Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 56, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368375

RESUMO

BACKGROUND: Polyhydroxybutyrate (PHB) has emerged as a promising eco-friendly alternative to traditional petrochemical-based plastics. In the present study, we isolated and characterized a new strain of Salinicola salarius, a halophilic bacterium, from the New Suez Canal in Egypt and characterized exclusively as a potential PHB producer. Further genome analysis of the isolated strain, ES021, was conducted to identify and elucidate the genes involved in PHB production. RESULTS: Different PHB-producing marine bacteria were isolated from the New Suez Canal and characterized as PHB producers. Among the 17 bacterial isolates, Salinicola salarius ES021 strain showed the capability to accumulate the highest amount of PHB. Whole genome analysis was implemented to identify the PHB-related genes in Salinicola salarius ES021 strain. Putative genes were identified that can function as phaCAB genes to produce PHB in this strain. These genes include fadA, fabG, and P3W43_16340 (encoding acyl-CoA thioesterase II) for PHB production from glucose. Additionally, phaJ and fadB were identified as key genes involved in PHB production from fatty acids. Optimization of environmental factors such as shaking rate and incubation temperature, resulted in the highest PHB productivity when growing Salinicola salarius ES021 strain at 30°C on a shaker incubator (110 rpm) for 48 h. To maximize PHB production economically, different raw materials i.e., salted whey and sugarcane molasses were examined as cost-effective carbon sources. The PHB productivity increased two-fold (13.34 g/L) when using molasses (5% sucrose) as a fermentation media. This molasses medium was used to upscale PHB production in a 20 L stirred-tank bioreactor yielding a biomass of 25.12 g/L, and PHB of 12.88 g/L. Furthermore, the produced polymer was confirmed as PHB using Fourier-transform infrared spectroscopy (FTIR), gas chromatography-mass spectroscopy (GC-MS), and nuclear magnetic resonance spectroscopy (NMR) analyses. CONCLUSIONS: Herein, Salinicola salarius ES021 strain was demonstrated as a robust natural producer of PHB from agro-industrial wastes. The detailed genome characterization of the ES021 strain presented in this study identifies potential PHB-related genes. However, further metabolic engineering is warranted to confirm the gene networks required for PHB production in this strain. Overall, this study contributes to the development of sustainable and cost-effective PHB production strategies.


Assuntos
Halomonadaceae , Resíduos Industriais , Poli-Hidroxibutiratos , Plásticos , Polímeros , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo
2.
Microb Cell Fact ; 23(1): 58, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383407

RESUMO

Acetoin, a versatile platform chemical and popular food additive, poses a challenge to the biosafety strain Bacillus subtilis when produced in high concentrations due to its intrinsic toxicity. Incorporating the PHB synthesis pathway into Bacillus subtilis 168 has been shown to significantly enhance the strain's acetoin tolerance. This study aims to elucidate the molecular mechanisms underlying the response of B. subtilis 168-phaCBA to acetoin stress, employing transcriptomic and metabolomic analyses. Acetoin stress induces fatty acid degradation and disrupts amino acid synthesis. In response, B. subtilis 168-phaCBA down-regulates genes associated with flagellum assembly and bacterial chemotaxis, while up-regulating genes related to the ABC transport system encoding amino acid transport proteins. Notably, genes coding for cysteine and D-methionine transport proteins (tcyB, tcyC and metQ) and the biotin transporter protein bioY, are up-regulated, enhancing cellular tolerance. Our findings highlight that the expression of phaCBA significantly increases the ratio of long-chain unsaturated fatty acids and modulates intracellular concentrations of amino acids, including L-tryptophan, L-tyrosine, L-leucine, L-threonine, L-methionine, L-glutamic acid, L-proline, D-phenylalanine, L-arginine, and membrane fatty acids, thereby imparting acetoin tolerance. Furthermore, the supplementation with specific exogenous amino acids (L-alanine, L-proline, L-cysteine, L-arginine, L-glutamic acid, and L-isoleucine) alleviates acetoin's detrimental effects on the bacterium. Simultaneously, the introduction of phaCBA into the acetoin-producing strain BS03 addressed the issue of insufficient intracellular cofactors in the fermentation strain, resulting in the successful production of 70.14 g/L of acetoin through fed-batch fermentation. This study enhances our understanding of Bacillus's cellular response to acetoin-induced stress and provides valuable insights for the development of acetoin-resistant Bacillus strains.


Assuntos
Acetoína , Bacillus subtilis , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Acetoína/metabolismo , Ácido Glutâmico/metabolismo , Fermentação , Perfilação da Expressão Gênica , Arginina , Proteínas de Transporte/genética , Prolina/metabolismo
3.
Microb Cell Fact ; 23(1): 160, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822346

RESUMO

BACKGROUND: Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges. RESULTS: This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures. CONCLUSIONS: Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.


Assuntos
Hidroxibutiratos , Metano , Methylosinus trichosporium , Esgotos , Esgotos/microbiologia , Methylosinus trichosporium/metabolismo , Hidroxibutiratos/metabolismo , Metano/metabolismo , Poliésteres/metabolismo , Biodegradação Ambiental , Águas Residuárias/microbiologia , Poli-Hidroxibutiratos
4.
Microb Cell Fact ; 21(1): 231, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335362

RESUMO

BACKGROUND: A representative hydrogen-oxidizing bacterium Cupriavidus necator H16 has attracted much attention as hosts to recycle carbon dioxide (CO2) into a biodegradable polymer, poly(R)-3-hydroxybutyrate (PHB). Although C. necator H16 has been used as a model PHB producer, the PHB production rate from CO2 is still too low for commercialization. RESULTS: Here, we engineer the carbon fixation metabolism to improve CO2 utilization and increase PHB production. We explore the possibilities to enhance the lithoautotrophic cell growth and PHB production by introducing additional copies of transcriptional regulators involved in Calvin Benson Bassham (CBB) cycle. Both cbbR and regA-overexpressing strains showed the positive phenotypes for 11% increased biomass accumulation and 28% increased PHB production. The transcriptional changes of key genes involved in CO2-fixing metabolism and PHB production were investigated. CONCLUSIONS: The global transcriptional regulator RegA plays an important role in the regulation of carbon fixation and shows the possibility to improve autotrophic cell growth and PHB accumulation by increasing its expression level. This work represents another step forward in better understanding and improving the lithoautotrophic PHB production by C. necator H16.


Assuntos
Cupriavidus necator , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Ácido 3-Hidroxibutírico , Dióxido de Carbono/metabolismo , Hidroxibutiratos/metabolismo
5.
Bioprocess Biosyst Eng ; 45(10): 1719-1729, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36121506

RESUMO

Polyhydroxybutyrate (PHB) is a bio-based, biodegradable and biocompatible plastic that has the potential to replace petroleum-based plastics. Lignocellulosic biomass is a promising feedstock for industrial fermentation to produce bioproducts such as polyhydroxybutyrate (PHB). However, the pretreatment processes of lignocellulosic biomass lead to the generation of toxic byproducts, such as furfural, 5-HMF, vanillin, and acetate, which affect microbial growth and productivity. In this study, to reduce furfural toxicity during PHB production from lignocellulosic hydrolysates, we genetically engineered Cupriavidus necator NCIMB 11599, by inserting the nicotine amide salvage pathway genes pncB and nadE to increase the NAD(P)H pool. We found that the expression of pncB was the most effective in improving tolerance to inhibitors, cell growth, PHB production and sugar consumption rate. In addition, the engineered strain harboring pncB showed higher PHB production using lignocellulosic hydrolysates than the wild-type strain. Therefore, the application of NAD salvage pathway genes improves the tolerance of Cupriavidus necator to lignocellulosic-derived inhibitors and should be used to optimize PHB production.


Assuntos
Cupriavidus necator , Petróleo , Amidas/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Açúcares da Dieta/metabolismo , Açúcares da Dieta/farmacologia , Furaldeído/farmacologia , Inibidores do Crescimento/metabolismo , Inibidores do Crescimento/farmacologia , Hidroxibutiratos/metabolismo , Lignina , NAD/metabolismo , NAD/farmacologia , Nicotina/metabolismo , Nicotina/farmacologia , Nitrobenzenos , Petróleo/metabolismo , Plásticos
6.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430556

RESUMO

In this experimental research, different types of essential oils (EOs) were blended with polyhydroxybutyrate (PHB) to study the influence of these additives on PHB degradation. The blends were developed by incorporating three terpenoids at two concentrations (1 and 3%). The mineralization rate obtained from CO2 released from each sample was the factor that defined biodegradation. Furthermore, scanning electron microscope (SEM), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were used in this research. The biodegradation percentages of PHB blended with 3% of eucalyptol, limonene, and thymol after 226 days were reached 66.4%, 73.3%, and 76.9%, respectively, while the rate for pure PHB was 100% after 198 days, and SEM images proved these results. Mechanical analysis of the samples showed that eucalyptol had the highest resistance level, even before the burial test. The other additives showed excellent mechanical properties although they had less mechanical strength than pure PHB after extrusion. The samples' mechanical properties improved due to their crystallinity and decreased glass transition temperature (Tg). DSC results showed that blending terpenoids caused a reduction in Tg, which is evident in the DMA results, and a negligible reduction in melting point (Tm).


Assuntos
Anti-Infecciosos , Butiratos , Poliésteres/química , Terpenos , Eucaliptol , Antibacterianos
7.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364191

RESUMO

This work aims to characterize the haloarchaeal diversity of unexplored environmental salty samples from a hypersaline environment on the southern coast of Jeddah, Saudi Arabia, looking for new isolates able to produce polyhydroxyalkanoates (PHAs). Thus, the list of PHA producers has been extended by describing two species of Halolamina; Halolamina sediminis sp. strain NRS_35 and unclassified Halolamina sp. strain NRS_38. The growth and PHA-production were investigated in the presence of different carbon sources, (glucose, sucrose, starch, carboxymethyl cellulose (CMC), and glycerol), pH values, (5-9), temperature ranges (4-65 °C), and NaCl concentrations (100-350 g L-1). Fourier-transform infra-red analysis (FT-IR) and Liquid chromatography-mass spectrometry (LC-MS) were used for qualitative identification of the biopolymer. The highest yield of PHB was 33.4% and 27.29% by NRS_35 and NRS_38, respectively, using starch as a carbon source at 37 °C, pH 7, and 25% NaCl (w/v). The FT-IR pattern indicated sharp peaks formed around 1628.98 and 1629.28 cm-1, which confirmed the presence of the carbonyl group (C=O) on amides and related to proteins, which is typical of PHB. LC-MS/MS analysis displayed peaks at retention times of 5.2, 7.3, and 8.1. This peak range indicates the occurrence of PHB and its synthetic products: Acetoacetyl-CoA and PHB synthase (PhaC). In summary, the two newly isolated Halolamina species showed a high capacity to produce PHB using different sources of carbon. Further research using other low-cost feedstocks is needed to improve both the quality and quantity of PHB production. With these results, the use of haloarchaea as cell factories to produce PHAs is reinforced, and light is shed on the global concern about replacing plastics with biodegradable polymers.


Assuntos
Poli-Hidroxialcanoatos , Cloreto de Sódio , Cloreto de Sódio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Cromatografia Líquida , Espectrometria de Massas em Tandem , Poli-Hidroxialcanoatos/química , Carbono/metabolismo , Amido , Hidroxibutiratos/química
8.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163885

RESUMO

Several strategies, including inducer addition and biosensor use, have been developed for dynamical regulation. However, the toxicity, cost, and inflexibility of existing strategies have created a demand for superior technology. In this study, we designed an optogenetic dual-switch system and applied it to increase polyhydroxybutyrate (PHB) production. First, an optimized chromatic acclimation sensor/regulator (RBS10-CcaS#10-CcaR) system (comprising an optimized ribosomal binding site (RBS), light sensory protein CcaS, and response regulator CcaR) was selected for a wide sensing range of approximately 10-fold between green-light activation and red-light repression. The RBS10-CcaS#10-CcaR system was combined with a blue light-activated YF1-FixJ-PhlF system (containing histidine kinase YF1, response regulator FixJ, and repressor PhlF) engineered with reduced crosstalk. Finally, the optogenetic dual-switch system was used to rewire the metabolic flux for PHB production by regulating the sequences and intervals of the citrate synthase gene (gltA) and PHB synthesis gene (phbCAB) expression. Consequently, the strain RBS34, which has high gltA expression and a time lag of 3 h, achieved the highest PHB content of 16.6 wt%, which was approximately 3-fold that of F34 (expressed at 0 h). The results indicate that the optogenetic dual-switch system was verified as a practical and convenient tool for increasing PHB production.


Assuntos
Proteínas de Bactérias/metabolismo , Butiratos/metabolismo , Citrato (si)-Sintase/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Optogenética , Proteínas de Bactérias/genética , Citrato (si)-Sintase/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Histidina Quinase/genética , Luz , Regiões Promotoras Genéticas
9.
Plasmid ; 117: 102598, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499918

RESUMO

Promoter engineering has been employed as a strategy to enhance and optimize the production of bio-products. Availability of promoters with predictable activities is needed for downstream application. However, whether promoter activity remains the same in different gene contexts remains unknown. Six consecutive promoters that have previously been determined to have different activity levels were used to construct six different versions of plasmid backbone pTH1227, followed by inserted genes encoding two polymer-producing enzymes. In some cases, promoter activity in the presence of inserted genes did not correspond to the reported activity levels in a previous study. After removing the inserted genes, the activity of these promoters returned to their previously reported level. These changes were further confirmed to occur at the transcriptional level. Polymer production using our newly constructed plasmids showed polymer accumulation levels corresponding to the promoter activity reported in our study. Our study demonstrated the importance of re-assessing promoter activity levels with regard to gene context, which could influence promoter activity, leading to different outcomes in downstream applications.


Assuntos
Plasmídeos , Plasmídeos/genética , Regiões Promotoras Genéticas
10.
Appl Microbiol Biotechnol ; 105(14-15): 5719-5737, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34263356

RESUMO

Over 30 years, the Gram-positive bacterium Priestia megaterium (previously known as Bacillus megaterium) was systematically developed for biotechnological applications ranging from the production of small molecules like vitamin B12, over polymers like polyhydroxybutyrate (PHB) up to the in vivo and in vitro synthesis of multiple proteins and finally whole-cell applications. Here we describe the use of the natural vitamin B12 (cobalamin) producer P. megaterium for the elucidation of the biosynthetic pathway and the subsequent systematic knowledge-based development for production purposes. The formation of PHB, a natural product of P. megaterium and potential petro-plastic substitute, is covered and discussed. Further important biotechnological characteristics of P. megaterium for recombinant protein production including high protein secretion capacity and simple cultivation on value-added carbon sources are outlined. This includes the advanced system with almost 30 commercially available expression vectors for the intracellular and extracellular production of recombinant proteins at the g/L scale. We also revealed a novel P. megaterium transcription-translation system as a complementary and versatile biotechnological tool kit. As an impressive biotechnology application, the formation of various cytochrome P450 is also critically highlighted. Finally, whole cellular applications in plant protection are completing the overall picture of P. megaterium as a versatile giant cell factory. KEY POINTS: • The use of Priestia megaterium for the biosynthesis of small molecules and recombinant proteins through to whole-cell applications is reviewed. • P. megaterium can act as a promising alternative host in biotechnological production processes.


Assuntos
Bacillus megaterium , Beleza , Bacillus megaterium/genética , Biotecnologia , Proteínas Recombinantes/genética , Vitamina B 12
11.
Mar Drugs ; 19(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803653

RESUMO

Plastic pollution is a worldwide concern causing the death of animals (mainly aquatic fauna) and environmental deterioration. Plastic recycling is, in most cases, difficult or even impossible. For this reason, new research lines are emerging to identify highly biodegradable bioplastics or plastic formulations that are more environmentally friendly than current ones. In this context, microbes, capable of synthesizing bioplastics, were revealed to be good models to design strategies in which microorganisms can be used as cell factories. Recently, special interest has been paid to haloarchaea due to the capability of some species to produce significant concentrations of polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), and polyhydroxyvalerate (PHV) when growing under a specific nutritional status. The growth of those microorganisms at the pilot or industrial scale offers several advantages compared to that of other microbes that are bioplastic producers. This review summarizes the state of the art of bioplastic production and the most recent findings regarding the production of bioplastics by halophilic microorganisms with special emphasis on haloarchaea. Some protocols to produce/analyze bioplastics are highlighted here to shed light on the potential use of haloarchaea at the industrial scale to produce valuable products, thus minimizing environmental pollution by plastics made from petroleum.


Assuntos
Archaea/metabolismo , Plásticos Biodegradáveis/metabolismo , Biopolímeros/biossíntese , Biotecnologia , Química Verde
12.
Int J Mol Sci ; 21(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013257

RESUMO

MicroRNAs (miRNAs) play a pivotal role in regulating the expression of genes involved in tumor development, invasion, and metastasis. In particular, microRNA-124 (miR-124) modulates the expression of carnitine palmitoyltransferase 1A (CPT1A) at the post-transcriptional level, impairing the ability of androgen-independent prostate cancer (PC3) cells to completely metabolize lipid substrates. However, the clinical translation of miRNAs requires the development of effective and safe delivery systems able to protect nucleic acids from degradation. Herein, biodegradable polyethyleneimine-functionalized polyhydroxybutyrate nanoparticles (PHB-PEI NPs) were prepared by aminolysis and used as cationic non-viral vectors to complex and deliver miR-124 in PC3 cells. Notably, the PHB-PEI NPs/miRNA complex effectively protected miR-124 from RNAse degradation, resulting in a 30% increase in delivery efficiency in PC3 cells compared to a commercial transfection agent (Lipofectamine RNAiMAX). Furthermore, the NPs-delivered miR-124 successfully impaired hallmarks of tumorigenicity, such as cell proliferation, motility, and colony formation, through CPT1A modulation. These results demonstrate that the use of PHB-PEI NPs represents a suitable and convenient strategy to develop novel nanomaterials with excellent biocompatibility and high transfection efficiency for cancer therapy.


Assuntos
Carcinogênese/metabolismo , Movimento Celular , Proliferação de Células , Portadores de Fármacos , MicroRNAs , Nanopartículas/química , Neoplasias da Próstata/metabolismo , Células CACO-2 , Carcinogênese/patologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Células MCF-7 , Masculino , MicroRNAs/química , MicroRNAs/farmacologia , Células PC-3 , Proibitinas , Neoplasias da Próstata/patologia
13.
Microb Cell Fact ; 18(1): 107, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196093

RESUMO

BACKGROUND: Microbial mutagenesis is an important avenue to acquire microbial strains with desirable traits for industry application. However, mutagens either chemical or physical used often leads narrow library pool due to high lethal rate. The T4 DNA ligase is one of the most widely utilized enzymes in modern molecular biology. Its contribution to repair chromosomal DNA damages, therefore cell survival during mutagenesis will be discussed. RESULTS: Expression of T4 DNA ligase in vivo could substantially increase cell survival to ionizing radiation in multiple species. A T4 mediated survival-coupled mutagenesis approach was proposed. When polyhydroxybutyrate (PHB)-producing E. coli with T4 DNA ligase expressed in vivo was subjected to ionizing radiation, mutants with improved PHB production were acquired quickly owing to a large viable mutant library generated. Draft genome sequence analysis showed that the mutants obtained possess not only single nucleotide variation (SNV) but also DNA fragment deletion, indicating that T4 DNA ligase in vivo may contribute to the repair of DNA double strand breaks. CONCLUSIONS: Expression of T4 DNA ligase in vivo could notably enhance microbial survival to excess chromosomal damages caused by various mutagens. Potential application of T4 DNA ligase in microbial mutagenesis was explored by mutating and screening PHB producing E. coli XLPHB strain. When applied to atmospheric and room temperature plasma (ARTP) microbial mutagenesis, large survival pool was obtained. Mutants available for subsequent screening for desirable features. The use of T4 DNA ligase we were able to quickly improve the PHB production by generating a larger viable mutants pool. This method is a universal strategy can be employed in wide range of bacteria. It indicated that traditional random mutagenesis became more powerful in combine with modern genetic molecular biology and has exciting prospect.


Assuntos
DNA Ligases/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Proteínas Virais/genética , Bacteriófagos/enzimologia , DNA Ligases/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Biblioteca Gênica , Viabilidade Microbiana , Mutagênese , Poli-Hidroxialcanoatos/biossíntese , Proteínas Virais/metabolismo
14.
Microbiology (Reading) ; 164(4): 625-634, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29493489

RESUMO

Polyhydroxybutyrate (PHB), a biodegradable polymer accumulated by bacteria is deposited intracellularly in the form of inclusion bodies often called granules. The granules are supramolecular complexes harbouring a varied number of proteins on their surface, which have specific but incompletely characterised functions. By comparison with other organisms that produce biodegradable polymers, only two phasins have been described to date for Rhodosprillum rubrum, raising the possibility that more await discovery. Using a comparative proteomics strategy to compare the granules of wild-type R. rubrum with a PHB-negative mutant housing artificial PHB granules, we identified four potential PHB granules' associated proteins. These were: Q2RSI4, an uncharacterised protein; Q2RWU9, annotated as an extracellular solute-binding protein; Q2RQL4, annotated as basic membrane lipoprotein; and Q2RQ51, annotated as glucose-6-phosphate isomerase. In silico analysis revealed that Q2RSI4 harbours a Phasin_2 family domain and shares low identity with a single-strand DNA-binding protein from Sphaerochaeta coccoides. Fluorescence microscopy found that three proteins Q2RSI4, Q2EWU9 and Q2RQL4 co-localised with PHB granules. This work adds three potential new granule associated proteins to the repertoire of factors involved in bacterial storage granule formation, and confirms that proteomics screens are an effective strategy for discovery of novel granule associated proteins.


Assuntos
Proteínas de Bactérias/análise , Biopolímeros/metabolismo , Grânulos Citoplasmáticos/química , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Rhodospirillum rubrum/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a DNA/química , Microscopia de Fluorescência , Anotação de Sequência Molecular , Mutação , Domínios Proteicos , Proteômica , Rhodospirillum rubrum/citologia , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/metabolismo
15.
Appl Microbiol Biotechnol ; 102(18): 8049-8067, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29951858

RESUMO

The biodegradation of polyhydroxybutyrate (PHB) has been broadly investigated, but studies typically focus on a single strain or enzyme and little attention has been paid to comparing the interaction of different PHB depolymerase (PhaZ)-producing strains with this biopolymer. In this work, we selected nine bacterial strains-five with demonstrated and four with predicted PhaZ activity-to compare their effectiveness at degrading PHB film provided as sole carbon source. Each of the strains with demonstrated activity were able to use the PHB film (maximum mass losses ranging from 12% after 2 days for Paucimonas lemoignei to 90% after 4 days for Cupriavidus sp.), and to a lower extent Marinobacter algicola DG893 (with a predicted PhaZ) achieved PHB film mass loss of 11% after 2 weeks of exposure. Among the strains with proven PhaZ activity, Ralstonia sp. showed the highest specific activity since less biomass was required to degrade the polymer in comparison to the other strains. In the case of Ralstonia sp., PHB continued to be degraded at pH values as low as pH 3.3-3.7. In addition, analysis of the extracellular fractions of the strains with demonstrated activity showed that Comamonas testosteroni, Cupriavidus sp., and Ralstonia sp. readily degraded both PHB film and PHB particles in agar suspensions. This study highlights that whole cell cultures and enzymatic (extracellular) fractions display different levels of activity, an important factor in the development of PHB-based applications and in understanding the fate of PHB and other PHAs released in the environment. Furthermore, predictions of PhaZ functionality from genome sequencing analyses remain to be validated by experimental results; PHB-degrading ability could not be proven for three of four investigated species predicted by the polyhydroxyalkanoates (PHA) depolymerase engineering database.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Hidroxibutiratos/metabolismo , Bactérias/enzimologia , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Biodegradação Ambiental , Hidrolases de Éster Carboxílico/genética
16.
Biotechnol Lett ; 40(9-10): 1419-1423, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29797149

RESUMO

OBJECTIVES: Identification of novel microbial factors contributing to plant protection against abiotic stress. RESULTS: The genome of plant growth-promoting bacterium Pseudomonas fluorescens FR1 contains a short mobile element encoding a novel type of extracellular polyhydroxybutyrate (PHB) polymerase (PhbC) associated with a type I secretion system. Genetic analysis using a phbC mutant strain and plants showed that this novel extracellular enzyme is related to the PHB production in planta and suggests that PHB could be a beneficial microbial compound synthesized during plant adaptation to cold stress. CONCLUSION: Extracellular PhbC can be used as a new tool for improve crop production under abiotic stress.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas fluorescens/fisiologia , Triticum/fisiologia , Aciltransferases/genética , Proteínas de Bactérias/genética , Clorofila/metabolismo , Endófitos , Genoma Bacteriano , Mutação , Pseudomonas fluorescens/genética , Estresse Fisiológico/fisiologia , Triticum/microbiologia
17.
Appl Microbiol Biotechnol ; 100(20): 8901-12, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27480532

RESUMO

Polyhydroxybutyrate (PHB) is an important biopolymer accumulated by bacteria and associated with cell survival and stress response. Here, we make two surprising findings in the PHB-accumulating species Rhodospirillum rubrum S1. We first show that the presence of PHB promotes the increased assimilation of acetate preferentially into biomass rather than PHB. When R. rubrum is supplied with (13)C-acetate as a PHB precursor, 83.5 % of the carbon in PHB comes from acetate. However, only 15 % of the acetate ends up in PHB with the remainder assimilated as bacterial biomass. The PHB-negative mutant of R. rubrum assimilates 2-fold less acetate into biomass compared to the wild-type strain. Acetate assimilation proceeds via the ethylmalonyl-CoA pathway with (R)-3-hydroxybutyrate as a common intermediate with the PHB pathway. Secondly, we show that R. rubrum cells accumulating PHB have reduced ribulose 1,5-bisphosphate carboxylase (RuBisCO) activity. RuBisCO activity reduces 5-fold over a 36-h period after the onset of PHB. In contrast, a PHB-negative mutant maintains the same level of RuBisCO activity over the growth period. Since RuBisCO controls the redox potential in R. rubrum, PHB likely replaces RuBisCO in this role. R. rubrum is the first bacterium found to express RuBisCO under aerobic chemoheterotrophic conditions.


Assuntos
Hidroxibutiratos/metabolismo , Análise do Fluxo Metabólico , Poliésteres/metabolismo , Rhodospirillum rubrum/fisiologia , Acetatos/metabolismo , Aerobiose , Isótopos de Carbono/metabolismo , Marcação por Isótopo , Rhodospirillum rubrum/metabolismo
18.
Biotechnol Bioeng ; 112(12): 2475-84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26059321

RESUMO

Although the enrichment of specialized microbial cultures for the production of polyhydroxyalkanoates (PHA) is generally performed in sequencing batch reactors (SBRs), the required feast-famine conditions can also be established using two or more continuous stirred-tank reactors (CSTRs) in series with partial biomass recirculation. The use of CSTRs offers several advantages, but will result in distributed residence times and a less strict separation between feast and famine conditions. The aim of this study was to investigate the impact of the reactor configuration, and various process and biomass-specific parameters, on the enrichment of PHA-producing bacteria. A set of mathematical models was developed to predict the growth of Plasticicumulans acidivorans-as a model PHA producer-in competition with a non-storing heterotroph. A macroscopic model considering lumped biomass and an agent-based model considering individual cells were created to study the effect of residence time distribution and the resulting distributed bacterial states. The simulations showed that in the 2-stage CSTR system the selective pressure for PHA-producing bacteria is significantly lower than in the SBR, and strongly affected by the chosen feast-famine ratio. This is the result of substrate competition based on both the maximum specific substrate uptake rate and substrate affinity. Although the macroscopic model overestimates the selective pressure in the 2-stage CSTR system, it provides a quick and fairly good impression of the reactor performance and the impact of process and biomass-specific parameters.


Assuntos
Antibiose , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Poli-Hidroxialcanoatos/metabolismo , Modelos Teóricos
19.
Materials (Basel) ; 17(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38399168

RESUMO

In this work, we have studied the potential application for 3D-printing of a polymer made from combining a biodegradable and biocompatible polymer (i.e., polyhydroxybutyrate, PHB) with natural bio-based fiber (i.e., cellulose). To this end, a masterbatch at 15 wt.% in filler content was prepared by melt-blending, and then this system was "diluted" with pure PHB in a second extrusion phase in order to produce filaments at 1.5 and 3 wt.% of cellulose. For comparison, a filament made of 100% virgin PHB pellets was prepared under the same conditions. All the systems were then processed in the 3D-printer apparatus, and specimens were mainly characterized by static (tensile and flexural testing) and dynamic mechanical analysis. Thermogravimetric analysis, differential scanning calorimetry, spectroscopic measurements, and morphological aspects of PHB polymer and composites were also discussed. The results showed a significant negative impact of the process on the mechanical properties of the basic PHB with a reduction in both tensile and flexural mechanical properties. The PHB-cellulose composites showed a good dispersion filler in the matrix but a poor interfacial adhesion between the two phases. Furthermore, the cellulose had no effect on the melting behavior and the crystallinity of the polymer. The addition of cellulose improved the thermal stability of the polymer and minimized the negative impact of extrusion. The mechanical performance of the composites was found to be higher compared to the corresponding (processed) polymer.

20.
Biomolecules ; 14(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39199393

RESUMO

Bacterial cytoplasmic organelles are diverse and serve many varied purposes. Here, we employed Rhodobacter sphaeroides to investigate the accumulation of carbon and inorganic phosphate in the storage organelles, polyhydroxybutyrate (PHB) and polyphosphate (PP), respectively. Using cryo-electron tomography (cryo-ET), these organelles were observed to increase in size and abundance when growth was arrested by chloramphenicol treatment. The accumulation of PHB and PP was quantified from three-dimensional (3D) segmentations in cryo-tomograms and the analysis of these 3D models. The quantification of PHB using both segmentation analysis and liquid chromatography and mass spectrometry (LCMS) each demonstrated an over 10- to 20-fold accumulation of PHB. The cytoplasmic location of PHB in cells was assessed with fluorescence light microscopy using a PhaP-mNeonGreen fusion-protein construct. The subcellular location and enumeration of these organelles were correlated by comparing the cryo-ET and fluorescence microscopy data. A potential link between PHB and PP localization and possible explanations for co-localization are discussed. Finally, the study of PHB and PP granules, and their accumulation, is discussed in the context of advancing fundamental knowledge about bacterial stress response, the study of renewable sources of bioplastics, and highly energetic compounds.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Polifosfatos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Polifosfatos/metabolismo , Polifosfatos/química , Organelas/metabolismo , Organelas/ultraestrutura , Hidroxibutiratos/metabolismo , Hidroxibutiratos/química , Microscopia de Fluorescência/métodos , Poliésteres/metabolismo , Poliésteres/química , Poli-Hidroxibutiratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA