteínas Virais/metabolismo , Replicação Viral
10.
J Virol ; 97(5): e0017123, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37154761

RESUMO

Foot-and-mouth disease virus (FMDV) is a picornavirus, which infects cloven-hoofed animals to cause foot-and-mouth disease (FMD). The positive-sense RNA genome contains a single open reading frame, which is translated as a polyprotein that is cleaved by viral proteases to produce the viral structural and nonstructural proteins. Initial processing occurs at three main junctions to generate four primary precursors; Lpro and P1, P2, and P3 (also termed 1ABCD, 2BC, and 3AB1,2,3CD). The 2BC and 3AB1,2,3CD precursors undergo subsequent proteolysis to generate the proteins required for viral replication, including the enzymes 2C, 3Cpro, and 3Dpol. These precursors can be processed through both cis and trans (i.e., intra- and intermolecular proteolysis) pathways, which are thought to be important for controlling virus replication. Our previous studies suggested that a single residue in the 3B3-3C junction has an important role in controlling 3AB1,2,3CD processing. Here, we use in vitro based assays to show that a single amino acid substitution at the 3B3-3C boundary increases the rate of proteolysis to generate a novel 2C-containing precursor. Complementation assays showed that while this amino acid substitution enhanced production of some nonenzymatic nonstructural proteins, those with enzymatic functions were inhibited. Interestingly, replication could only be supported by complementation with mutations in cis acting RNA elements, providing genetic evidence for a functional interaction between replication enzymes and RNA elements. IMPORTANCE Foot-and-mouth disease virus (FMDV) is responsible for foot-and-mouth disease (FMD), an important disease of farmed animals, which is endemic in many parts of the world and can results in major economic losses. Replication of the virus occurs within membrane-associated compartments in infected cells and requires highly coordinated processing events to produce an array of nonstructural proteins. These are initially produced as a polyprotein that undergoes proteolysis likely through both cis and trans alternative pathways (i.e., intra- and intermolecular proteolysis). The role of alternative processing pathways may help coordination of viral replication by providing temporal control of protein production and here we analyze the consequences of amino acid substitutions that change these pathways in FMDV. Our data suggest that correct processing is required to produce key enzymes for replication in an environment in which they can interact with essential viral RNA elements. These data further the understanding of RNA genome replication.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/metabolismo , Poliproteínas/genética , Poliproteínas/metabolismo , Replicação Viral/genética , Proteínas não Estruturais Virais/metabolismo , RNA/metabolismo
11.
J Virol ; 97(12): e0092823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38047713

RESUMO

IMPORTANCE: Most protease-targeted antiviral development evaluates the ability of small molecules to inhibit the cleavage of artificial substrates. However, before they can cleave any other substrates, viral proteases need to cleave themselves out of the viral polyprotein in which they have been translated. This can occur either intra- or inter-molecularly. Whether this process occurs intra- or inter-molecularly has implications for the potential for precursors to accumulate and for the effectiveness of antiviral drugs. We argue that evaluating candidate antivirals for their ability to block these cleavages is vital to drug development because the buildup of uncleaved precursors can be inhibitory to the virus and potentially suppress the selection of drug-resistant variants.


Assuntos
Antivirais , Enterovirus , Inibidores de Protease Viral , Proteases Virais , Antivirais/farmacologia , Antivirais/química , Proteólise , Proteases Virais/metabolismo , Inibidores de Protease Viral/farmacologia , Enterovirus/efeitos dos fármacos , Enterovirus/fisiologia , Poliproteínas/metabolismo
12.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542433

RESUMO

Theiler's murine encephalomyelitis virus (TMEV) infection has been used as a mouse model for two virus-induced organ-specific immune-mediated diseases. TMEV-induced demyelinating disease (TMEV-IDD) in the central nervous system (CNS) is a chronic inflammatory disease with viral persistence and an animal model of multiple sclerosis (MS) in humans. TMEV infection can also cause acute myocarditis with viral replication and immune cell infiltration in the heart, leading to cardiac fibrosis. Since platelets have been reported to modulate immune responses, we aimed to determine the role of platelets in TMEV infection. In transcriptome analyses of platelets, distinct sets of immune-related genes, including major histocompatibility complex (MHC) class I, were up- or downregulated in TMEV-infected mice at different time points. We depleted platelets from TMEV-infected mice by injecting them with platelet-specific antibodies. The platelet-depleted mice had significantly fewer viral antigen-positive cells in the CNS. Platelet depletion reduced the severities of TMEV-IDD and myocarditis, although the pathology scores did not reach statistical significance. Immunologically, the platelet-depleted mice had an increase in interferon (IFN)-γ production with a higher anti-TMEV IgG2a/IgG1 ratio. Thus, platelets may play roles in TMEV infection, such as gene expression, viral clearance, and anti-viral antibody isotype responses.


Assuntos
Esclerose Múltipla , Miocardite , Humanos , Camundongos , Animais , Miocardite/etiologia , Miocardite/metabolismo , Sistema Nervoso Central/metabolismo , Esclerose Múltipla/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Doença Crônica
13.
J Infect Dis ; 227(2): 278-287, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35867852

RESUMO

BACKGROUND: A novel human parechovirus 3 Australian recombinant (HPeV3-AR) strain emerged in 2013 and coincided with biennial outbreaks of sepsis-like illnesses in infants. We evaluated the molecular evolution of the HPeV3-AR strain and its association with severe HPeV infections. METHODS: HPeV3-positive samples collected from hospitalized infants aged 5-252 days in 2 Australian states (2013-2020) and from a community-based birth cohort (2010-2014) were sequenced. Coding regions were used to conduct phylogenetic and evolutionary analyses. A recombinant-specific polymerase chain reaction was designed and utilized to screen all clinical and community HPeV3-positive samples. RESULTS: Complete coding regions of 54 cases were obtained, which showed the HPeV3-AR strain progressively evolving, particularly in the 3' end of the nonstructural genes. The HPeV3-AR strain was not detected in the community birth cohort until the initial outbreak in late 2013. High-throughput screening showed that most (>75%) hospitalized HPeV3 cases involved the AR strain in the first 3 clinical outbreaks, with declining prevalence in the 2019-2020 season. The AR strain was not statistically associated with increased clinical severity among hospitalized infants. CONCLUSIONS: HPeV3-AR was the dominant strain during the study period. Increased hospital admissions may have been from a temporary fitness advantage and/or increased virulence.


Assuntos
Parechovirus , Infecções por Picornaviridae , Lactente , Humanos , Parechovirus/genética , Filogenia , Austrália/epidemiologia , Recombinação Genética
14.
J Biol Chem ; 298(6): 101882, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35367208

RESUMO

Picornaviruses are small RNA viruses that hijack host cell machinery to promote their replication. During infection, these viruses express two proteases, 2Apro and 3Cpro, which process viral proteins. They also subvert a number of host functions, including innate immune responses, host protein synthesis, and intracellular transport, by utilizing poorly understood mechanisms for rapidly and specifically targeting critical host proteins. Here, we used proteomic tools to characterize 2Apro interacting partners, functions, and targeting mechanisms. Our data indicate that, initially, 2Apro primarily targets just two cellular proteins: eukaryotic translation initiation factor eIF4G (a critical component of the protein synthesis machinery) and Nup98 (an essential component of the nuclear pore complex, responsible for nucleocytoplasmic transport). The protease appears to employ two different cleavage mechanisms; it likely interacts with eIF3L, utilizing the eIF3 complex to proteolytically access the eIF4G protein but also directly binds and degrades Nup98. This Nup98 cleavage results in only a marginal effect on nuclear import of proteins, while nuclear export of proteins and mRNAs were more strongly affected. Collectively, our data indicate that 2Apro selectively inhibits protein translation, key nuclear export pathways, and cellular mRNA localization early in infection to benefit viral replication at the expense of particular cell functions.


Assuntos
Peptídeo Hidrolases , Picornaviridae , Fator de Iniciação Eucariótico 4G/metabolismo , Peptídeo Hidrolases/metabolismo , Picornaviridae/enzimologia , Picornaviridae/genética , Proteômica , RNA Mensageiro/metabolismo
15.
J Cell Sci ; 134(5)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692152

RESUMO

The protease 3C is encoded by all known picornaviruses, and the structural features related to its protease and RNA-binding activities are conserved; these contribute to the cleavage of viral polyproteins and the assembly of the viral RNA replication complex during virus replication. Furthermore, 3C performs functions in the host cell through its interaction with host proteins. For instance, 3C has been shown to selectively 'hijack' host factors involved in gene expression, promoting picornavirus replication, and to inactivate key factors in innate immunity signaling pathways, inhibiting the production of interferon and inflammatory cytokines. Importantly, 3C maintains virus infection by subtly subverting host cell death and modifying critical molecules in host organelles. This Review focuses on the molecular mechanisms through which 3C mediates physiological processes involved in virus-host interaction, thus highlighting the picornavirus-mediated pathogenesis caused by 3C.


Assuntos
Peptídeo Hidrolases , Picornaviridae , Cisteína Endopeptidases/genética , Picornaviridae/genética , Proteínas Virais/genética , Replicação Viral
16.
J Virol ; 96(21): e0119522, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36286484

RESUMO

Hepatoviruses are atypical hepatotropic picornaviruses that are released from infected cells without lysis in small membranous vesicles. These exosome-like, quasi-enveloped virions (eHAV) are infectious and the only form of hepatitis A virus (HAV) found circulating in blood during acute infection. eHAV is released through multivesicular endosomes in a process dependent on endosomal sorting complexes required for transport (ESCRT). Capsid protein interactions with the ESCRT-associated Bro1 domain proteins, ALG-2-interacting protein X (ALIX) and His domain-containing protein tyrosine phosphatase (HD-PTP), which are both recruited to the pX domain of 1D (VP1pX), are critical for this process. Previous proteomics studies suggest pX also binds the HECT domain, NEDD4 family E3 ubiquitin ligase, ITCH. Here, we confirm this interaction and show ITCH binds directly to the carboxy-terminal half of pX from both human and bat hepatoviruses independently of ALIX. A small chemical compound (compound 5) designed to disrupt interactions between WW domains of NEDD4 ligases and substrate molecules blocked ITCH binding to pX and demonstrated substantial antiviral activity against HAV. CRISPR deletion or small interfering RNA (siRNA) knockdown of ITCH expression inhibited the release of a self-assembling nanocage protein fused to pX and also impaired the release of eHAV from infected cells. The release could be rescued by overexpression of wild-type ITCH, but not a catalytically inactive ITCH mutant. Despite this, we found no evidence that ITCH ubiquitylates pX or that eHAV release is strongly dependent upon Lys residues in pX. These data indicate ITCH plays an important role in the ESCRT-dependent release of quasi-enveloped hepatovirus, although the substrate molecule targeted for ubiquitylation remains to be determined. IMPORTANCE Mechanisms underlying the cellular release of quasi-enveloped hepatoviruses are only partially understood, yet play a crucial role in the pathogenesis of this common agent of viral hepatitis. Multiple NEDD4 family E3 ubiquitin ligases, including ITCH, have been reported to promote the budding of conventional enveloped viruses but are not known to function in the release of HAV or other picornaviruses from infected cells. Here, we show that the unique C-terminal pX extension of the VP1 capsid protein of HAV interacts directly with ITCH and that ITCH promotes eHAV release in a manner analogous to its role in budding of some conventional enveloped viruses. The catalytic activity of ITCH is required for efficient eHAV release and may potentially function to ubiquitylate the viral capsid or activate ESCRT components.


Assuntos
Vírus da Hepatite A , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Hepatovirus/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vírus da Hepatite A/fisiologia , Ubiquitina-Proteína Ligases Nedd4/metabolismo
17.
J Virol ; 96(7): e0008222, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293769

RESUMO

Kobuviruses are an unusual and poorly characterized genus within the picornavirus family and can cause gastrointestinal enteric disease in humans, livestock, and pets. The human kobuvirus Aichi virus (AiV) can cause severe gastroenteritis and deaths in children below the age of 5 years; however, this is a very rare occurrence. During the assembly of most picornaviruses (e.g., poliovirus, rhinovirus, and foot-and-mouth disease virus), the capsid precursor protein VP0 is cleaved into VP4 and VP2. However, kobuviruses retain an uncleaved VP0. From studies with other picornaviruses, it is known that VP4 performs the essential function of pore formation in membranes, which facilitates transfer of the viral genome across the endosomal membrane and into the cytoplasm for replication. Here, we employ genome exposure and membrane interaction assays to demonstrate that pH plays a critical role in AiV uncoating and membrane interactions. We demonstrate that incubation at low pH alters the exposure of hydrophobic residues within the capsid, enhances genome exposure, and enhances permeabilization of model membranes. Furthermore, using peptides we demonstrate that the N terminus of VP0 mediates membrane pore formation in model membranes, indicating that this plays an analogous function to VP4. IMPORTANCE To initiate infection, viruses must enter a host cell and deliver their genome into the appropriate location. The picornavirus family of small nonenveloped RNA viruses includes significant human and animal pathogens and is also a model to understand the process of cell entry. Most picornavirus capsids contain the internal protein VP4, generated from cleavage of a VP0 precursor. During entry, VP4 is released from the capsid. In enteroviruses this forms a membrane pore, which facilitates genome release into the cytoplasm. Due to high levels of sequence similarity, it is expected to play the same role for other picornaviruses. Some picornaviruses, such as Aichi virus, retain an intact VP0, and it is unknown how these viruses rearrange their capsids and induce membrane permeability in the absence of VP4. Here, we have used Aichi virus as a model VP0 virus to test for conservation of function between VP0 and VP4. This could enhance understanding of pore function and lead to development of novel therapeutic agents that block entry.


Assuntos
Kobuvirus , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Humanos , Kobuvirus/genética , Kobuvirus/metabolismo , Internalização do Vírus
18.
J Virol ; 96(13): e0073622, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35727031

RESUMO

Senecavirus A (SVA) is an emerging picornavirus infecting porcine of all age groups and causing foot and mouth disease (FMD)-like symptoms. One of its key enzymes is the 3C protease (3Cpro), which is similar to other picornaviruses and essential for virus maturation by controlling polyprotein cleavage and RNA replication. In this study, we reported the crystal structure of SVA 3Cpro at a resolution of 1.9 Å and a thorough structural comparison against all published picornavirus 3Cpro structures. Using statistical and graphical visualization techniques, we also investigated the sequence specificity of the 3Cpro. The structure revealed that SVA 3Cpro adopted a typical chymotrypsin-like fold with the S1 subsite as the most conservative site among picornavirus 3Cpro. The surface loop, A1-B1 hairpin, adopted a novel conformation in SVA 3Cpro and formed a positively charged protrusion around S' subsites. Correspondingly, SVA scissile bonds preferred Asp rather than neutral amino acids at P3' and P4'. Moreover, SVA 3Cpro showed a wide range tolerance to P4 residue volume (acceptable range: 67 Å3 to 141 Å3), such as aromatic side chain, in contrast to other picornaviruses. In summary, our results provided valuable information for understanding the cleavage pattern of 3Cpro. IMPORTANCE Picornaviridae is a group of RNA viruses that harm both humans and livestock. 3Cpro is an essential enzyme for picornavirus maturation, which makes it a promising target for antiviral drug development and a critical component for virus-like particle (VLP) production. However, the current challenge in the development of antiviral drugs and VLP vaccines includes the limited knowledge of how subsite structure determines the 3Cpro cleavage pattern. Thus, an extensive comparative study of various picornaviral 3Cpro was required. Here, we showed the 1.9 Å crystal structure of SVA 3Cpro. The structure revealed similarities and differences in the substrate-binding groove among picornaviruses, providing new insights into the development of inhibitors and VLP.


Assuntos
Proteases Virais 3C , Picornaviridae , Proteases Virais 3C/química , Proteases Virais 3C/metabolismo , Animais , Antivirais/farmacologia , Humanos , Picornaviridae/química , Picornaviridae/enzimologia , Suínos
19.
J Virol ; 96(2): e0106021, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34705560

RESUMO

Rhinoviruses (RVs) cause recurrent infections of the nasal and pulmonary tracts, life-threatening conditions in chronic respiratory illness patients, predisposition of children to asthmatic exacerbation, and large economic cost. RVs are difficult to treat. They rapidly evolve resistance and are genetically diverse. Here, we provide insight into RV drug resistance mechanisms against chemical compounds neutralizing low pH in endolysosomes. Serial passaging of RV-A16 in the presence of the vacuolar proton ATPase inhibitor bafilomycin A1 (BafA1) or the endolysosomotropic agent ammonium chloride (NH4Cl) promoted the emergence of resistant virus populations. We found two reproducible point mutations in viral proteins 1 and 3 (VP1 and VP3), A2526G (serine 66 to asparagine [S66N]), and G2274U (cysteine 220 to phenylalanine [C220F]), respectively. Both mutations conferred cross-resistance to BafA1, NH4Cl, and the protonophore niclosamide, as identified by massive parallel sequencing and reverse genetics, but not the double mutation, which we could not rescue. Both VP1-S66 and VP3-C220 locate at the interprotomeric face, and their mutations increase the sensitivity of virions to low pH, elevated temperature, and soluble intercellular adhesion molecule 1 receptor. These results indicate that the ability of RV to uncoat at low endosomal pH confers virion resistance to extracellular stress. The data endorse endosomal acidification inhibitors as a viable strategy against RVs, especially if inhibitors are directly applied to the airways. IMPORTANCE Rhinoviruses (RVs) are the predominant agents causing the common cold. Anti-RV drugs and vaccines are not available, largely due to rapid evolutionary adaptation of RVs giving rise to resistant mutants and an immense diversity of antigens in more than 160 different RV types. In this study, we obtained insight into the cell biology of RVs by harnessing the ability of RVs to evolve resistance against host-targeting small chemical compounds neutralizing endosomal pH, an important cue for uncoating of normal RVs. We show that RVs grown in cells treated with inhibitors of endolysosomal acidification evolved capsid mutations yielding reduced virion stability against elevated temperature, low pH, and incubation with recombinant soluble receptor fragments. This fitness cost makes it unlikely that RV mutants adapted to neutral pH become prevalent in nature. The data support the concept of host-directed drug development against respiratory viruses in general, notably at low risk of gain-of-function mutations.


Assuntos
Capsídeo/química , Mutação/efeitos dos fármacos , Rhinovirus/fisiologia , Desenvelopamento do Vírus/fisiologia , Antivirais/farmacologia , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Endossomos/química , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Molécula 1 de Adesão Intercelular/metabolismo , Conformação Proteica , Rhinovirus/química , Rhinovirus/efeitos dos fármacos , Rhinovirus/genética , Vírion/química , Vírion/genética , Vírion/metabolismo , Internalização do Vírus/efeitos dos fármacos , Desenvelopamento do Vírus/efeitos dos fármacos , Desenvelopamento do Vírus/genética
20.
RNA Biol ; 20(1): 548-562, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37534989

RESUMO

The genomic arrangement of most picornavirus of the Picornaviridae family shares a similar monocistronic genomic pattern and a defining organizational feature. A defining feature of picornavirus is the presence of evolutionarily conserved and highly-structured RNA elements in untranslated regions (UTRs) at the genome' 5'and 3' ends, essential for viral replication and translation. Given the diversity and complexity of RNA structure and the limitations of molecular biology techniques, the functional characterization and biological significance of UTRs remain to be fully elucidated, especially for 5' UTR. Here, we summarize the current knowledge of the 5' UTR of picornavirus. This review focuses on the structural characterization and the biological function of the RNA secondary and tertiary structures in the 5' UTR of picornavirus. Understanding the role of the 5' UTR of picornavirus can provide a deep insight into the viral replication cycle and pathogenic mechanisms.


Assuntos
Picornaviridae , Ribossomos , Regiões 5' não Traduzidas , Ribossomos/genética , Conformação de Ácido Nucleico , Picornaviridae/genética , Picornaviridae/química , RNA Viral/genética , RNA Viral/química , Regiões 3' não Traduzidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA