Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 245: 117960, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38135098

RESUMO

Carbon capture technologies are becoming increasingly crucial in addressing global climate change issues by lowering CO2 emissions from industrial and power generation activities. Post-combustion carbon capture, which uses membranes instead of adsorbents, has emerged as one of promising and environmentally friendly approaches among these technologies. The operation of membrane technology is based on the premise of selectively separating CO2 from flue gas emissions. This provides a number of different benefits, including improved energy efficiency and decreased costs of operation. Because of its adaptability to changing conditions and its low impact on the surrounding ecosystem, it is an appealing choice for a diverse array of uses. However, there are still issues to be resolved, such as those pertaining to establishing a high selectivity, membrane degradation, and the costs of the necessary materials. In this article, we evaluate and explore the prospective applications and roles of membrane technologies to control climate change by post-combustion carbon capturing. The primary proposition suggests that the utilization of membrane-based carbon capture has the potential to make a substantial impact in mitigating CO2 emissions originating from industrial and power production activities. This is due to its heightened ability to selectively absorb carbon, better efficiency in energy consumption, and its flexibility to various applications. The forthcoming challenges and potential associated with the application of membranes in post-carbon capture are also discussed.


Assuntos
Mudança Climática , Resiliência Psicológica , Dióxido de Carbono , Ecossistema , Carbono
2.
Environ Res ; 237(Pt 1): 116879, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579965

RESUMO

The main obstacles in adopting solvent-based CO2 capture technology from power plant flue gases at the industrial scale are the energy requirements for solvent regeneration and their toxicity. These challenges can be overcome using new green and more stable ionic liquids (ILs) as solvents for post-combustion CO2 capture. In the current study, tributyl-tetradecyl-phosphonium chloride [P44414][Cl] as an IL, was immobilized on hydrophobic porous supports of polypropylene (PP), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE) at 298 ± 3 K and pressures up to 2 bar. The surface morphology indicated homogenous immobilization of the IL on the membrane support. Supported ionic liquid membranes (SILMs) were tested for CO2 permeability and CO2/N2 selectivity. None of the SILMs exhibited IL leaching up to 2 bar. The PTFE-based SILM performed better than other supports with minimum loss in water contact angle (WCA) and achieved good antiwetting with a maximum CO2 permeability and selectivity over N2 of 2300 ± 139 Barrer and 31.60 ± 2.4, respectively. This work achieves CO2 permeability about two-fold more than other works having CO2/N2 selectivity range of 25-35 in similar SILMs. The diffusivity of CO2 and N2 in [P44414][Cl] was measured as 3.64 ± 0.18 and 2.01 ± 0.09 [10-8 cm2 s-1] and CO2 and N2 solubility values were 9.79 ± 0.47 and 0.19 ± 0.001 [10-2 cm3(STP) cm-3 cmHg-1], respectively. The high values of Young's modulus and tensile strength of the PTFE support-based SILM (234 ± 12 MPa and 6.07 ± 0.31 MPa, respectively) indicated the long-term application of SILM in flue gas separation. The results indicated phosphonium chloride-based ILs could be better solvent candidates for CO2 removal from large volumes of flue gases than amine-based ILs.

3.
Environ Res ; 204(Pt A): 111945, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34474036

RESUMO

No in-depth investigation exists on the feasibility of integrating hydrothermal carbonization (HTC) and pelletization into the process of making spent mushroom substrate (SMS), an agro-food residue from the commercial mushroom industry, into an adsorbent for post-combustion CO2 removal. Therefore, this study analyzed if it could be possible for systematically converting low-pressure hydrochars of various SMSs into carbon-adsorbing mini-capsules. Sources of SMS included paddy straw and achiote capsule shell from Pleurotus ostreatus; eucalyptus sawdust and grassy straw from Lentinula edodes; and compost containing peat or soil as casing layer from Agaricus subrufescens. The eucalyptus sawdust and grassy straw from L. edodes outperformed the other biomaterials in adsorbing CO2, and thus effectively encapsuled most of the gas, 8.25 mmol g-1 and 8.10 mmol g-1, respectively. They contained mostly hetero-atoms of O and N, requiring less unit energy to bind acidic molecules of CO2 at the alkaline sites. The amount of unit energy the pore-filling process demanded at 25 °C was 12.65 kJ mol-1, an attribute of self-sustaining and saleable physisorption. A negative 6.80 kJ mol-1 free energy validated both spontaneity and exothermal of biocarbons at steady-state atmosphere. The major findings and innovations of our study support utilizing SMS as an adsorbent as a carbon capture, storage and utilization networking. Our insights into the physisorption-chemisorption on SMS are timely and relevant to help manage the re-use of SMS, and thus bring the global mushroom industry closer to environmental sustainability and toward a lower carbon society and circular economy.


Assuntos
Agaricales , Dióxido de Carbono , Solo
4.
J Environ Manage ; 313: 115026, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405546

RESUMO

Carbon dioxide (CO2) emissions from fossil fuel combustion have been linked to increased average global temperatures, a global challenge for many decades. Mitigating CO2 concentration in the atmosphere is a priority for the protection of the environment. This is a comparison of the three main technological categories available for CO2 capture and storage. They include: oxy-fuel combustion, pre-combustion, and post-combustion. Each capture technology has inherent benefits and disadvantages in cost, implementation, and flexibility, but post-combustion CO2 capture has demonstrated the most promising results in typical power plant configurations. This paper presents a review of different post-combustion CO2 capture materials; solvents, membranes, and adsorbents, focusing on economical and environmentally safe low to high temperature solid adsorbents. Furthermore, the authors summarize the advantages and limitations of the materials investigated to provide insight into the challenges and opportunities currently facing the development of post-combustion CO2 capture technologies. The solid sorbents currently available for CO2 capture are also reviewed in detail, including physical and chemical properties, reactions, and current research efforts on improvement.


Assuntos
Dióxido de Carbono , Combustíveis Fósseis , Adsorção , Dióxido de Carbono/análise , Centrais Elétricas , Temperatura
5.
J Environ Manage ; 320: 115908, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961143

RESUMO

Decarbonizing the cement manufacturing sector presents an interesting and pressing challenge as it is one of the largest energy consumers in industry (i.e., 7%), emitting considerable amounts of anthropogenic carbon dioxide (i.e., 7%). This paper performs a technical and environmental assessment of decarbonisation of cement production through process modelling and simulation, thermal integration analysis, and Life Cycle Assessment (LCA). Integration of three post-combustion capture methods for a conventional cement plant with an annual productivity of one million tons and a carbon capture rate of 90% is evaluated in comparison to the reference case without carbon capture and storage (CCS). Mass and energy balances derived from simulations are used for the assessment of three innovative capture systems: reactive gas-liquid absorption using Methyl-Di-Ethanol-Amine, reactive gas-solid adsorption using calcium looping (CaL) technology and membrane separation. For the LCA study, a "cradle-to-gate" approach is carried out using GaBi software, according to the ReCiPe impact assessment method. The general conclusion is that integrating the CCS methods into the cement production process leads to a decrease in global warming potential (GWP) in the range of 69.91%-76.74%. Of the CCS technologies analysed, CaL technically outperforms the others as it requires 34% less coal and provides 1.6 times higher gross energy efficiency. From an environmental perspective, CaL integration ranks first, with the lowest scores in six of the nine impact categories and a GWP reduction of 76.74% compared to the baseline scenario without CCS.


Assuntos
Dióxido de Carbono , Meio Ambiente , Dióxido de Carbono/análise , Carvão Mineral , Aquecimento Global , Tecnologia
6.
Entropy (Basel) ; 24(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35626521

RESUMO

Nowadays, in Mexico, most of the installed electricity generation capacity corresponds to combined cycles, representing 37.1%. For this reason, it is important to maintain these cycles in good operating conditions, with the least environmental impacts. An exergoeconomic and environmental analysis is realized to compare the operation of the combined cycle, with and without postcombustion, with the comparison of exergoeconomic and environmental indicators. With the productive structure of the energy system, the process of formation of the final products and the residues are identified, and an allocation criterion is also used to impute the formation cost of residue to the productive components related to its formation. This criterion considers the irreversibilities generated in each productive component that participates in the formation of a residue. The compositions of pollutant gases emitted are obtained, and their environmental impact is determined. The unit exergoeconomic cost of the power output in the gas turbine is lower in the combined cycle with postcombustion, indicating greater efficiency in the process of obtaining this energy stream, and the environmental indicators of global warming, smog formation and acid rain formation are higher in the combined cycle with postcombustion, these differences being 5.22%, 5.53% and 5.30%, respectively.

7.
Chemistry ; 27(59): 14653-14659, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34314527

RESUMO

The rapidly rising level of carbon dioxide in the atmosphere resulting from human activity is one of the greatest environmental problems facing our civilization today. Most technologies are not yet sufficiently developed to move existing infrastructure to cleaner alternatives. Therefore, techniques for capturing carbon dioxide from emission sources may play a key role at the moment. The structure of the UiO-66 material not only meets the requirement of high stability in contact with water vapor but through the water pre-adsorbed in the pores, the selectivity of carbon dioxide adsorption is increased. We successfully applied the recently developed methodology for water adsorption modelling. It allowed to elucidate the influence of water on CO2 adsorption and study the mechanism of this effect. We showed that water is adsorbed in octahedral cage and stands for promotor for CO2 adsorption in less favorable space than tetrahedral cages. Water plays a role of a mediator of adsorption, what is a general idea of improving affinity of adsorbate. On the basis of pre-adsorption of methanol as another polar solvent, we have shown that the adsorption sites play a key role here, and not, as previously thought, only the interaction between the solvent and quadrupole carbon dioxide. Overall, we explained the mechanism of increased CO2 adsorption in the presence of water and methanol, as polar solvents, in the UiO-66 pores for a potential post-combustion carbon dioxide capture application.


Assuntos
Dióxido de Carbono , Água , Adsorção , Humanos , Metanol , Solventes
8.
Environ Sci Technol ; 55(15): 10619-10632, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34241997

RESUMO

As more countries commit to a net-zero GHG emission target, we need a whole energy and industrial system approach to decarbonization rather than focus on individual emitters. This paper presents a techno-economic analysis of monoethanolamine-based post-combustion capture to explore opportunities over a diverse range of power and industrial applications. The following ranges were investigated: feed gas flow rate between 1-1000 kg ·s-1, gas CO2 concentrations of 2-42%mol, capture rates of 70-99%, and interest rates of 2-20%. The economies of scale are evident when the flue gas flow rate is <20 kg ·s-1 and gas concentration is below 20%mol CO2. In most cases, increasing the capture rate from 90 to 95% has a negligible impact on capture cost, thereby reducing CO2 emissions at virtually no additional cost. The majority of the investigated space has an operating cost fraction above 50%. In these instances, reducing the cost of capital (i.e., interest rate) has a minor impact on the capture cost. Instead, it would be more beneficial to reduce steam requirements. We also provide a surrogate model which can evaluate capture cost from inputs of the gas flow rate, CO2 composition, capture rate, interest rate, steam cost, and electricity cost.


Assuntos
Aminas , Dióxido de Carbono , Eletricidade , Etanolamina , Vapor
9.
J Environ Manage ; 300: 113746, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34562822

RESUMO

Greenhouse gas emissions from power plants that use fossil fuels cause a serious impact to the environment, for this reason the use of renewable energy technologies is an important alternative as a way of combatting climate change. The production of power via biomass is considered as a carbon neutral energy resource, but it is well known that the non-fossil CO2 emitted from this type of processes can also be captured. In order to do so, in this work it is proposed a match between a Biogas combined cycle power plant and postcombustion carbon capture process, to capture the CO2 produced by the biogas combustion, and also it considered a match with an organic Rankine cycle that uses the wasted energy of the combustion gases. Additionally, it is considered that the captured carbon is used to produce some value-added chemicals and fuels. Environmental and energetic evaluations were carried out for the coupling of those technologies. The implementation of the carbon capture plant, results on a diminution of the 87% of the emission of the combined cycle power plant. The life cycle analysis results show that the study case of Syngas production via dry reforming of methane, presents the lower global warming potential (0.088 CO2-eq kg/kg) and it was also found that the global warming potential has a reduction with the help of the mass integration between the different alternatives of CO2 utilization. Finally, it was found an annual reduction of 0.055 CO2-eq t for the system with mass integration compared with the cases without mass integration.


Assuntos
Biocombustíveis , Dióxido de Carbono , Carbono , Dióxido de Carbono/análise , Efeito Estufa , Centrais Elétricas
10.
Sensors (Basel) ; 20(23)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291322

RESUMO

The quantification of atmospheric gases with small unmanned aerial systems (sUAS) is expanding the ability to safely perform environmental monitoring tasks and quickly evaluate the impact of technologies. In this work, a calibrated sUAS is used to quantify the emissions of ammonia (NH3) gas from the exit stack a 0.1 MWth pilot-scale carbon capture system (CCS) employing a 5 M monoethanolamine (MEA) solvent to scrub CO2 from coal combustion flue gas. A comparison of the results using the sUAS against the ion chromatography technique with the EPA CTM-027 method for the standard emission sampling of NH3 shows good agreement. Therefore, the work demonstrates the usefulness of sUAS as an alternative method of emission measurement, supporting its application in lieu of traditional sampling techniques to collect real time emission data.

11.
J Environ Manage ; 236: 534-550, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771673

RESUMO

Offshore oil/gas productions are power intensive and CO2 emitters from gas-fired power generation. This work investigates supersonic separator as a strategy for affording post-combustion capture backed up by cost reductions. Conventional offshore gas processing usually loses thermodynamic hydrate inhibitor methanol in processing and exported gas. This work analyses a supersonic separator variant gas processing simultaneously reducing methanol losses. Such process dramatically improves gas-plant profitability via cost-reduction of methanol make-up and power-consumption, simultaneously increasing revenues from liquefied-petroleum-gas by-product. This economic leverage affords post-combustion carbon capture, including subsequent CO2 dehydration and compression for exportation of high-pressure liquid CO2. This corresponds to abate 43% of CO2 emissions boosting revenues via enhanced oil recovery. Moreover, CO2 is dehydrated via another supersonic separator operating with minimum head-loss, minimizing compression costs. Despite its much higher investment, the new process with carbon capture presents higher net value (865.63 MMUSD) than the conventional processing without carbon capture (829.31 MMUSD), being economically feasible and more environmentally adequate with cleaner natural gas production and successful CO2 management. The new process is superior in several scenarios and particularly favored by oil prices above 55 USD/bbl. Rising oil price from 40 to 100 USD/bbl, the new process net value rises 29%, whereas the conventional counterpart rises only 7.5%. In addition, as a plausible future scenario, CO2 taxation favors the new process, which always has superior economic performance, even without CO2 taxation. In summary, implementing supersonic separators in offshore natural gas processing aiming at anti-hydrate recovery and CO2 dehydration for enhanced oil recovery creates economic leverage sustaining Carbon Capture & Storage without loss of competitiveness. This result, backed up by rigorous thermodynamic simulations and economic-environmental assessments, configure an original achievement to the literature.


Assuntos
Carbono , Petróleo , Dióxido de Carbono , Metanol , Gás Natural
12.
J Environ Sci (China) ; 83: 46-63, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31221387

RESUMO

Carbon dioxide (CO2) is the largest anthropogenic greenhouse gas (GHG) on the planet contributing to the global warming. Currently, there are three capture technologies of trapping CO2 from the flue gas and they are pre-combustion, post-combustion and oxy-fuel combustion. Among these, the post-combustion is widely popular as it can be retrofitted for a short to medium term without encountering any significant technology risks or changes. Activated carbon is widely used as a universal separation medium with series of advantages compared to the first generation capture processes based on amine-based scrubbing which are inherently energy intensive. The goal of this review is to elucidate the three CO2 capture technologies with a focus on the use of activated carbon (AC) as an adsorbent for post-combustion anthropogenic CO2 flue gas capture prior to emission to atmosphere. Furthermore, this coherent review summarizes the recent ongoing research on the preparation of activated carbon from various sources to provide a profound understanding on the current progress to highlight the challenges of the CO2 mitigation efforts along with the mathematical modeling of CO2 capture. AC is widely seen as a universal adsorbent due to its unique properties such as high surface area and porous texture. Other applications of AC in the removal of contaminants from flue gas, heavy metal and organic compounds, as a catalyst and catalyst support and in the electronics and electroplating industry are also discussed in this study.


Assuntos
Poluição do Ar/prevenção & controle , Dióxido de Carbono/química , Carvão Vegetal/química , Gases de Efeito Estufa/química , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise
13.
Chemphyschem ; 15(9): 1880-6, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24782140

RESUMO

Piperazine is a widely studied solvent for post-combustion carbon dioxide capture. To investigate the possibilities of further improving this process, the electronic and steric effects of -CH(3), -CH(2)F, -CH(2)OH, -CH(2)NH(2), -COCH3 , and -CN groups of 2,5-disubstituted piperazines on the pKa and carbamate stability towards hydrolysis are investigated by quantum chemical methods. For the calculations, B3LYP, M11L, and spin-component-scaled MP2 (SCS-MP2) methods are used and coupled with the SMD solvation model. The experimental pK(a) values of piperazine, 2-methylpiperazine, and 2,5-dimethylpiperazine agree well with the calculated values. The present study indicates that substitution of -CH(3), -CH(2) NH(2), and -CH(2) OH groups on the 2- and 5-positions of piperazine has a positive impact on the CO(2) absorption capacity by reducing the carbamate stability towards hydrolysis. Furthermore, their higher boiling points, relative to piperazine itself, will lead to a reduction of volatility-related losses.

14.
Sci Total Environ ; 943: 173627, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38821285

RESUMO

Advancement of the absorbent for CO2 capture is essential in optimizing the performance and reducing the negative environmental effects associated with this technology. Despite ammonia's promise as an absorbent, the volatility limits its practical application and creates potential environmental pollution. Therein, we assess various additives (amino acids, carbonates, and alkanolamines) for ammonia-based solvents using multi-stage circulation absorber from the viewpoints of aerosol emission, ammonia emission, and CO2 capture efficiency. Experimental findings reveal that ammonia volatilization can be inhibited by the protonation of free ammonia by carboxyl groups and the formation of hydrogen bonding between amino/hydroxyl groups and ammonia, with ammonia emission reduced by 21.7 %, aerosol emission reduced by 26.5 %, and CO2 capture efficiency increased to a maximum of 87.8 % under the condition of adding histidine. Moreover, the experiment highlights a positive correlation between total ammonia emission and aerosol concentration/diameter. Additionally, tests combining source abatement with water wash exhibit up to 50.5 % aerosol removal efficiency and up to 76.6 % ammonia removal efficiency. To further mitigate emissions, a comprehensive approach is proposed, achieving an 84.4 % reduction in ammonia emission and a 61.9 % reduction in aerosol emission. Finally, a method for recycling ammonia for desulfurization is suggested.

15.
Heliyon ; 10(15): e35316, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39166011

RESUMO

The solvent regeneration in the post-combustion carbon capture process usually relies on steam from the power plant steam cycle. This heat duty is one of the challenges of energy consumption in PCC (Post-combustion Carbon Capture). However, this practice results in a significant energy penalty, leading to a substantial reduction in the capacity of the Power Plant, estimated to be between 19.5 and 40 %. This paper investigate the techno-economic feasibility of a solar-assisted regeneration process for the PCC industrial scale with diglycolamine solvent. The study aims to assess the impact of system configuration modifications, such as LVC (Lean Vapor Compression), SPCC (Solar Post-combustion Carbon Capture), and combinations of trough or compound solar collectors with LVC, on energy efficiency and overall plant performance. With 3E analysis for SPCC configuration results show that this configuration. However, reducing energy consumption and energy penalty factor, exhibits a decrease in exergy and exergoeconomic efficiency compared to the other configurations in terms of exergy and exergoeconomic aspects. However, the LVC + SCSS (Solar Combined Separator-Stripper) configuration demonstrates the best performance across the 3E aspects, resulting in a reduction energy penalty to 12.2 % and improvements of 38 % and 4.2 % in exergy and exergoeconomic factors, respectively.

16.
Sci Rep ; 14(1): 23500, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379390

RESUMO

The coal-fired power sector is facing unprecedented pressure due to the shift to low-carbon energy sources and the need to prevent climate change. It is imperative to incorporate advanced technologies into conventional coal-fired power plants to enhance their efficiency, flexibility, and environmental sustainability. One advantage of post-combustion CCS methods is that they may be retrofitted into power plants that are already in place. The goal of this work is to design a CO2 flue gas cleaning retrofit system that will meet the most stringent air quality regulations in an operational coal power station in Southern Africa. It will operate and expedite the removal of undesired gas (CO2) in order to attain ideal requirements for air quality in one of Southern Africa's current coal-fired power plants, the Duvha Coal Power Plant. This study is based on chemical absorption, and explores the mechanistic design of the scrubber, which was accomplished through simple computations and Ansys simulations. The approach for developing a wet CO2 scrubber and LSTG system is based on chemical absorption and is integrated with a pilot plant. The results of the parametric study provide a foundation for a comprehensive industrial system design for South Africa's coal-powered industry. The results show that the scrubber's cylinder height and diameter can be used for an LSTG system and are appropriate for CO2 gas flow and capture. The application of the suggested scrubber design and the LTSG's contributions will allow the coal power station to operate with minimal GHG emissions released into the atmosphere. Instead of shutting down coal power facilities, this cleaning system that completely absorbs CO2 emissions can be used to maintain a robust power infrastructure, rather than being phased out. This will boost the power plant's efficiency over its initial operating efficiency and benefit the nation's economy and the power industry.

17.
Sci Total Environ ; 927: 172047, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575006

RESUMO

In this paper, different emerging post-combustion technologies, i.e., monoethanolamine (MEA), aqueous ammonia, pressure swing adsorption (PSA), temperature swing adsorption (TSA), membrane and calcium looping, were applied to an ultra-supercritical coal-fired power plant for carbon capture. A 'cradle-to-grave' life cycle assessment (LCA) was conducted to evaluate the technical performance and environmental impacts of the power plant with six emerging carbon capture technologies. Carbon capture significantly influences the impact categories directly associated with flue gas emission. The application of carbon capture reduced the GWP in the range of 49-75 %. TAP also reduced in the range of 18-51 %. However, the human toxicity potential, eutrophication potential, ecotoxicity potential and particulate matter formation potential increased due to energy and resource consumption in the upstream and downstream processes. For the life cycle water consumption potential, it decreased by 8 % with calcium looping, whereas it increased in the range of 36-75 % with other post-combustion technologies. The highest reduction in GWP and the least reduction in power efficiency was observed in calcium looping because of the high-temperature heat recovery from flue gas and elimination of complex solvent manufacturing. The plant with aqueous ammonia and membrane separation had the second and third highest reductions in GWP. In addition, the lowest values for TAP, FEP, and MEP were obtained in the membrane system. With MEA for CO2 capture, the total GWP value of the plant is slightly higher than these three technologies mentioned above, and the highest HTPc, FETP, and METP can be observed in this case. TSA and PSA have the most significant environmental impacts in most categories due to higher energy requirements.

18.
J Med Life ; 17(2): 233-235, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38813359

RESUMO

Post-combustion alopecia presents a complex medical challenge with implications spanning dermatological and psychiatric disorders. The use of hair transplantation has proven to be a significant improvement for this condition. However, the current management involves various techniques, each with advantages and disadvantages. Progressive skin expansions, surgical scar reduction, and skin grafts containing hair follicles yield unsatisfactory aesthetic outcomes and have limited applicability as a first-line treatment for fire victims. So far, follicular unit extraction (FUE) has proven to be one of the most versatile procedures in such cases, having the potential to restore a natural anatomical profile closely resembling the pre-traumatic appearance that led to the traumatic alopecia. Additionally, it contributes to the improvement of associated psychiatric comorbidities, facilitating proper social reintegration and enhancing overall quality of life. This report focuses on a case of post-combustion alopecia and severe facial distortion due to third-degree burns resulting in severe psychiatric comorbidities, which benefited from a proper social reintegration and improvement of the quality of life after three consecutive sessions of FUE for scalp and eyebrow hair.


Assuntos
Alopecia , Couro Cabeludo , Transplante de Pele , Humanos , Alopecia/cirurgia , Couro Cabeludo/cirurgia , Transplante de Pele/métodos , Procedimentos de Cirurgia Plástica/métodos , Qualidade de Vida , Adulto , Masculino , Cabelo/transplante , Folículo Piloso/transplante , Feminino , Face/cirurgia , Queimaduras/cirurgia
19.
Heliyon ; 9(12): e22341, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076159

RESUMO

The significant increase in energy consumption has facilitated a rapid increase in offensive greenhouse gas (GHG) and CO2 emissions. The consequences of such emissions are one of the most pivotal concerns of environmental scientists. To protect the environment, they are conducting the necessary research to protect the environment from the greenhouse effect. Among the different sources of CO2 emission, power plants contribute the largest amount of CO2 and as the number of power plants around the world is rising gradually due to increasing energy demand, the amount of CO2 emission is also rising subsequently. Researchers have developed different potential technologies to capture post-combustion CO2 capture from powerplants among which membrane-based, cryogenic, absorption and adsorption-based CO2 processes have gained much attention due to their applicability at the industrial level. In this work, adsorption-based CO2 technologies are comprehensively reviewed and discussed to understand the recent advancements in different adsorption technologies and several adsorbent materials. Researchers and scientists have developed and advanced different adsorption technologies including vacuum swing adsorption, temperature swing adsorption, pressure swing adsorption, and electric swing adsorption, etc. To further improve the CO2 adsorption capacity with a compact CO2 adsorption unit, researchers have integrated different adsorption technologies to investigate their performance, such as temperature vacuum swing adsorption, pressure vacuum swing adsorption, electric temperature pressure swing adsorption, etc. Different adsorbent materials have been tested to evaluate their applicability for CO2 adsorption and among these adsorbents, advanced carbonaceous, non-carbonaceous, polymeric, and nanomaterials have achieved much attention due to their suitable characteristics that are required for adsorbing CO2. Researchers have reported that higher CO2 adsorption capacity can be achieved by integrating different adsorption technologies and employing suitable adsorbent material for that system. This comprehensive review also provides future directions that may assist researchers in developing novel adsorbent materials and gaining a proper understanding of the selection criteria for effective CO2 adsorption processes with suitable adsorbents.

20.
ChemSusChem ; 16(24): e202300930, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37589250

RESUMO

Alternative to current liquid amine technologies for post-combustion CO2 capture, new technologies such as adsorbent-based processes are developed, wherein material lifetime and degradation is important. Herein a robust method to determine degradation rates in a laboratory setup is developed, which was validated with a continuous multi-staged fluidized bed pilot plant designed to capture 1 ton CO2 per day. An amine functionalized polystyrene adsorbent showed very good agreement between the experimental 1000-hour laboratory degradation rates and 2200 hours of degradation in a pilot plant. This validates how laboratory experiments can be extrapolated for sorbent screening and for scale-up. Resulting, the oxidative degradation in the desorber at high temperatures (120 °C) and low O2 concentrations (150 ppmv) is 3 times higher compared to the adsorber at low temperatures and high O2 (56 °C, 7 vol %). Laboratory degradation experiments can hence be used to further optimize process operations to limit degradation or screen for potential new adsorbents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA