Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732081

RESUMO

Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.


Assuntos
Plaquetas , Flavonoides , Ativação Plaquetária , Inibidores da Agregação Plaquetária , Espécies Reativas de Oxigênio , Flavonoides/farmacologia , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apigenina/farmacologia , Quercetina/farmacologia , Luteolina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quempferóis/farmacologia , Trombina/metabolismo , Flavanonas
2.
J Biol Chem ; 296: 100644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839152

RESUMO

Exposure of mucosal epithelial cells to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is known to disrupt epithelial cell junctions by impairing stathmin-mediated microtubule depolymerization. However, the pathological significance of this process and its underlying molecular mechanism remain unclear. Here we show that treatment of epithelial cells with pseudotyped HIV-1 viral particles or recombinant gp120 protein results in the activation of protein kinase G 1 (PKG1). Examination of epithelial cells by immunofluorescence microscopy reveals that PKG1 activation mediates the epithelial barrier damage upon HIV-1 exposure. Immunoprecipitation experiments show that PKG1 interacts with stathmin and phosphorylates stathmin at serine 63 in the presence of gp120. Immunoprecipitation and immunofluorescence microscopy further demonstrate that PKG1-mediated phosphorylation of stathmin promotes its autophagic degradation by enhancing the interaction between stathmin and the autophagy adaptor protein p62. Collectively, these results suggest that HIV-1 exposure exploits the PKG1/stathmin axis to affect the microtubule cytoskeleton and thereby perturbs epithelial cell junctions. Our findings reveal a novel molecular mechanism by which exposure to HIV-1 increases epithelial permeability, which has implications for the development of effective strategies to prevent mucosal HIV-1 transmission.


Assuntos
Permeabilidade da Membrana Celular , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Células Epiteliais/patologia , HIV-1/fisiologia , Microtúbulos/metabolismo , Estatmina/metabolismo , Movimento Celular , Proteínas Quinases Dependentes de GMP Cíclico/genética , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Infecções por HIV/virologia , Humanos , Microtúbulos/virologia , Fosforilação , Estatmina/genética
3.
J Biol Chem ; 295(25): 8480-8491, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32317283

RESUMO

Most malaria deaths are caused by the protozoan parasite Plasmodium falciparum Its life cycle is regulated by a cGMP-dependent protein kinase (PfPKG), whose inhibition is a promising antimalaria strategy. Allosteric kinase inhibitors, such as cGMP analogs, offer enhanced selectivity relative to competitive kinase inhibitors. However, the mechanisms underlying allosteric PfPKG inhibition are incompletely understood. Here, we show that 8-NBD-cGMP is an effective PfPKG antagonist. Using comparative NMR analyses of a key regulatory domain, PfD, in its apo, cGMP-bound, and cGMP analog-bound states, we elucidated its inhibition mechanism of action. Using NMR chemical shift analyses, molecular dynamics simulations, and site-directed mutagenesis, we show that 8-NBD-cGMP inhibits PfPKG not simply by reverting a two-state active versus inactive equilibrium, but by sampling also a distinct inactive "mixed" intermediate. Surface plasmon resonance indicates that the ability to stabilize a mixed intermediate provides a means to effectively inhibit PfPKG, without losing affinity for the cGMP analog. Our proposed model may facilitate the rational design of PfPKG-selective inhibitors for improved management of malaria.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Regulação Alostérica , Sítios de Ligação , GMP Cíclico/análogos & derivados , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Plasmodium falciparum/metabolismo , Domínios Proteicos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ressonância de Plasmônio de Superfície
4.
J Biol Chem ; 295(30): 10394-10405, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32506052

RESUMO

Type 1 cGMP-dependent protein kinases (PKGs) play important roles in human cardiovascular physiology, regulating vascular tone and smooth-muscle cell phenotype. A mutation in the human PRKG1 gene encoding cGMP-dependent protein kinase 1 (PKG1) leads to thoracic aortic aneurysms and dissections. The mutation causes an arginine-to-glutamine (RQ) substitution within the first cGMP-binding pocket in PKG1. This substitution disrupts cGMP binding to the pocket, but it also unexpectedly causes PKG1 to have high activity in the absence of cGMP via an unknown mechanism. Here, we identified the molecular mechanism whereby the RQ mutation increases basal kinase activity in the human PKG1α and PKG1ß isoforms. Although we found that the RQ substitution (R177Q in PKG1α and R192Q in PKG1ß) increases PKG1α and PKG1ß autophosphorylation in vitro, we did not detect increased autophosphorylation of the PKG1α or PKG1ß RQ variant isolated from transiently transfected 293T cells, indicating that increased basal activity of the RQ variants in cells was not driven by PKG1 autophosphorylation. Replacement of Arg-177 in PKG1α with alanine or methionine also increased basal activity. PKG1 exists as a parallel homodimer linked by an N-terminal leucine zipper, and we show that the WT chain in WT-RQ heterodimers partly reduces basal activity of the RQ chain. Using hydrogen/deuterium-exchange MS, we found that the RQ substitution causes PKG1ß to adopt an active conformation in the absence of cGMP, similar to that of cGMP-bound WT enzyme. We conclude that the RQ substitution in PKG1 increases its basal activity by disrupting the formation of an inactive conformation.


Assuntos
Aneurisma da Aorta Torácica/enzimologia , Dissecção Aórtica/enzimologia , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Mutação de Sentido Incorreto , Multimerização Proteica , Substituição de Aminoácidos , Dissecção Aórtica/genética , Dissecção Aórtica/patologia , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Linhagem Celular , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Humanos , Fosforilação , Estrutura Quaternária de Proteína
5.
J Biol Chem ; 295(33): 11720-11728, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32580946

RESUMO

Post-translational modifications of proteins involved in calcium handling in myocytes, such as the cardiac ryanodine receptor (RyR2), critically regulate cardiac contractility. Recent studies have suggested that phosphorylation of RyR2 by protein kinase G (PKG) might contribute to the cardioprotective effects of cholinergic stimulation. However, the specific mechanisms underlying these effects remain unclear. Here, using murine ventricular myocytes, immunoblotting, proximity ligation as-says, and nitric oxide imaging, we report that phosphorylation of Ser-2808 in RyR2 induced by the muscarinic receptor agonist carbachol is mediated by a signaling axis comprising phosphoinositide 3-phosphate kinase, Akt Ser/Thr kinase, nitric oxide synthase 1, nitric oxide, soluble guanylate cyclase, cyclic GMP (cGMP), and PKG. We found that this signaling pathway is compartmentalized in myocytes, as it was distinct from atrial natriuretic peptide receptor-cGMP-PKG-RyR2 Ser-2808 signaling and independent of muscarinic-induced phosphorylation of Ser-239 in vasodilator-stimulated phosphoprotein. These results provide detailed insights into muscarinic-induced PKG signaling and the mediators that regulate cardiac RyR2 phosphorylation critical for cardiovascular function.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fosforilação
6.
J Biol Chem ; 294(43): 15577-15592, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31439665

RESUMO

Estrogen exerts its cardiovascular protective role at least in part by regulating endothelial hydrogen sulfide (H2S) release, but the underlying mechanisms remain to be fully elucidated. Estrogen exerts genomic effects, i.e. those involving direct binding of the estrogen receptor (ER) to gene promoters in the nucleus, and nongenomic effects, mediated by interactions of the ER with other proteins. Here, using human umbilical vein endothelial cells (HUVECs), immunological detection, MS-based analyses, and cGMP and H2S assays, we show that 17ß-estradiol (E2) rapidly enhances endothelial H2S release in a nongenomic manner. We found that E2 induces phosphorylation of cystathionine γ-lyase (CSE), the key enzyme in vascular endothelial H2S generation. Mechanistically, E2 enhanced the interaction of membrane ERα with the Gα subunit Gαi-2/3, which then transactivated particulate guanylate cyclase-A (pGC-A) to produce cGMP, thereby activating protein kinase G type I (PKG-I). We also found that PKG-Iß, but not PKG-Iα, interacts with CSE, leading to its phosphorylation, and rapidly induces endothelial H2S release. Furthermore, we report that silencing of either CSE or pGC-A in mice attenuates E2-induced aorta vasodilation. These results provide detailed mechanistic insights into estrogen's nongenomic effects on vascular endothelial H2S release and advance our current understanding of the protective activities of estrogen in the cardiovascular system.


Assuntos
Cistationina gama-Liase/metabolismo , Estradiol/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Sulfeto de Hidrogênio/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Receptor alfa de Estrogênio/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Genoma Humano , Guanilato Ciclase/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
7.
J Neuroinflammation ; 17(1): 190, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546235

RESUMO

BACKGROUND: Opsoclonus-myoclonus syndrome (OMS) is a rare neurological disease. Some children with OMS also have neuroblastoma (NB). We and others have previously documented that serum IgG from children with OMS and NB induces neuronal cytolysis and activates several signaling pathways. However, the mechanisms underlying OMS remain unclear. Here, we investigated whether nitric oxide (NO) from activated microglias and its cascade contribute to neuronal cytolysis in pediatric OMS. METHODS: The activation of cultured cerebral cortical and cerebellar microglias incubated with sera or IgG isolated from sera of children with OMS and NB was measured by the expression of the activation marker, cytokines, and NO. Neuronal cytolysis was determined after exposing to IgG-treated microglia-conditioned media. Using inhibitors and activators, the effects of NO synthesis and its intracellular cascade, namely soluble guanylyl cyclase (sGC) and protein kinase G (PKG), on neuronal cytolysis were evaluated. RESULTS: Incubation with sera or IgG from children with OMS and NB increased the activation of cerebral cortical and cerebellar microglias, but not the activation of astrocytes or the cytolysis of glial cells. Moreover, the cytolysis of neurons was elevated by conditioned media from microglias incubated with IgG from children with OMS and NB. Furthermore, the expression of NO, sGC, and PKG was increased. Neuronal cytolysis was relieved by the inhibitors of NO signaling, while neuronal cytolysis was exacerbated by the activators of NO signaling but not proinflammatory cytokines. The cytolysis of neurons was suppressed by pretreatment with the microglial inhibitor minocycline, a clinically tested drug. Finally, increased microglial activation did not depend on the Fab fragment of serum IgG. CONCLUSIONS: Serum IgG from children with OMS and NB potentiates microglial activation, which induces neuronal cytolysis through the NO/sGC/PKG pathway, suggesting an applicability of microglial inhibitor as a therapeutic candidate.


Assuntos
Imunoglobulina G/toxicidade , Microglia/efeitos dos fármacos , Neuroblastoma/complicações , Neurônios/patologia , Síndrome de Opsoclonia-Mioclonia/imunologia , Criança , Pré-Escolar , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Feminino , Guanilato Ciclase/metabolismo , Humanos , Imunoglobulina G/imunologia , Masculino , Microglia/imunologia , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Neurônios/efeitos dos fármacos , Óxido Nítrico/metabolismo , Síndrome de Opsoclonia-Mioclonia/etiologia , Síndrome de Opsoclonia-Mioclonia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
8.
Mol Biol Rep ; 47(1): 141-149, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31583569

RESUMO

In the precedent research conducted by the same team, it concluded that the activities in C-type natriuretic peptide (CNP)/cyclic guanosine monophosphate (cGMP)/cyclic adenosine monophosphate (cAMP)/ß-type phospholipase C (PLCß) pathways of rat antral smooth muscle were changed due to diabetes, which was the key pathogenetic mechanism for diabetic gastric dysmotility. As the follow-on step, this study was designed to probe into the downstream signaling pathway of CNP/PLCß. The results showed that level of α-type protein kinase C (PKCα),cell membrane to cytoplasm ratio of PKCα, cell membrane to cytoplasmic ratio of ßI-type protein kinase C (PKCßI) and level of Phosphor-PKCα (P-PKCα) were significantly reduced in diabetes rat antral smooth muscle samples. The content of tetraphosphate inositol (IP4) in gastric antral smooth muscle of diabetic rats reduced, and the content of diacyl-glycerol (DG) was unchanged. CNP significantly decreased the content of IP4 and DG, this effect was more obvious in diabetic rats. Subsequent to the addition of protein kinase A (PKA) blocker N-[2- (p-Bromocin-namylamino)ethyl]-5 -isoquinolinesulfonamide dihydrochloride (H-89) before CNP treatment, the inhibitory effect of CNP was reduced; subsequent to the addition of protein kinase G (PKG) blocker KT5823 before CNP treatment, the inhibitory effect of CNP was also reduced. With the addition of the combination of H-89 and KT5823 before CNP treatment, the inhibition by CNP could be offset. These results were concluded that CNP inhibited the activity of PKC family in rat smooth muscle and reduced the levels of IP4 and DG through the PKG/PKA-PLCß pathways, causing inhibited muscular contractions, which may be a key pathogenetic factor for diabetic gastroparesis.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diglicerídeos/metabolismo , Gastroparesia/metabolismo , Fosfatos de Inositol/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Proteína Quinase C/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Motilidade Gastrointestinal/efeitos dos fármacos , Gastroparesia/etiologia , Gastroparesia/patologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/patologia , Músculo Liso/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
9.
J Biol Chem ; 293(12): 4411-4421, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29378851

RESUMO

cAMP-dependent protein kinase (PKAc) is a pivotal signaling protein in eukaryotic cells. PKAc has two well-characterized regulatory subunit proteins, RI and RII (each having α and ß isoforms), which keep the PKAc catalytic subunit in a catalytically inactive state until activation by cAMP. Previous reports showed that the RIα regulatory subunit is phosphorylated by cGMP-dependent protein kinase (PKG) in vitro, whereupon phosphorylated RIα no longer inhibits PKAc at normal (1:1) stoichiometric ratios. However, the significance of this phosphorylation as a mechanism for activating type I PKA holoenzymes has not been fully explored, especially in cellular systems. In this study, we further examined the potential of RIα phosphorylation to regulate physiologically relevant "desensitization" of PKAc activity. First, the serine 101 site of RIα was validated as a target of PKGIα phosphorylation both in vitro and in cells. Analysis of a phosphomimetic substitution in RIα (S101E) showed that modification of this site increases PKAc activity in vitro and in cells, even without cAMP stimulation. Numerous techniques were used to show that although Ser101 variants of RIα can bind PKAc, the modified linker region of the S101E mutant has a significantly reduced affinity for the PKAc active site. These findings suggest that RIα phosphorylation may be a novel mechanism to circumvent the requirement of cAMP stimulus to activate type I PKA in cells. We have thus proposed a model to explain how PKG phosphorylation of RIα creates a "sensitized intermediate" state that is in effect primed to trigger PKAc activity.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Sítios de Ligação , Domínio Catalítico , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Células HEK293 , Humanos , Fosforilação , Ligação Proteica
10.
J Biol Chem ; 293(28): 10985-10992, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29769318

RESUMO

Activation of protein kinase G (PKG) Iα in nociceptive neurons induces long-term hyperexcitability that causes chronic pain. Recently, a derivative of the fungal metabolite balanol, N46, has been reported to inhibit PKG Iα with high potency and selectivity and attenuate thermal hyperalgesia and osteoarthritic pain. Here we determined co-crystal structures of the PKG Iα C-domain and cAMP-dependent protein kinase (PKA) Cα, each bound with N46, at 1.98 Å and 2.65 Å, respectively. N46 binds the active site with its external phenyl ring, specifically interacting with the glycine-rich loop and the αC helix. Phe-371 at the PKG Iα glycine-rich loop is oriented parallel to the phenyl ring of N46, forming a strong π-stacking interaction, whereas the analogous Phe-54 in PKA Cα rotates 30° and forms a weaker interaction. Structural comparison revealed that steric hindrance between the preceding Ser-53 and the propoxy group of the phenyl ring may explain the weaker interaction with PKA Cα. The analogous Gly-370 in PKG Iα, however, causes little steric hindrance with Phe-371. Moreover, Ile-406 on the αC helix forms a hydrophobic interaction with N46 whereas its counterpart in PKA, Thr-88, does not. Substituting these residues in PKG Iα with those in PKA Cα increases the IC50 values for N46, whereas replacing these residues in PKA Cα with those in PKG Iα reduces the IC50, consistent with our structural findings. In conclusion, our results explain the structural basis for N46-mediated selective inhibition of human PKG Iα and provide a starting point for structure-guided design of selective PKG Iα inhibitors.


Assuntos
Azepinas/química , Azepinas/farmacologia , Proteína Quinase Dependente de GMP Cíclico Tipo I/antagonistas & inibidores , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Proteína Quinase Dependente de GMP Cíclico Tipo I/química , Humanos , Modelos Moleculares , Fosforilação , Conformação Proteica
11.
J Biol Chem ; 293(38): 14812-14822, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30104414

RESUMO

cGMP-dependent protein kinase 1 (PKG1) plays an important role in nitric oxide (NO)/cGMP-mediated maintenance of vascular smooth muscle cell (VSMC) phenotype and vasorelaxation. Inflammatory cytokines, including tumor necrosis factor-α (TNFα), have long been understood to mediate several inflammatory vascular diseases. However, the underlying mechanism of TNFα-dependent inflammatory vascular disease is unclear. Here, we found that TNFα treatment decreased PKG1 expression in cultured VSMCs, which correlated with NF-κB-dependent biogenesis of miR-155-5p that targeted the 3'-UTR of PKG1 mRNA. TNFα induced VSMC phenotypic switching from a contractile to a synthetic state through the down-regulation of VSMC marker genes, suppression of actin polymerization, alteration of cell morphology, and elevation of cell proliferation and migration. All of these events were blocked by treatment with an inhibitor of miR-155-5p or PKG1, whereas transfection with miR-155-5p mimic or PKG1 siRNA promoted phenotypic modulation, similar to the response to TNFα. In addition, TNFα-induced miR-155-5p inhibited the vasorelaxant response of de-endothelialized mouse aortic vessels to 8-Br-cGMP by suppressing phosphorylation of myosin phosphatase and myosin light chain, both of which are downstream signal modulators of PKG1. Moreover, TNFα-induced VSMC phenotypic alteration and vasodilatory dysfunction were blocked by NF-κB inhibition. These results suggest that TNFα impairs NO/cGMP-mediated maintenance of the VSMC contractile phenotype and vascular relaxation by down-regulating PKG1 through NF-κB-dependent biogenesis of miR-155-5p. Thus, the NF-κB/miR-155-5p/PKG1 axis may be crucial in the pathogenesis of inflammatory vascular diseases, such as atherosclerotic intimal hyperplasia and preeclamptic hypertension.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Regulação para Baixo/fisiologia , MicroRNAs/fisiologia , Músculo Liso Vascular/citologia , Fator de Necrose Tumoral alfa/fisiologia , Regiões 3' não Traduzidas , Actinas/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/metabolismo , NF-kappa B/metabolismo , Polimerização , RNA Mensageiro/genética
12.
J Biol Chem ; 293(43): 16791-16802, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30206122

RESUMO

The type I cGMP-dependent protein kinase (PKG I) is an essential regulator of vascular tone. It has been demonstrated that the type Iα isoform can be constitutively activated by oxidizing conditions. However, the amino acid residues implicated in this phenomenon are not fully elucidated. To investigate the molecular basis for this mechanism, we studied the effects of oxidation using recombinant WT, truncated, and mutant constructs of PKG I. Using an in vitro assay, we observed that oxidation with hydrogen peroxide (H2O2) resulted in constitutive, cGMP-independent activation of PKG Iα. PKG Iα C42S and a truncation construct that does not contain Cys-42 (Δ53) were both constitutively activated by H2O2 In contrast, oxidation of PKG Iα C117S maintained its cGMP-dependent activation characteristics, although oxidized PKG Iα C195S did not. To corroborate these results, we also tested the effects of our constructs on the PKG Iα-specific substrate, the large conductance potassium channel (KCa 1.1). Application of WT PKG Iα activated by either cGMP or H2O2 increased the open probabilities of the channel. Neither cGMP nor H2O2 activation of PKG Iα C42S significantly increased channel open probabilities. Moreover, cGMP-stimulated PKG Iα C117S increased KCa 1.1 activity, but this effect was not observed under oxidizing conditions. Finally, we observed that PKG Iα C42S caused channel flickers, indicating dramatically altered KCa 1.1 channel characteristics compared with channels exposed to WT PKG Iα. Cumulatively, these results indicate that constitutive activation of PKG Iα proceeds through oxidation of Cys-117 and further suggest that the formation of a sulfur acid is necessary for this phenotype.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , GMP Cíclico/metabolismo , Cisteína/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Proteína Quinase Dependente de GMP Cíclico Tipo I/química , Cisteína/química , Modelos Moleculares , Óxido Nítrico/metabolismo , Oxirredução , Fosforilação , Conformação Proteica , Homologia de Sequência
13.
J Biol Chem ; 292(17): 7052-7065, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28280239

RESUMO

Nitrovasodilators relax vascular smooth-muscle cells in part by modulating the interaction of the C-terminal coiled-coil domain (CC) and/or the leucine zipper (LZ) domain of the myosin light-chain phosphatase component, myosin-binding subunit (MBS), with the N-terminal LZ domain of protein kinase G (PKG)-Iα. Despite the importance of vasodilation in cardiovascular homeostasis and therapy, our structural understanding of the MBS CC interaction with LZ PKG-1α has remained limited. Here, we report the 3D NMR solution structure of homodimeric CC MBS in which amino acids 932-967 form a coiled-coil of two monomeric α-helices in parallel orientation. We found that the structure is stabilized by non-covalent interactions, with dominant contributions from hydrophobic residues at a and d heptad positions. Using NMR chemical-shift perturbation (CSP) analysis, we identified a subset of hydrophobic and charged residues of CC MBS (localized within and adjacent to the C-terminal region) contributing to the dimer-dimer interaction interface between homodimeric CC MBS and homodimeric LZ PKG-Iα. 15N backbone relaxation NMR revealed the dynamic features of the CC MBS interface residues identified by NMR CSP. Paramagnetic relaxation enhancement- and CSP-NMR-guided HADDOCK modeling of the dimer-dimer interface of the heterotetrameric complex exhibits the involvement of non-covalent intermolecular interactions that are localized within and adjacent to the C-terminal regions of each homodimer. These results deepen our understanding of the binding restraints of this CC MBS·LZ PKG-Iα low-affinity heterotetrameric complex and allow reevaluation of the role(s) of myosin light-chain phosphatase partner polypeptides in regulation of vascular smooth-muscle cell contractility.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/química , Zíper de Leucina , Miosinas/química , Animais , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Camundongos , Simulação de Dinâmica Molecular , Músculo Liso Vascular/citologia , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta , Eletricidade Estática
14.
J Biol Chem ; 291(33): 17427-36, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27342776

RESUMO

Phosphodiesterase 5 (PDE5) inhibitors limit myocardial injury caused by stresses, including doxorubicin chemotherapy. cGMP binding to PKG Iα attenuates oxidant-induced disulfide formation. Because PDE5 inhibition elevates cGMP and protects from doxorubicin-induced injury, we reasoned that this may be because it limits PKG Iα disulfide formation. To investigate the role of PKG Iα disulfide dimerization in the development of apoptosis, doxorubicin-induced cardiomyopathy was compared in male wild type (WT) or disulfide-resistant C42S PKG Iα knock-in (KI) mice. Echocardiography showed that doxorubicin treatment caused loss of myocardial tissue and depressed left ventricular function in WT mice. Doxorubicin also reduced pro-survival signaling and increased apoptosis in WT hearts. In contrast, KI mice were markedly resistant to the dysfunction induced by doxorubicin in WTs. In follow-on experiments the influence of the PDE5 inhibitor tadalafil on the development of doxorubicin-induced cardiomyopathy in WT and KI mice was investigated. In WT mice, co-administration of tadalafil with doxorubicin reduced PKG Iα oxidation caused by doxorubicin and also protected against cardiac injury and loss of function. KI mice were again innately resistant to doxorubicin-induced cardiotoxicity, and therefore tadalafil afforded no additional protection. Doxorubicin decreased phosphorylation of RhoA (Ser-188), stimulating its GTPase activity to activate Rho-associated protein kinase (ROCK) in WTs. These pro-apoptotic events were absent in KI mice and were attenuated in WTs co-administered tadalafil. PKG Iα disulfide formation triggers cardiac injury, and this initiation of maladaptive signaling can be blocked by pharmacological therapies that elevate cGMP, which binds kinase to limit its oxidation.


Assuntos
Cardiomegalia , Proteína Quinase Dependente de GMP Cíclico Tipo I , Dissulfetos/metabolismo , Doxorrubicina , Insuficiência Cardíaca , Inibidores da Fosfodiesterase 5/farmacologia , Sistemas do Segundo Mensageiro , Tadalafila/farmacologia , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , GMP Cíclico/genética , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/antagonistas & inibidores , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/prevenção & controle , Camundongos , Camundongos Mutantes , Oxirredução , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sistemas do Segundo Mensageiro/genética , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
15.
J Biol Chem ; 291(18): 9566-80, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26933036

RESUMO

The life cycles of apicomplexan parasites progress in accordance with fluxes in cytosolic Ca(2+) Such fluxes are necessary for events like motility and egress from host cells. We used genetically encoded Ca(2+) indicators (GCaMPs) to develop a cell-based phenotypic screen for compounds that modulate Ca(2+) signaling in the model apicomplexan Toxoplasma gondii In doing so, we took advantage of the phosphodiesterase inhibitor zaprinast, which we show acts in part through cGMP-dependent protein kinase (protein kinase G; PKG) to raise levels of cytosolic Ca(2+) We define the pool of Ca(2+) regulated by PKG to be a neutral store distinct from the endoplasmic reticulum. Screening a library of 823 ATP mimetics, we identify both inhibitors and enhancers of Ca(2+) signaling. Two such compounds constitute novel PKG inhibitors and prevent zaprinast from increasing cytosolic Ca(2+) The enhancers identified are capable of releasing intracellular Ca(2+) stores independently of zaprinast or PKG. One of these enhancers blocks parasite egress and invasion and shows strong antiparasitic activity against T. gondii The same compound inhibits invasion of the most lethal malaria parasite, Plasmodium falciparum Inhibition of Ca(2+)-related phenotypes in these two apicomplexan parasites suggests that depletion of intracellular Ca(2+) stores by the enhancer may be an effective antiparasitic strategy. These results establish a powerful new strategy for identifying compounds that modulate the essential parasite signaling pathways regulated by Ca(2+), underscoring the importance of these pathways and the therapeutic potential of their inhibition.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Proteínas Quinases Dependentes de GMP Cíclico , Retículo Endoplasmático , Proteínas de Protozoários , Purinonas/farmacologia , Toxoplasma , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
16.
J Biol Chem ; 291(18): 9554-65, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26933037

RESUMO

Microneme secretion is essential for motility, invasion, and egress in apicomplexan parasites. Although previous studies indicate that Ca(2+) and cGMP control microneme secretion, little is known about how these pathways are naturally activated. Here we have developed genetically encoded indicators for Ca(2+) and microneme secretion to better define the signaling pathways that regulate these processes in Toxoplasma gondii We found that microneme secretion was triggered in vitro by exposure to a single host protein, serum albumin. The natural agonist serum albumin induced microneme secretion in a protein kinase G-dependent manner that correlated with increased cGMP levels. Surprisingly, serum albumin acted independently of elevated Ca(2+) and yet it was augmented by artificial agonists that raise Ca(2+), such as ethanol. Furthermore, although ethanol elevated intracellular Ca(2+), it alone was unable to trigger secretion without the presence of serum or serum albumin. This dichotomy was recapitulated by zaprinast, a phosphodiesterase inhibitor that elevated cGMP and separately increased Ca(2+) in a protein kinase G-independent manner leading to microneme secretion. Taken together, these findings reveal that microneme secretion is centrally controlled by protein kinase G and that this pathway is further augmented by elevation of intracellular Ca(2.)


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas de Protozoários/metabolismo , Albumina Sérica/farmacologia , Toxoplasma/metabolismo , Sinalização do Cálcio/genética , GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Humanos , Proteínas de Protozoários/genética , Purinonas/farmacologia , Toxoplasma/genética
17.
J Biol Chem ; 291(53): 27062-27072, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27810897

RESUMO

Mycobacterium tuberculosis escapes killing in human macrophages by secreting protein kinase G (PknG). PknG intercepts host signaling to prevent fusion of the phagosome engulfing the mycobacteria with the lysosome and, thus, their degradation. The N-terminal NORS (no regulatory secondary structure) region of PknG (approximately residues 1-75) has been shown to play a role in PknG regulation by (auto)phosphorylation, whereas the following rubredoxin-like metal-binding motif (RD, residues ∼74-147) has been shown to interact tightly with the subsequent catalytic domain (approximately residues 148-420) to mediate its redox regulation. Deletions or mutations in NORS or the redox-sensitive RD significantly decrease PknG survival function. Based on combined NMR spectroscopy, in vitro kinase assay, and molecular dynamics simulation data, we provide novel insights into the regulatory roles of the N-terminal regions. The NORS region is indeed natively disordered and rather dynamic. Consistent with most earlier data, autophosphorylation occurs in our assays only when the NORS region is present and, thus, in the NORS region. Phosphorylation of it results only in local conformational changes and does not induce interactions with the subsequent RD. Although the reduced, metal-bound RD makes tight interactions with the following catalytic domain in the published crystal structures, it can also fold in its absence. Our data further suggest that oxidation-induced unfolding of the RD regulates substrate access to the catalytic domain and, thereby, PknG function under different redox conditions, e.g. when exposed to increased levels of reactive oxidative species in host macrophages.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Mycobacterium tuberculosis/metabolismo , Desdobramento de Proteína , Rubredoxinas/química , Rubredoxinas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Proteínas Quinases Dependentes de GMP Cíclico/genética , Humanos , Simulação de Dinâmica Molecular , Mutação/genética , Oxirredução , Estrutura Secundária de Proteína , Rubredoxinas/genética
18.
J Biol Chem ; 291(11): 5623-5633, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26769964

RESUMO

Membrane-bound cGMP-dependent protein kinase (PKG) II is a key regulator of bone growth, renin secretion, and memory formation. Despite its crucial physiological roles, little is known about its cyclic nucleotide selectivity mechanism due to a lack of structural information. Here, we find that the C-terminal cyclic nucleotide binding (CNB-B) domain of PKG II binds cGMP with higher affinity and selectivity when compared with its N-terminal CNB (CNB-A) domain. To understand the structural basis of cGMP selectivity, we solved co-crystal structures of the CNB domains with cyclic nucleotides. Our structures combined with mutagenesis demonstrate that the guanine-specific contacts at Asp-412 and Arg-415 of the αC-helix of CNB-B are crucial for cGMP selectivity and activation of PKG II. Structural comparison with the cGMP selective CNB domains of human PKG I and Plasmodium falciparum PKG (PfPKG) shows different contacts with the guanine moiety, revealing a unique cGMP selectivity mechanism for PKG II.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo II/química , Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo , GMP Cíclico/metabolismo , Regulação Alostérica , Animais , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Especificidade por Substrato
19.
Proteomics ; 16(5): 894-905, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26670943

RESUMO

The protective role of cyclic guanosine monophosphate (cGMP)-stimulated protein kinase G (PKG) in the heart makes it an attractive target for therapeutic drug development to treat a variety of cardiac diseases. Phosphodiesterases degrade cGMP, thus phosphodiesterase inhibitors that can increase PKG are of translational interest and the subject of ongoing human trials. PKG signaling is complex, however, and understanding its downstream phosphorylation targets and upstream regulation are necessary steps toward safe and efficacious drug development. Proteomic technologies have paved the way for assays that allow us to peer broadly into signaling minutia, including protein quantity changes and phosphorylation events. However, there are persistent challenges to the proteomic study of PKG, such as the impact of the expression of different PKG isoforms, changes in its localization within the cell, and alterations caused by oxidative stress. PKG signaling is also dependent upon sex and potentially the genetic and epigenetic background of the individual. Thus, the rigorous application of proteomics to the field will be necessary to address how these effectors can alter PKG signaling and interfere with pharmacological interventions. This review will summarize PKG signaling, how it is being targeted clinically, and the proteomic challenges and techniques that are being used to study it.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Descoberta de Drogas/métodos , Cardiopatias/tratamento farmacológico , Cardiopatias/patologia , Coração/fisiopatologia , Sequência de Aminoácidos , Animais , Bovinos , Humanos , Camundongos , Ratos , Transdução de Sinais
20.
J Biol Chem ; 290(12): 7887-96, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25653285

RESUMO

Protein-protein interactions are important in providing compartmentalization and specificity in cellular signal transduction. Many studies have hallmarked the well designed compartmentalization of the cAMP-dependent protein kinase (PKA) through its anchoring proteins. Much less data are available on the compartmentalization of its closest homolog, cGMP-dependent protein kinase (PKG), via its own PKG anchoring proteins (GKAPs). For the enrichment, screening, and discovery of (novel) PKA anchoring proteins, a plethora of methodologies is available, including our previously described chemical proteomics approach based on immobilized cAMP or cGMP. Although this method was demonstrated to be effective, each immobilized cyclic nucleotide did not discriminate in the enrichment for either PKA or PKG and their secondary interactors. Hence, with PKG signaling components being less abundant in most tissues, it turned out to be challenging to enrich and identify GKAPs. Here we extend this cAMP-based chemical proteomics approach using competitive concentrations of free cyclic nucleotides to isolate each kinase and its secondary interactors. Using this approach, we identified Huntingtin-associated protein 1 (HAP1) as a putative novel GKAP. Through sequence alignment with known GKAPs and secondary structure prediction analysis, we defined a small sequence domain mediating the interaction with PKG Iß but not PKG Iα. In vitro binding studies and site-directed mutagenesis further confirmed the specificity and affinity of HAP1 binding to the PKG Iß N terminus. These data fully support that HAP1 is a GKAP, anchoring specifically to the cGMP-dependent protein kinase isoform Iß, and provide further evidence that also PKG spatiotemporal signaling is largely controlled by anchoring proteins.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Isoenzimas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteômica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA