Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17061, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273537

RESUMO

Drier and hotter conditions linked with anthropogenic climate change can increase wildfire frequency and severity, influencing terrestrial and aquatic carbon cycles at broad spatial and temporal scales. The impacts of wildfire are complex and dependent on several factors that may increase terrestrial deposition and the influx of dissolved organic matter (DOM) from plants into nearby aquatic systems, resulting in the darkening of water color. We tested the effects of plant biomass quantity and its interaction with fire (burned vs. unburned plant biomass) on dissolved organic carbon (DOC) concentration and degradation (biological vs. photochemical) and DOM composition in 400 L freshwater ponds using a gradient experimental design. DOC concentration increased nonlinearly with plant biomass loading in both treatments, with overall higher concentrations (>56 mg/L) in the unburned treatment shortly after plant addition. We also observed nonlinear trends in fluorescence and UV-visible absorbance spectroscopic indices as a function of fire treatment and plant biomass, such as greater humification and specific UV absorbance at 254 nm (a proxy for aromatic DOM) over time. DOM humification occurred gradually over time with less humification in the burned treatment compared to the unburned treatment. Both burned and unburned biomass released noncolored, low molecular weight carbon compounds that were rapidly consumed by microbes. DOC decomposition exhibited a unimodal relationship with plant biomass, with microbes contributing more to DOC loss than photodegradation at intermediate biomass levels (100-300 g). Our findings demonstrate that the quantity of plant biomass leads to nonlinear responses in the dynamics and composition of DOM in experimental ponds that are altered by fire, indicating how disturbances interactively affect DOM processing and its role in aquatic environments.


Assuntos
Matéria Orgânica Dissolvida , Lagoas , Biomassa , Água Doce , Compostos Orgânicos/química
2.
Glob Chang Biol ; 30(1): e16999, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921241

RESUMO

Peatlands are globally important stores of soil carbon (C) formed over millennial timescales but are at risk of destabilization by human and climate disturbance. Pools are ubiquitous features of many peatlands and can contain very high concentrations of C mobilized in dissolved and particulate organic form and as the greenhouses gases carbon dioxide (CO2 ) and methane (CH4 ). The radiocarbon content (14 C) of these aquatic C forms tells us whether pool C is generated by contemporary primary production or from destabilized C released from deep peat layers where it was previously stored for millennia. We present novel 14 C and stable C (δ13 C) isotope data from 97 aquatic samples across six peatland pool locations in the United Kingdom with a focus on dissolved and particulate organic C and dissolved CO2 . Our observations cover two distinct pool types: natural peatland pools and those formed by ditch blocking efforts to rewet peatlands (restoration pools). The pools were dominated by contemporary C, with the majority of C (~50%-75%) in all forms being younger than 300 years old. Both pool types readily transform and decompose organic C in the water column and emit CO2 to the atmosphere, though mixing with the atmosphere and subsequent CO2 emissions was more evident in natural pools. Our results show little evidence of destabilization of deep, old C in natural or restoration pools, despite the presence of substantial millennial-aged C in the surrounding peat. One possible exception is CH4 ebullition (bubbling), with our observations showing that millennial-aged C can be emitted from peatland pools via this pathway. Our results suggest that restoration pools formed by ditch blocking are effective at preventing the release of deep, old C from rewetted peatlands via aquatic export.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Humanos , Idoso , Dióxido de Carbono/análise , Ciclo do Carbono , Solo , Mudança Climática
3.
Microb Ecol ; 87(1): 82, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831142

RESUMO

Denitrification and anaerobic ammonium oxidation (anammox) are key processes for nitrogen removal in aquaculture, reducing the accumulated nitrogen nutrients to nitrogen gas or nitrous oxide gas. Complete removal of nitrogen from aquaculture systems is an important measure to solve environmental pollution. In order to evaluate the nitrogen removal potential of marine aquaculture ponds, this study investigated the denitrification and anammox rates, the flux of nitrous oxide (N2O) at the water-air interface, the sediment microbial community structure, and the gene expression associated with the nitrogen removal process in integrated multi-trophic aquaculture (IMTA) ponds (Apostistius japonicus-Penaeus japonicus-Ulva) with different culture periods. The results showed that the denitrification and anammox rates in sediments increased with the increase of cultivation periods and depth, and there was no significant difference in nitrous oxide gas flux at the water-air interface between different cultivation periods (p > 0.05). At the genus and phylum levels, the abundance of microorganisms related to nitrogen removal reactions in sediments changed significantly with the increase of cultivation period and depth, and was most significantly affected by the concentration of particulate organic nitrogen (PON) in sediments. The expression of denitrification gene (narG, nirS, nosZ) in surface sediments was significantly higher than that in deep sediments (p < 0.05), and was negatively correlated with denitrification rate. All samples had a certain anammox capacity, but no known anammox bacteria were found in the microbial diversity detection, and the expression of gene (hzsB) related to the anammox process was extremely low, which may indicate the existence of an unknown anammox bacterium. The data of this study showed that the IMTA culture pond had a certain potential for nitrogen removal, and whether it could make a contribution to reducing the pollution of culture wastewater still needed additional practice and evaluation, and also provided a theoretical basis for the nitrogen removal research of coastal mariculture ponds.


Assuntos
Aquicultura , Bactérias , Desnitrificação , Microbiota , Nitrogênio , Óxido Nitroso , Penaeidae , Lagoas , Nitrogênio/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Lagoas/microbiologia , Animais , Penaeidae/microbiologia , Óxido Nitroso/metabolismo , Óxido Nitroso/análise , Sedimentos Geológicos/microbiologia , Oxirredução , Compostos de Amônio/metabolismo
4.
Environ Sci Technol ; 58(19): 8349-8359, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696360

RESUMO

Agricultural ponds are a significant source of greenhouse gases, contributing to the ongoing challenge of anthropogenic climate change. Nations are encouraged to account for these emissions in their national greenhouse gas inventory reports. We present a remote sensing approach using open-access satellite imagery to estimate total methane emissions from agricultural ponds that account for (1) monthly fluctuations in the surface area of individual ponds, (2) rates of historical accumulation of agricultural ponds, and (3) the temperature dependence of methane emissions. As a case study, we used this method to inform the 2024 National Greenhouse Gas Inventory reports submitted by the Australian government, in compliance with the Paris Agreement. Total annual methane emissions increased by 58% from 1990 (26 kilotons CH4 year-1) to 2022 (41 kilotons CH4 year-1). This increase is linked to the water surface of agricultural ponds growing by 51% between 1990 (115 kilo hectares; 1,150 km2) and 2022 (173 kilo hectares; 1,730 km2). In Australia, 16,000 new agricultural ponds are built annually, expanding methane-emitting water surfaces by 1,230 ha yearly (12.3 km2 year-1). On average, the methane flux of agricultural ponds in Australia is 0.238 t CH4 ha-1 year-1. These results offer policymakers insights into developing targeted mitigation strategies to curb these specific forms of anthropogenic emissions. For instance, financial incentives, such as carbon or biodiversity credits, can mobilize widespread investments toward reducing greenhouse gas emissions and enhancing the ecological and environmental values of agricultural ponds. Our data and modeling tools are available on a free cloud-based platform for other countries to adopt this approach.


Assuntos
Agricultura , Gases de Efeito Estufa , Metano , Lagoas , Metano/análise , Gases de Efeito Estufa/análise , Austrália , Monitoramento Ambiental , Mudança Climática
5.
Bioprocess Biosyst Eng ; 47(11): 1863-1874, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39133298

RESUMO

Limited light availability due to insufficient vertical mixing strongly reduces the applicability of raceway ponds (RWPs). To overcome this and create light-dark (L/D) cycles for enhanced biomass production through improved vertical mixing, vortex-induced vibration (VIV) system was implemented by the authors in a previous study to an existing pilot-scale RWP. In this study, experimental characterization of fluid dynamics for VIV-implemented RWP is carried out. Particle image velocimetry (PIV) technique is applied to visualize the flow. The extents of the vertical mixing due to VIV and the characteristics of L/D cycles were examined by tracking selected particles. Pond depth was hypothetically divided into three zones, namely dark, light Iimited and light saturated for detailed analysis of cell trajectories. It has been observed that VIV cylinder oscillation can efficiently facilitate the transfer of cells from light-limited to light-saturated zones. Among the cells that were tracked, 44% initially at dark zone entered the light-limited zone and 100% of initially at light-limited zone entered the light-saturated zone. 33% of all tracked cells experienced high-frequency L/D cycles with an average frequency of 35.69 s-1 and 0.49 light fraction. The impact of VIV was not discernible in the deeper sections of the pond, due to constrained oscillation amplitudes. Our findings suggest that the approximately 20% increase in biomass production reported in our previous study can be attributed to the synergistic effects of enhanced L/D cycle frequencies and improved light availability resulting from the transfer of cells from dark to light-limited zones. To further enhance the effectiveness of VIV, design improvements were developed. It was concluded that light availability could be significantly improved with the presented method for more effective use of RWPs.


Assuntos
Hidrodinâmica , Luz , Microalgas , Microalgas/crescimento & desenvolvimento , Vibração , Lagoas , Biomassa , Fotoperíodo
6.
J Environ Manage ; 358: 120822, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599088

RESUMO

Contamination by wastewater has been traditionally assessed by measuring faecal coliforms, such as E. coli and entereococci. However, using micropollutants to track wastewater input is gaining interest. In this study, we identified nine micropollutant indicators that could be used to characterize water quality and wastewater treatment efficiency in pond-based wastewater treatment plants (WWTPs) of varying configuration. Of 232 micropollutants tested, nine micropollutants were detected in treated wastewater at concentrations and frequencies suitable to be considered as indicators for treated wastewater. The nine indicators were then classified as stable (carbamazepine, sucralose, benzotriazole, 4+5-methylbenzotriazole), labile (atorvastatin, naproxen, galaxolide) or intermediate/uncertain (gemfibrozil, tris(chloropropyl)phosphate isomers) based on observed removals in the pond-based WWTPs and correlations between micropollutant and dissolved organic carbon removal. The utility of the selected indicators was evaluated by assessing the wastewater quality in different stages of wastewater treatment in three pond-based WWTPs, as well as selected groundwater bores near one WWTP, where treated wastewater was used to irrigate a nearby golf course. Ratios of labile to stable indicators provided insight into the treatment efficiency of different facultative and maturation ponds and highlighted the seasonal variability in treatment efficiency for some pond-based WWTPs. Additionally, indicator ratios of labile to stable indicators identified potential unintended release of untreated wastewater to groundwater, even with the presence of micropollutants in other groundwater bores related to approved reuse of treated wastewater.


Assuntos
Água Subterrânea , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Águas Residuárias/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Eliminação de Resíduos Líquidos/métodos , Qualidade da Água , Triazóis/análise , Purificação da Água/métodos , Genfibrozila/análise
7.
J Environ Manage ; 360: 121226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795468

RESUMO

In the global effort to reduce CO2 emissions, the concurrent enhancement of pollutant degradation and reductions in fossil fuel consumption are pivotal aspects of microalgae-mediated wastewater treatment. Clarifying the degradation mechanisms of bacteria and microalgae during pollutant treatment, as well as regulatory biolipid production, could enhance process sustainability. The synergistic and inhibitory relationships between microalgae and bacteria are introduced in this paper. The different stimulators that can regulate microalgal biolipid accumulation are also reviewed. Wastewater treatment technologies that utilize microalgae and bacteria in laboratories and open ponds are described to outline their application in treating heavy metal-containing wastewater, animal husbandry wastewater, pharmaceutical wastewater, and textile dye wastewater. Finally, the major requirements to scale up the cascade utilization of biomass and energy recovery are summarized to improve the development of biological wastewater treatment.


Assuntos
Microalgas , Eliminação de Resíduos Líquidos , Águas Residuárias , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Biomassa , Metais Pesados , Biodegradação Ambiental
8.
J Environ Manage ; 365: 121465, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901320

RESUMO

By infiltrating and retaining stormwater, Blue-Green Infrastructure (BGI) can help to reduce Combined Sewer Overflows (CSOs), one of the main causes of urban water pollution. Several studies have evaluated the ability of individual BGI types to reduce CSOs; however, the effect of combining these elements, likely to occur in reality, has not yet been thoroughly evaluated. Moreover, the CSO volume reduction potential of relevant components of the urban drainage system, such as detention ponds, has not been quantified using hydrological models. This study presents a systematic way to assess the potential of BGI combinations to mitigate CSO discharge in a catchment near Zurich (Switzerland). Sixty BGI combinations, including four BGI elements (bioretention cells, permeable pavement, green roofs, and detention ponds) and four different implementation rates (25%, 50%, 75%, and 100% of the available sewer catchment area) are evaluated for four runoff routing schemes. Results reveal that BGI combinations can provide substantial CSO volume reductions; however, combinations including detention ponds can potentially increase CSO frequency, due to runoff prolongation. When runoff from upstream areas is routed to the BGI, the CSO discharge reductions from combinations of BGI elements differ from the cumulative CSO discharge reductions achieved by individual BGI types, indicating that the sum of effects from individual BGI types cannot accurately predict CSO discharge in combined BGI scenarios. Moreover, larger BGI implementation areas are not consistently more cost-effective than small implementation areas, since the additional CSO volume reduction does not outweigh the additional costs. The best-performing BGI combination depends on the desired objective, being CSO volume reduction, CSO frequency reduction or cost-effectiveness. This study emphasizes the importance of BGI combinations and detention ponds in CSO mitigation plans, highlighting their critical factors-BGI types, implementation area, and runoff routing- and offering a novel and systematic approach to develop tailored BGI strategies for urban catchments facing CSO challenges.


Assuntos
Esgotos , Poluição da Água/prevenção & controle , Movimentos da Água , Eliminação de Resíduos Líquidos/métodos , Hidrologia
9.
J Environ Manage ; 365: 121681, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963966

RESUMO

The denitrification process in aquaculture systems plays a crucial role in nitrogen (N) cycle and N budget estimation. Reliable models are needed to rapidly quantify denitrification rates and assess nitrogen losses. This study conducted a comparative analysis of denitrification rates in fish, crabs, and natural ponds in the Taihu region from March to November 2021, covering a complete aquaculture cycle. The results revealed that aquaculture ponds exhibited higher denitrification rates compared to natural ponds. Key variables influencing denitrification rates were Nitrate nitrogen (NO3--N), Suspended particles (SPS), and chlorophyll a (Chla). There was a significant positive correlation between SPS concentration and denitrification rates. However, we observed that the denitrification rate initially rose with increasing Chla concentration, followed by a subsequent decline. To develop parsimonious models for denitrification rates in aquaculture ponds, we constructed five different statistical models to predict denitrification rates, among which the improved quadratic polynomial regression model (SQPR) that incorporated the three key parameters accounted for 80.7% of the variability in denitrification rates. Additionally, a remote sensing model (RSM) utilizing SPS and Chla explained 43.8% of the variability. The RSM model is particularly valuable for rapid estimation in large regions where remote sensing data are the only available source. This study enhances the understanding of denitrification processes in aquaculture systems, introduces a new model for estimating denitrification in aquaculture ponds, and offers valuable insights for environmental management.


Assuntos
Aquicultura , Clorofila A , Desnitrificação , Lagoas , Clorofila A/metabolismo , Nitrogênio/metabolismo , Nitratos/metabolismo , Clorofila/metabolismo
10.
J Environ Manage ; 359: 120992, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704953

RESUMO

Unlocking the full potential of ponds (small water bodies) and pondscapes (network of ponds) as Nature-based Solutions (NbS) is critical pursuit for enhancing ecosystems and societal resilience to climate change and other societal challenges. Despite scattered initiatives for pond/pondscape creation, restoration and management-each considered here a distinct NbS-there is a significant knowledge gap in utilising ponds/pondscapes as effective NbS. We aimed to assess these NbS in terms of their objectives, outcomes, effectiveness, multifunctionality, delivery of potentially conflicting effects, and the implementation process while considering their Nature's Contributions to People (NCPs, i.e., benefits to society). We compiled data on 183 NbS actions implemented across 93 ponds/pondscapes from 24 countries, predominantly from Europe, via a questionnaire distributed to experienced stakeholders implementing NbS in ponds/pondscapes. One single pond/pondscape may imply more than one NbS action. Two-thirds were in rural areas, and one-third in urban settings. Our analysis revealed that Creation of habitat for biodiversity was a primary delivery objective (targeted NCP) in the implementation of most NbS in ponds/pondscapes, often also combined with other NCPs such as Learning and inspiration, Regulation of water quantity, and Physical and psychological experiences, showcasing their intended multifunctionality. Implemented NbS primarily focused on climate change adaptation (especially Regulation of hazards and extreme events, and water quantity) rather than mitigation, with less emphasis on measures like direct greenhouse gas emissions reduction or enhancing carbon sinks. The costs associated with pond's NbS varied significantly depending on factors such as project scope, objectives, location, socio-economic-cultural system, and specific implementation requirements. The creation of ponds/pondscapes often entailed the highest financial investment, much more than their restoration or their management. In conclusion, our study underscores the multifunctionality of ponds/pondscapes and provides insights about their significant potential as cost-effective NbS for enhancing ecosystem and societal resilience to climate change and biodiversity. It underscores the importance of further research to fully understand and measure the diverse range of NbS they offer, particularly in the context of climate change mitigation. Standardised measurements of the NCP provided by these NbS in ponds/pondscapes are essential for validating managers' claims and exploring their role in addressing climate change.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Lagoas , Biodiversidade
11.
Int J Environ Health Res ; : 1-14, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785403

RESUMO

The generation of faecal sludge (FS) in capitals and urban settings of African countries outpaces the available storage, emptying, transportation and treatment technologies. The low technology-based treatment systems for handling FS are preferable and widely adopted in the African context due to their less associated investment and operation costs. The waste stabilization ponds and constructed wetlands were principally developed as wastewater treatment systems however they are widely adopted for treating FS in urban settings of Africa. Less information is known about the efficiency of these systems in lowering FS pollutant concentrations to meet the design specifications and the allowable discharge limits. This paper reviewed the technical efficacy of waste stabilization ponds and the constructed wetlands in treating FS by evaluating the actual treatment efficiency data against the design efficiencies and the maximum allowable discharge limits. The review results revealed that these technologies are user-friendly although they fail to lower the solids concentrations to meet the design and maximum allowable discharge limits. This failure imposes extra costs on operation and maintenance due to the fast filling of solids in the systems hence leading to short-circuiting issues. So, studies on the adequate dewatering technologies of FS before entering the systems are needed.

12.
Water Sci Technol ; 89(9): 2396-2415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747956

RESUMO

The impermeable areas in catchments are proportional to peak flows that result in floods in river reaches where the flow-carrying capacity is inadequate. The high rate of urbanization witnessed in the Kinyerezi River catchment in Dar es Salaam city has been noted to contribute to floods and siltation in the Msimbazi River. The Low-Impact Development (LID) practices that includes bio-retention (BR) ponds, rain barrels (RBs), green roofs (GRs), etc. can be utilized to mitigate portion of the surface runoff. This study aims to propose suitable LID practices and their sizes for mitigating runoff floods in the Kinyerezi River catchment using the Multi-Criteria Decision-Making (MCDM) approach. The results indicated that the BR and RBs were ranked high in capturing the surface runoff while the sediment control fences were observed to be the best in reducing sediments flowing into the BR. The proposed BR ponds were greater than 800 m2 with 1.2 m depth while RB sizes for Kinyerezi and Kisungu secondary schools and Kinyerezi and Kifuru primary schools were 2,730; 2,748; 1,385; and 1,020 m3, respectively. The BR ponds and RBs are capable of promoting water-demanding economic activities such as horticulture, gardening, car washing while reducing the school expenses and runoff generation.


Assuntos
Rios , Tanzânia , Tomada de Decisões , Conservação dos Recursos Naturais/métodos , Movimentos da Água , Inundações
13.
Environ Geochem Health ; 46(1): 26, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225519

RESUMO

Irrigation with treated livestock wastewater (TWW) is a promising strategy for reusing resources. However, TWW irrigation might introduce antibiotic resistant genes (ARGs) into the soil, posing environmental risks associated with antibiotic resistance. This study focuses on investigating the influence of irrigation amounts and duration on the fate of ARGs and identifies key factors driving their changes. The results showed that there were 13 ARGs in TWW, while only 5 ARGs were detected in irrigated soil. That is some introduced ARGs from TWW could not persistently exist in the soil. After 1-year irrigation, an increase in irrigation amount from 0.016 t/m2 to 0.048 t/m2 significantly enhanced the abundance of tetC by 29.81%, while ermB and sul2 decreased by 45.37% and 76.47%, respectively (p < 0.01). After 2-year irrigation, the abundance of tetC, ermB, ermF, dfrA1, and total ARGs significantly increased (p < 0.05) when the irrigation amount increased. The abundances of ARGs after 2-year irrigation were found to be 2.5-34.4 times higher than 1 year. Obviously, the irrigation years intensified the positive correlation between ARGs abundance and irrigation amount. TetC and ermF were the dominant genes resulting in the accumulation of ARGs. TWW irrigation increased the content of organic matter and total nitrogen in the soil, which affected microbial community structure. The changes of the potential host were the determining factors driving the ARGs abundance. Our study demonstrated that continuous TWW irrigation for 2 years led to a substantial accumulation of ARGs in soil.


Assuntos
Solo , Águas Residuárias , Animais , Solo/química , Gado , Fazendas , Antibacterianos , Irrigação Agrícola/métodos , Microbiologia do Solo , China
14.
Glob Chang Biol ; 29(14): 4056-4068, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37114848

RESUMO

Peatland pools are freshwater bodies that are highly dynamic aquatic ecosystems because of their small size and their development in organic-rich sediments. However, our ability to understand and predict their contribution to both local and global biogeochemical cycles under rapidly occurring environmental change is limited because the spatiotemporal drivers of their biogeochemical patterns and processes are poorly understood. We used (1) pool biogeochemical data from 20 peatlands in eastern Canada, the United Kingdom, and southern Patagonia and (2) multi-year data from an undisturbed peatland of eastern Canada, to determine how climate and terrain features drive the production, delivering and processing of carbon (C), nitrogen (N), and phosphorus (P) in peatland pools. Across sites, climate (24%) and terrain (13%) explained distinct portions of the variation in pool biogeochemistry, with climate driving spatial differences in pool dissolved organic C (DOC) concentration and aromaticity. Within the multi-year dataset, DOC, carbon dioxide (CO2 ), total N concentrations, and DOC aromaticity were highest in the shallowest pools and at the end of the growing seasons, and increased gradually from 2016 to 2021 in relation to a combination of increases in summer precipitation, mean air temperature for the previous fall, and number of extreme summer heat days. Given the contrasting effects of terrain and climate, broad-scale terrain characteristics may offer a baseline for the prediction of small-scale pool biogeochemistry, while broad-scale climate gradients and relatively small year-to-year variations in local climate induce a noticeable response in pool biogeochemistry. These findings emphasize the reactivity of peatland pools to both local and global environmental change and highlight their potential to act as widely distributed climate sentinels within historically relatively stable peatland ecosystems.


Assuntos
Clima , Ecossistema , Estações do Ano , Água Doce , Temperatura , Solo
15.
Ecol Appl ; 33(4): e2828, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36859728

RESUMO

Urbanization can influence local richness (alpha diversity) and community composition (beta diversity) in numerous ways. For instance, reduced connectivity and land cover change may lead to the loss of native specialist taxa, decreasing alpha diversity. Alternatively, if urbanization facilitates nonnative species introductions and generalist taxa, alpha diversity may remain unchanged or increase, while beta diversity could decline due to the homogenization of community structure. Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand the consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated how landscape and local pond factors were correlated with the alpha diversity of aquatic plants, macroinvertebrates, and aquatic vertebrates. We also analyzed whether surrounding land use was associated with changes in community composition and the presence of specific taxa. We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites and a 15% decrease from rural to greenspace pond sites. Among landscape factors, adjacent developed land, mowed lawn cover, and greater distances to other waterbodies were negatively correlated with observed pond richness. Among pond level factors, habitat complexity was associated with increased richness, while nonnative fishes were associated with decreased richness. Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more nonnative species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. Our results suggest that integrating ponds into connected greenspaces, maintaining riparian vegetation, preventing nonnative fish introductions, and promoting habitat complexity may mitigate the negative effects of urbanization on aquatic richness. While ponds are small in size and rarely incorporated into urban conservation planning, the high beta diversity of distinct pond communities emphasizes their importance for supporting urban biodiversity.


Assuntos
Ecossistema , Lagoas , Animais , Biodiversidade , Urbanização , Peixes
16.
Ecol Appl ; 33(2): e2781, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36398791

RESUMO

Global demand for crops will continue increasing over the next few decades to cover both food and biofuel needs. This demand will put further pressure to expand arable land and replace natural habitats. However, we are only beginning to understand the combined effects of agrochemicals and land-use change on tropical freshwater biodiversity. In this study, we analyzed how pond-dwelling anuran larvae responded to pond characteristics, landscape composition, and agrochemical contamination in a sugarcane-dominated agroecosystem in Brazil. Then we used an information theoretical approach with generalized linear models to relate species richness and abundance to predictor variables. The variation in tadpole abundance was associated with both agrochemical concentration (e.g., ametryn, diuron, and malathion) and landscape variables (e.g., percentage of forest, percentage of agriculture, and distance to closest forest). The relationship between species abundance and agrochemicals was species-specific. For example, the abundances of Scinax fuscovarius and Physalaemus nattereri were negatively associated with ametryn, and Dendropsophus nanus was negatively associated with tebuthiuron, whereas that of Leptodactylus fuscus was positively associated with malathion. Conversely, species richness was associated with distance to forest fragments and aquatic vegetation heterogeneity, but not agrochemicals. Although we were unable to assign a specific mechanism to the variation in tadpole abundance based on field observations, the lower abundance of three species in ponds with high concentrations of agrochemicals suggest they negatively impact some frog species inhabiting agroecosystems. We recommend conserving ponds near forest fragments, with abundant stratified vegetation, and far from agrochemical runoffs to safeguard more sensitive pond-breeding species.


Assuntos
Saccharum , Animais , Malation , Melhoramento Vegetal , Ecossistema , Anuros , Biodiversidade , Larva
17.
Microb Ecol ; 85(4): 1150-1163, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35347370

RESUMO

The environmental variations and their interactions with the biosphere are vital in the Arctic Ocean during the summer sea-ice melting period in the current scenario of climate change. Hence, we analysed the vertical distribution of bacterial and archaeal communities in the western Arctic Ocean from sea surface melt-ponds to deep water up to a 3040 m depth. The distribution of microbial communities showed a clear stratification with significant differences among different water depths, and the water masses in the Arctic Ocean - surface mixed layer, Atlantic water mass and deep Arctic water - appeared as a major factor explaining their distribution in the water column. A total of 34 bacterial phyla were detected in the seawater and 10 bacterial phyla in melt-ponds. Proteobacteria was the dominant phyla in the seawater irrespective of depth, whereas Bacteroidota was the dominant phyla in the melt-ponds. A fast expectation-maximization microbial source tracking analysis revealed that only limited dispersion of the bacterial community was possible across the stratified water column. The surface water mass contributed 21% of the microbial community to the deep chlorophyll maximum (DCM), while the DCM waters contributed only 3% of the microbial communities to the deeper water masses. Atlantic water mass contributed 37% to the microbial community of the deep Arctic water. Oligotrophic heterotrophic bacteria were dominant in the melt-ponds and surface waters, whereas chemoautotrophic and mixotrophic bacterial and archaeal communities were abundant in deeper waters. Chlorophyll and ammonium were the major environmental factors that determined the surface microbial communities, whereas inorganic nutrient concentrations controlled the deep-water communities.


Assuntos
Archaea , Água , Archaea/genética , Bactérias/genética , Água do Mar/microbiologia , Clorofila , Oceanos e Mares , Regiões Árticas
18.
Microb Ecol ; 86(2): 843-858, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36205737

RESUMO

Metalliferous mine tailings ponds are generally characterized by low levels of nutrient elements, sustained acidic conditions, and high contents of toxic metals. They represent one kind of extreme environments that are believed to resemble the Earth's early environmental conditions. There is increasing evidence that the diversity of fungi inhabiting mine tailings ponds is much higher than previously thought. However, little is known about functional guilds, community assembly, and co-occurrence patterns of fungi in such habitats. As a first attempt to address this critical knowledge gap, we employed high-throughput sequencing to characterize fungal communities in 33 mine tailings ponds distributed across 18 provinces of mainland China. A total of 5842 fungal phylotypes were identified, with saprotrophic fungi being the major functional guild. The predictors of fungal diversity in whole community and sub-communities differed considerably. Community assembly of the whole fungal community and individual functional guilds were primarily governed by stochastic processes. Total soil nitrogen and total phosphorus mediated the balance between stochastic and deterministic processes of the fungal community assembly. Co-occurrence network analysis uncovered a high modularity of the whole fungal community. The observed main modules largely consisted of saprotrophic fungi as well as various phylotypes that could not be assigned to known functional guilds. The richness of core fungal phylotypes, occupying vital positions in co-occurrence network, was positively correlated with edaphic properties such as soil enzyme activity. This indicates the important roles of core fungal phylotypes in soil organic matter decomposition and nutrient cycling. These findings improve our understanding of fungal ecology of extreme environments.


Assuntos
Lagoas , Microbiologia do Solo , China , Solo , Fungos/genética
19.
Environ Sci Technol ; 57(4): 1576-1583, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36516430

RESUMO

Small ponds are important methane (CH4) sources. However, current estimates of CH4 emissions from aquaculture ponds are largely uncertain due to data paucity, especially in China─the largest aquaculture producer in the world. Here, we present a nationwide metadata analysis with a database of 55 field observations to examine total CH4 emissions from aquaculture ponds in China. We found that the annual CH4 fluxes from aquaculture ponds are much larger than those from reservoirs and lakes. The total CH4 emission from aquaculture ponds is 1.60 ± 0.62 Tg CH4 yr-1, with an average growth rate of ∼0.03 Tg CH4 yr-2 during the period 2008-2019. Compared with global major protein-producing livestocks, aquaculture species have a lower (63%) emission intensity, defined by the amount of CH4 emitted per unit of animal proteins. Our study highlights the essential contribution of China's aquaculture ponds to national CH4 emissions and the lower environmental cost of the aquaculture sector for future animal protein production. More field measurements with multi-scale observations are urgently needed to reduce the uncertainty of CH4 emissions from aquaculture ponds.


Assuntos
Metano , Lagoas , Animais , Metano/análise , Aquicultura , Lagos , China
20.
Ecotoxicol Environ Saf ; 258: 114944, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119728

RESUMO

Cyanobacteria blooms in aquaculture ponds harm the harvesting of aquatic animals and threaten human health. Therefore, it is crucial to identify key drivers and develop methods to predict cyanobacteria blooms in aquaculture water management. In this study, we analyzed monitoring data from 331 aquaculture ponds in central China and developed two machine learning models - the least absolute shrinkage and selection operator (LASSO) regression model and the random forest (RF) model - to predict cyanobacterial abundance by identifying the key drivers. Simulation results demonstrated that both machine learning models are feasible for predicting cyanobacterial abundance in aquaculture ponds. The LASSO model (R2 = 0.918, MSE = 0.354) outperformed the RF model (R2 = 0.798, MSE = 0.875) in predicting cyanobacteria abundance. Farmers with well-equipped aquaculture ponds that have abundant water monitoring data can use the nine environmental variables identified by the LASSO model as an operational solution to accurately predict cyanobacteria abundance. For crude ponds with limited monitoring data, the three environmental variables identified by the RF model provide a convenient solution for useful cyanobacteria prediction. Our findings revealed that chemical oxygen demand (COD) and total organic carbon (TOC) were the two most important predictors in both models, indicating that organic carbon concentration had a close relationship with cyanobacteria growth and should be considered a key metric in water monitoring and pond management of these aquaculture ponds. We suggest that monitoring of organic carbon coupled with phosphorus reduction in feed usage can be an effective management approach for cyanobacteria prevention and to maintain a healthy ecological state in aquaculture ponds.


Assuntos
Cianobactérias , Lagoas , Animais , Humanos , Lagoas/microbiologia , Monitoramento Ambiental/métodos , Água , Aquicultura , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA