Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 616
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Chemistry ; 30(8): e202303641, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38019113

RESUMO

H-selenite anions (HSeO3 - ) form in the solid unprecedented anionic supramolecular chains wherein single units are assembled via alternating short Se⋅⋅⋅O and H⋅⋅⋅O contacts. Crystallographic analyses and computational studies (the quantum theory of "atoms-in-molecules", QTAIM, and the noncovalent interaction plot, NCIPlot) consistently prove the attractive nature of these chalcogen bonds (ChBs) and hydrogen honds (HBs), the Janus-type character of HSeO3 - anions which act as both donors and acceptors of ChB and HB, and the possible stability of anion dimers in solution. The effectiveness of the ChBs herein described may lead to consider the HSeO3 - moiety as a new entry in the toolbox of crystal engineering based on ChB.

2.
Environ Sci Technol ; 58(9): 4204-4213, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373240

RESUMO

Arsenic (As) is widely present in the environment, and virtually all bacteria possess a conserved ars operon to resist As toxicity. High selenium (Se) concentrations tend to be cytotoxic. Se has an uneven regional distribution and is added to mitigate As contamination in Se-deficient areas. However, the bacterial response to exogenous Se remains poorly understood. Herein, we found that As(III) presence was crucial for Enterobacter sp. Z1 to develop resistance against Se(IV). Se(IV) reduction served as a detoxification mechanism in bacteria, and our results demonstrated an increase in the production of Se nanoparticles (SeNPs) in the presence of As(III). Tandem mass tag proteomics analysis revealed that the induction of As(III) activated the inositol phosphate, butanoyl-CoA/dodecanoyl-CoA, TCA cycle, and tyrosine metabolism pathways, thereby enhancing bacterial metabolism to resist Se(IV). Additionally, arsHRBC, sdr-mdr, purHD, and grxA were activated to participate in the reduction of Se(IV) into SeNPs. Our findings provide innovative perspectives for exploring As-induced Se biotransformation in prokaryotes.


Assuntos
Arsênio , Arsenitos , Selênio , Selênio/farmacologia , Selênio/metabolismo , Ácido Selenioso/farmacologia , Ácido Selenioso/metabolismo , Enterobacter/metabolismo , Oxirredução
3.
Environ Sci Technol ; 58(9): 4357-4367, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38326940

RESUMO

Gas nanobubbles used for water treatment and recovery give rise to great concern for their unique advantages of less byproducts, higher efficiency, and environmental friendliness. Nanoscale zerovalent iron (nZVI), which has also been widely explored in the field of environmental remediation, can generate gas hydrogen by direct reaction with water. Whether nanoscale hydrogen bubbles can be produced to enhance the pollution removal of the nZVI system is one significant concern involved. Herein, we report direct observations of in situ generation of hydrogen nanobubbles (HNBs) from nZVI in water. More importantly, the formed HNBs can enhance indeed the reduction of Se(IV) beyond the chemical reduction ascribed to Fe(0), especially in the anaerobic environment. The possible mechanism is that HNBs enhance the reducibility of the system and promote electron transport in the solution. This study demonstrates a unique function of HNBs combined with nZVI for the pollutant removal and a new approach for in situ HNB generation for potential applications in the fields of in situ remediation agriculture, biotechnology, medical treatment, health, etc.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Purificação da Água , Ferro
4.
Anal Bioanal Chem ; 416(11): 2835-2848, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38286852

RESUMO

This work presents the first systematic comparison of selenium (Se) speciation in plasma from cancer patients treated orally with three Se compounds (sodium selenite, SS; L-selenomethionine, SeMet; or Se-methylselenocysteine, MSC) at 400 µg/day for 28 days. The primary goal was to investigate how these chemical forms of Se affect the plasma Se distribution, aiming to identify the most effective Se compound for optimal selenoprotein expression. This was achieved using methodology based on HPLC-ICP-MS after sample preparation/fractionation approaches. Measurements of total Se in plasma samples collected before and after 4 weeks of treatment showed that median total Se levels increased significantly from 89.6 to 126.4 µg kg-1 Se (p < 0.001), particularly when SeMet was administered (190.4 µg kg-1 Se). Speciation studies showed that the most critical differences between treated and baseline samples were seen for selenoprotein P (SELENOP) and selenoalbumin after administration with MSC (p = 5.8 × 10-4) and SeMet (p = 6.8 × 10-5), respectively. Notably, selenosugar-1 was detected in all low-molecular-weight plasma fractions following treatment, particularly with MSC. Two different chromatographic approaches and spiking experiments demonstrated that about 45% of that increase in SELENOP levels (to ~ 8.8 mg L-1) with SeMet is likely due to the non-specific incorporation of SeMet into the SELENOP affinity fraction. To the authors' knowledge, this has not been reported to date. Therefore, SELENOP is probably part of both the regulated (55%) and non-regulated (45%) Se pools after SeMet administration, whereas SS and MSC mainly contribute to the regulated one.


Assuntos
Neoplasias , Compostos de Selênio , Selênio , Humanos , Selenometionina , Neoplasias/tratamento farmacológico , Biomarcadores
5.
J Nanobiotechnology ; 22(1): 352, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902695

RESUMO

In this study, highly selenite-resistant strains belonging to Brevundimonas diminuta (OK287021, OK287022) genus were isolated from previously operated single chamber microbial fuel cell (SCMFC). The central composite design showed that the B. diminuta consortium could reduce selenite. Under optimum conditions, 15.38 Log CFU mL-1 microbial growth, 99.08% Se(IV) reduction, and 89.94% chemical oxygen demand (COD) removal were observed. Moreover, the UV-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the synthesis of elemental selenium nanoparticles (SeNPs). In addition, transmission electron microscopy (TEM) and scanning electron microscope (SEM) revealed the formation of SeNPs nano-spheres. Besides, the bioelectrochemical performance of B. diminuta in the SCMFC illustrated that the maximum power density was higher in the case of selenite SCMFCs than those of the sterile control SCMFCs. Additionally, the bioelectrochemical impedance spectroscopy and cyclic voltammetry characterization illustrated the production of definite extracellular redox mediators that might be involved in the electron transfer progression during the reduction of selenite. In conclusion, B. diminuta whose electrochemical activity has never previously been reported could be a suitable and robust biocatalyst for selenite bioreduction along with wastewater treatment, bioelectricity generation, and economical synthesis of SeNPs in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Oxirredução , Ácido Selenioso , Selênio , Selênio/metabolismo , Selênio/química , Ácido Selenioso/metabolismo , Caulobacteraceae/metabolismo , Nanopartículas/química , Eletricidade , Nanopartículas Metálicas/química , Consórcios Microbianos , Análise da Demanda Biológica de Oxigênio
6.
BMC Nephrol ; 25(1): 226, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009991

RESUMO

BACKGROUND: Contrast-induced acute kidney injury (CI-AKI) is an acute renal complication that occurs after intravascular contrast agent administration. Sodium selenite (SS) is an inorganic source of Se and has potent antioxidant properties. This study intends to examine its anti-inflammatory and antioxidant effects in CI-AKI. METHODS: A rat CI-AKI model was established with the pretreatment of SS (0.35 mg/kg). Hematoxylin-eosin staining was employed for histopathological analysis of rat kidney specimens. Biochemical analysis was conducted for renal function detection. Tissue levels of oxidative stress-related markers were estimated. Reverse transcription-quantitative polymerase chain reaction revealed the mRNA levels of proinflammatory cytokines. Western blotting showed the Nrf2 signaling-related protein expression in the rat kidney. RESULTS: SS administration alleviated the renal pathological changes and reduced the serum levels of serum creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin, cystatin C, and urinary level of kidney injury molecule-1 in CI-AKI rats. SS attenuated oxidative stress and inflammatory response in CI-AKI rat kidney tissues. SS activated the Nrf2 signaling transduction in the renal tissues of rats with CI-AKI. CONCLUSION: SS ameliorates CI-AKI in rats by reducing oxidative stress and inflammation via the Nrf2 signaling.


Assuntos
Injúria Renal Aguda , Meios de Contraste , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Ratos Sprague-Dawley , Transdução de Sinais , Selenito de Sódio , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Estresse Oxidativo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Masculino , Meios de Contraste/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Selenito de Sódio/farmacologia , Selenito de Sódio/uso terapêutico , Elementos de Resposta Antioxidante , Inflamação/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Creatinina/sangue
7.
Reprod Domest Anim ; 59(6): e14652, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923052

RESUMO

This study aimed to investigate the protective effects of nanoparticle selenium (SeNP) and sodium selenite (SS) on preventing oxidative stress during the freezing process of dog semen. A total of six dogs were used in the study. The ejaculate was collected from dogs three times at different times by massage method. A total of 18 ejaculates were used and each ejaculate was divided in five experimental groups. The experimental groups were designed to tris extender containing no antioxidants control, 1 µg/mL SeNP1, 2 µg/mL SeNP2, and 1 µg/mL SS1 and 2 µg/mL SS2. Extended semen were equilibrated for 1 h at 4°C, then frozen in liquid nitrogen vapour and stored in liquid nitrogen (~-196°C). After thawing, semen samples were evaluated in terms of CASA motility and kinematic parameters, spermatozoa plasma membrane integrity and viability (HE Test), spermatozoa morphology (SpermBlue) and DNA fragmentation (GoldCyto). Antioxidant enzyme activity (glutathione peroxidase; GPX, superoxide dismutase; SOD, catalase; CAT) and lipid peroxidation (malondialdehyde; MDA) were evaluated in frozen-thawed dog sperm. When the results were evaluated statistically, the progressive motility, VCL, and VAP kinematic parameters in the SeNP1 group were significantly higher than the control group after thawing (p < .05). The highest ratio of plasma membrane integrity and viable spermatozoa was observed in the SeNP1 group, but there was no statistical difference found between the groups (p > .05). Although the ratio of total morphological abnormality was observed to be lower in all groups to which different selenium forms were added, compared to the control group, no statistical difference was found. Spermatozoa tail abnormality was significantly lower in the SeNP1 group than in the control and SS2 group (p < .05). The lowest ratio of fragmented DNA was observed in the SeNP1 group, but there was no statistical difference was found between the groups (p > .05). Although there was no statistical difference between the groups in the evaluation of sperm antioxidant profile, the highest GPX, SOD and CAT values and the lowest lipid peroxidation values were obtained in the SeNP1 group. As a result, it was determined that 1 µg/mL dose of SeNP added to the tris-based extender in dog semen was beneficial on spermatological parameters, especially sperm kinematic properties and sperm morphology, and therefore nanoparticle selenium, a nanotechnology product, made a significant contribution to the freezing of dog semen.


Assuntos
Antioxidantes , Criopreservação , Selênio , Preservação do Sêmen , Selenito de Sódio , Espermatozoides , Animais , Cães , Masculino , Selenito de Sódio/farmacologia , Selenito de Sódio/administração & dosagem , Selênio/farmacologia , Selênio/administração & dosagem , Selênio/química , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Criopreservação/veterinária , Criopreservação/métodos , Espermatozoides/efeitos dos fármacos , Antioxidantes/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Análise do Sêmen/veterinária , Fragmentação do DNA/efeitos dos fármacos , Crioprotetores/farmacologia , Congelamento
8.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000544

RESUMO

Selenium (Se)-rich Cyclocarya paliurus is popular for its bioactive components, and exogenous Se fortification is the most effective means of enrichment. However, the effects of exogenous Se fortification on the nutritional quality of C. paliurus are not well known. To investigate the nutrient contents and antioxidant properties of C. paliurus following Se treatment, we used a foliar spray to apply Se in two forms-chemical nano-Se (Che-SeNPs) and sodium selenite (Na2SeO3). Sampling began 10 days after spraying and was conducted every 5 days until day 30. The Se, secondary metabolite, malondialdehyde contents, antioxidant enzyme activity, Se speciation, and Se-metabolism-related gene expression patterns were analyzed in the collected samples. Exogenous Se enhancement effectively increased the Se content of leaves, reaching a maximum on days 10 and 15 of sampling, while the contents of flavonoids, triterpenes, and polyphenols increased significantly during the same period. In addition, the application of Se significantly enhanced total antioxidant activity, especially the activity of the antioxidant enzyme peroxidase. Furthermore, a positive correlation between the alleviation of lipid peroxidation and Se content was observed, while methylselenocysteine formation was an effective means of alleviating Se stress. Finally, Na2SeO3 exhibited better absorption and conversion efficiency than Che-SeNPs in C. paliurus.


Assuntos
Antioxidantes , Folhas de Planta , Selênio , Selenito de Sódio , Antioxidantes/metabolismo , Selênio/metabolismo , Selênio/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Selenito de Sódio/farmacologia , Selenito de Sódio/metabolismo , Juglandaceae/química , Flavonoides/metabolismo , Flavonoides/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Polifenóis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Triterpenos/metabolismo
9.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893338

RESUMO

Acting as a growth regulator, Indole-3-acetic acid (IAA) is an important phytohormone that can be produced by several Bacillus species. However, few studies have been published on the comprehensive evaluation of the strains for practical applications and the effects of selenium species on their IAA-producing ability. The present study showed the selenite reduction strain Bacillus altitudinis LH18, which is capable of producing selenium nanoparticles (SeNPs) at a high yield in a cost-effective manner. Bio-SeNPs were systematically characterized by using DLS, zeta potential, SEM, and FTIR. The results showed that these bio-SeNPs were small in particle size, homogeneously dispersed, and highly stable. Significantly, the IAA-producing ability of strain was differently affected under different selenium species. The addition of SeNPs and sodium selenite resulted in IAA contents of 221.7 µg/mL and 91.01 µg/mL, respectively, which were 3.23 and 1.33 times higher than that of the control. This study is the first to examine the influence of various selenium species on the IAA-producing capacity of Bacillus spp., providing a theoretical foundation for the enhancement of the IAA-production potential of microorganisms.


Assuntos
Bacillus , Ácidos Indolacéticos , Selênio , Ácidos Indolacéticos/metabolismo , Bacillus/metabolismo , Bacillus/efeitos dos fármacos , Selênio/química , Selênio/farmacologia , Selênio/metabolismo , Nanopartículas/química , Tamanho da Partícula
10.
J Sci Food Agric ; 104(7): 4136-4144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38258891

RESUMO

BACKGROUND: Selenium is an important nutritional supplement that mainly exists naturally in soil as inorganic selenium. Saccharomyces cerevisiae cells are excellent medium for converting inorganic selenium in nature into organic selenium. RESULTS: Under the co-stimulation of sodium selenite (Na2SeO3) and potassium selenite (K2SeO3), the activity of selenophosphate synthetase (SPS) was improved up to about five folds more than conventional Na2SeO3 group with the total selenite salts content of 30 mg/L. Transcriptome analysis first revealed that due to the sharing pathway between sodium ion (Na+) and potassium ion (K+), the K+ largely regulates the metabolisms of amino acid and glutathione under the accumulation of selenite salt. Furthermore, K+ could improve the tolerance performance and selenium-biotransformation yields of Saccharomyces cerevisiae cells under Na2SeO3 salt stimulation. CONCLUSION: The important role of K+ in regulating the intracellular selenium accumulation especially in terms of amino acid metabolism and glutathione, suggested a new direction for the development of selenium-enrichment supplements with Saccharomyces cerevisiae cell factory. © 2024 Society of Chemical Industry.


Assuntos
Saccharomyces , Selênio , Selênio/metabolismo , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Selenito de Sódio/metabolismo , Ácido Selenioso/metabolismo , Glutationa/metabolismo , Sódio/metabolismo , Aminoácidos/metabolismo , Potássio/metabolismo
11.
Medicina (Kaunas) ; 60(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38929492

RESUMO

Background and Objectives: Selenium deficiency represents a risk factor for the occurrence of severe diseases, such as acute kidney injury (AKI). Recently, selenoprotein-p1 (SEPP1), a selenium transporter, mainly released by the liver, has emerged as a promising plasmatic biomarker of AKI as a consequence of cardio-surgery operations. The aim of the present study was to investigate, on an in vitro model of hypoxia induced in renal tubular cells, HK-2, the effects of sodium selenite (Na2SeO3) and to evaluate the expression of SEPP1 as a marker of injury. Materials and Methods: HK-2 cells were pre-incubated with 100 nM Na2SeO3 for 24 h, and then, treated for 24 h with CoCl2 (500 µM), a chemical hypoxia inducer. The results were derived from an ROS assay, MTT, and Western blot analysis. Results: The pre-treatment determined an increase in cells' viability and a reduction in reactive oxygen species (ROS), as shown by MTT and the ROS assay. Moreover, by Western blot an increase in SEPP1 expression was observed after hypoxic injury as after adding sodium selenite. Conclusions: Our preliminary results shed light on the possible role of selenium supplementation as a means to prevent oxidative damage and to increase SEPP1 after acute kidney injury. In our in vitro model, SEPP1 emerges as a promising biomarker of kidney injury, although further studies in vivo are necessary to validate our findings.


Assuntos
Túbulos Renais Proximais , Traumatismo por Reperfusão , Selenoproteína P , Humanos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Biomarcadores/análise , Linhagem Celular , Sobrevivência Celular , Técnicas In Vitro , Túbulos Renais Proximais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Selenoproteína P/sangue , Selenoproteína P/metabolismo , Selenito de Sódio/farmacologia
12.
J Biol Chem ; 298(12): 102586, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223837

RESUMO

Metabolic networks are complex, intersecting, and composed of numerous enzyme-catalyzed biochemical reactions that transfer various molecular moieties among metabolites. Thus, robust reconstruction of metabolic networks requires metabolite moieties to be tracked, which cannot be readily achieved with mass spectrometry (MS) alone. We previously developed an Ion Chromatography-ultrahigh resolution-MS1/data independent-MS2 method to track the simultaneous incorporation of the heavy isotopes 13C and 15N into the moieties of purine/pyrimidine nucleotides in mammalian cells. Ultrahigh resolution-MS1 resolves and counts multiple tracer atoms in intact metabolites, while data independent-tandem MS (MS2) determines isotopic enrichment in their moieties without concern for the numerous mass isotopologue source ions to be fragmented. Together, they enabled rigorous MS-based reconstruction of metabolic networks at specific enzyme levels. We have expanded this approach to trace the labeled atom fate of [13C6]-glucose in 3D A549 spheroids in response to the anticancer agent selenite and that of [13C5,15N2]-glutamine in 2D BEAS-2B cells in response to arsenite transformation. We deduced altered activities of specific enzymes in the Krebs cycle, pentose phosphate pathway, gluconeogenesis, and UDP-GlcNAc synthesis pathways elicited by the stressors. These metabolic details help elucidate the resistance mechanism of 3D versus 2D A549 cultures to selenite and metabolic reprogramming that can mediate the transformation of BEAS-2B cells by arsenite.


Assuntos
Arsenitos , Ácido Selenioso , Arsenitos/farmacologia , Isótopos de Carbono/química , Marcação por Isótopo/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Espectrometria de Massas em Tandem , Humanos
13.
Small ; 19(19): e2207709, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36759968

RESUMO

Establishing high performance ultraviolet (UV) nonlinear optical (NLO) selenite crystals with well-balanced properties is very challenging attributable to their strong absorption for UV light. Here a rare-earth selenite, Sc(HSeO3 )3 , with excellent UV NLO properties is introduced. Sc(HSeO3 )3 crystallizing in the polar NCS space group, Cc, features a 3D archetiture built up by interconnected ScO6 octahedra and HSeO3 groups. The crystal exhibits remarkably well-balanced UV-NLO functionality, namely, the shortest absorption edge (214 nm) among NLO-active selenites, wide bandgap (5.28 eV), large phase-matchable SHG response (5 × KDP), and sufficiently large birefringence (cal. 0.105 @1064 nm). Detailed DFT calculations have been performed to elucidate the structure-property relationships. This work provides a new example of discovering novel UV NLO selenite materials.

14.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37990983

RESUMO

A polyphasic taxonomic study was carried out on strain TSed Te1T, isolated from sediment of a stream contaminated with acid drainage from a coal mine. The bacterium forms pink-pigmented colonies and has a rod-coccus growth cycle, which also includes some coryneform arrangements. This bacterium is capable of growing in the presence of up to 750 µg ml-1 tellurite and 5000 µg ml-1 selenite, reducing each to elemental form. Nearly complete 16S rRNA gene sequence analysis associated the strain with Gordonia, with 99.5 and 99.3 % similarity to Gordonia namibiensis and Gordonia rubripertincta, respectively. Computation of the average nucleotide identity and digital DNA-DNA hybridization comparisons with the closest phylogenetic neighbour of TSed Te1T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The dominant fatty acids were C16 : 0, C18 : 1, C16 : 1 and tuberculostearic acid. The DNA G+C content was 67.6 mol%. Major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside, while MK-9(H2) was the only menaquinone found. Mycolic acids of C56-C60 were present. Whole-cell hydrolysates contained meso-diaminopimelic acid along with arabinose and galactose as the major cell-wall sugars. On the basis of the results obtained in this study, the bacterium was assigned to the genus Gordonia and represents a new species with the name Gordonia metallireducens sp. nov. The type strain is TSed Te1T (=NRRL B-65678T=DSM 114093T).


Assuntos
Ácidos Graxos , Bactéria Gordonia , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Rios , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , Vitamina K 2
15.
Environ Sci Technol ; 57(6): 2371-2379, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36734488

RESUMO

Microbial transformation of selenite [Se(IV)] to elemental selenium nanoparticles (SeNPs) is known to be an important process for removing toxic soluble selenium (Se) oxyanions and recovery of Se from the environment as valuable nanoparticles. However, the mechanism of selenite uptake by microorganisms, the first step through which Se exerts its cellular function, remains not well studied. In this study, the effects of selenite concentration, time, pH, metabolic inhibitors, and anionic analogues on selenite uptake in Rahnella aquatilis HX2 were investigated. Selenite uptake by R. aquatilis HX2 was concentration- and time-dependent, and its transport activity was significantly dependent on pH. In addition, selenite uptake in R. aquatilis HX2 was significantly inhibited by the aquaporin inhibitor AgNO3 and sulfite (SO32-), and partially inhibited by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-dinitrophenol (2,4-DNP) treatments. Three mutants with in-frame deletions of aqpZ, glpF, and nhaA genes were constructed. The transport assay showed that the water channel protein AqpZ, and not GlpF, was a key channel of selenite uptake by R. aquatilis HX2, and sulfite and selenite had a common uptake pathway. In addition, the Na+/H+ antiporter NhaA is also involved in selenite uptake in R. aquatilis HX2.


Assuntos
Rahnella , Selênio , Selênio/química , Selênio/metabolismo , Rahnella/genética , Rahnella/metabolismo , Ácido Selenioso/farmacologia , Ácido Selenioso/metabolismo , Íons/metabolismo , Sulfitos/metabolismo
16.
Environ Sci Technol ; 57(8): 3166-3175, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36780547

RESUMO

Coprecipitation of radionuclides with barite has been studied to remove radionuclides from radioactive liquid waste because of its excellent removal efficiency; however, little information exists concerning the stability of the ions coprecipitated with barite. This study systematically investigated the stability of iodate, selenite, and selenate coprecipitated with barite via leaching tests. These oxyanions were gradually leached from the oxyanion-bearing barite into ultrapure water over time. Leaching of the oxyanions significantly increased in leaching solutions containing NaCl (pH 5.3), NaNO3 (pH 5.9), and Na2SO4 (pH 5.7). Conversely, leaching of the oxyanions was suppressed in KH2PO4 solution (pH 8.5), indicating that phosphate stabilized the oxyanion-bearing barite. The effect of phosphate treatment on oxyanion-bearing barite was further investigated. The results showed that the barite surface was modified with phosphate, and a thin surface layer of a barium phosphate-like structure was formed. The amount of oxyanions leached from the phosphate-treated samples into leaching solutions containing NaCl or NaNO3 was much lower than the amounts leached from the untreated barite samples into ultrapure water. The barite coprecipitation combined with subsequent phosphate treatment may be a promising method to efficiently remove iodate, selenite, and selenate from wastewater and stabilize them as barite coprecipitates.


Assuntos
Sulfato de Bário , Fosfatos , Ácido Selênico , Iodatos , Cloreto de Sódio , Ácido Selenioso , Água/química
17.
Environ Sci Technol ; 57(29): 10882-10890, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436147

RESUMO

Gaseous elemental mercury (Hg0) extraction from industrial flue gases is undergoing intense research due to its unique properties. Selective adsorption that renders Hg0 to HgO or HgS over metal oxide- or sulfide-based sorbents is a promising method, yet the sorbents are easily poisoned by sulfur dioxide (SO2) and H2O vapor. The Se-Cl intermediate derived from SeO2 and HCl driven by SO2 has been demonstrated to stabilize Hg0. Thus, a surface-induced method was put forward when using γ-Al2O3 supported selenite-chloride (xSeO32--yCl-, named xSe-yCl) for mercury deposition. Results confirmed that under 3000 ppm SO2 and 4% H2O, Se-2Cl exhibited the highest induced adsorption performance at 160 °C and higher humidity can accelerate the induction process. Driven by SO2 under the wet interface, the in situ generated active Se0 has high affinity toward Hg0, and the introduction of Cl- enabled the fast-trapping and stabilization of Hg0 due to its intercalation in the HgSe product. Additionally, the long-time scale-up experiment showed a gradient color change of the Se-2Cl-induced surface, which maintained almost 100% Hg0 removal efficiency over 180 h with a normalized adsorption capacity of 157.26 mg/g. This surface-induced method has the potential for practical application and offers a guideline for reversing the negative effect of SO2 on gaseous pollutant removal.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Mercúrio , Dióxido de Enxofre , Mercúrio/análise , Cloretos , Óxidos , Adsorção , Poluentes Atmosféricos/análise
18.
Environ Res ; 219: 115073, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535392

RESUMO

Selenite (Se4+) is the most toxic of all the oxyanion forms of selenium. In this study, a feed forward back propagation (BP) based artificial neural network (ANN) model was developed for a fungal pelleted airlift bioreactor (ALR) system treating selenite-laden wastewater. The performance of the bioreactor, i.e., selenite removal efficiency (REselenite) (%) was predicted through two input parameters, namely, the influent selenite concentration (ICselenite) (10 mg/L - 60 mg/L) and hydraulic retention time (HRT) (24 h - 72 h). After training and testing with 96 sets of data points using the Levenberg-Marquardt algorithm, a multi-layer perceptron model (2-10-1) was established. High values of the correlation coefficient (0.96 ≤ R ≤ 0.98), along with low root mean square error (1.72 ≤ RMSE ≤ 2.81) and mean absolute percentage error (1.67 ≤ MAPE ≤ 2.67), clearly demonstrate the accuracy of the ANN model (> 96%) when compared to the experimental data. To ensure an efficient and economically feasible operation of the ALR, the process parameters were optimized using the particle swarm optimization (PSO) algorithm coupled with the neural model. The REselenite was maximized while minimizing the HRT for a preferably higher range of ICselenite. Thus, the most favourable optimum conditions were suggested as: ICselenite - 50.45 mg/L and HRT - 24 h, resulting in REselenite of 69.4%. Overall, it can be inferred that ANN models can successfully substitute knowledge-based models to predict the REselenite in an ALR, and the process parameters can be effectively optimized using PSO.


Assuntos
Ácido Selenioso , Águas Residuárias , Redes Neurais de Computação , Algoritmos , Reatores Biológicos
19.
Biotechnol Lett ; 45(11-12): 1513-1520, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864746

RESUMO

Selenite biotransformation by microorganisms is an effective detoxification and assimilation process. However, current knowledge of the molecular mechanisms of selenite reduction remains circumscribed. Here, the reduction of Se(IV) by a highly selenite-resistant Bacillus sp. SL (up to 50 mM) was systematically analyzed, and the molecular mechanisms of selenite reduction were investigated. Remarkably, 10 mM selenite was entirely transformed by the strain SL within 20 h, demonstrating a faster conversion rate compared to other microorganisms. Furthermore, glutathione (GSH) and exopolysaccharides (EPS) changes were also monitored during the process. Transcriptomic analysis revealed that the genes of ferredoxin-sulfite oxidoreductase (6.82) and sulfate adenylyltransferase (6.32) were significantly upregulated, indicating that the sulfur assimilation pathway is the primary reducing pathway involved in selenite reduction by strain SL. Moreover, key genes associated with NAD(P)/FAD-dependent oxidoreductases and thioredoxin were significantly upregulated. The reduction of Se(IV) was mediated by multiple pathways in strain SL. To our knowledge, this is the initial report to identify the involvement of sulfur assimilation pathway in selenite reduction for bacillus, which is rare in aerobic bacteria.


Assuntos
Bacillus , Ácido Selenioso , Ácido Selenioso/metabolismo , Bacillus/genética , Bacillus/metabolismo , Transcriptoma/genética , Oxirredução , Oxirredutases/metabolismo , Selenito de Sódio/metabolismo
20.
Ecotoxicol Environ Saf ; 263: 115277, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499390

RESUMO

Numerous antibiotic resistance genes (ARGs) and virulence factors (VFs) found in animal manure pose significant risks to human health. However, the effects of graphene sodium selenite (GSSe), a novel chemical nano-Selenium, and biological nano-Selenium (BNSSe), a new bioaugmentation nano-Se, on bacterial Se metabolism, chemotaxis, ARGs, and VFs in animal manure remain unknown. In this study, we investigated the effects of GSSe and BNSSe on ARGs and VFs expression in broiler manure using high-throughput sequencing. Results showed that BNSSe reduced Se pressure during anaerobic fermentation by inhibiting bacterial selenocompound metabolism pathways, thereby lowering manure Selenium pollution. Additionally, the expression levels of ARGs and VFs were lower in the BNSSe group compared to the Sodium Selenite and GSSe groups, as BNSSe inhibited bacterial chemotaxis pathways. Co-occurrence network analysis identified ARGs and VFs within the following phyla Bacteroidetes (genera Butyricimonas, Odoribacter, Paraprevotella, and Rikenella), Firmicutes (genera Lactobacillus, Candidatus_Borkfalkia, Merdimonas, Oscillibacter, Intestinimonas, and Megamonas), and Proteobacteria (genera Desulfovibrio). The expression and abundance of ARGs and VFs genes were found to be associated with ARGs-VFs coexistence. Moreover, BNSSe disruption of bacterial selenocompound metabolism and chemotaxis pathways resulted in less frequent transfer of ARGs and VFs. These findings indicate that BNSSe can reduce ARGs and VFs expression in animal manure by suppressing bacterial selenocompound metabolism and chemotaxis pathways.


Assuntos
Selênio , Humanos , Animais , Selênio/farmacologia , Esterco/análise , Genes Bacterianos , Antibacterianos/farmacologia , Quimiotaxia/genética , Selenito de Sódio/farmacologia , Galinhas/genética , Bactérias , Resistência Microbiana a Medicamentos/genética , Bacteroidetes , Firmicutes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA