Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.906
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 39: 369-393, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33561366

RESUMO

Classically, skin was considered a mere structural barrier protecting organisms from a diversity of environmental insults. In recent decades, the cutaneous immune system has become recognized as a complex immunologic barrier involved in both antimicrobial immunity and homeostatic processes like wound healing. To sense a variety of chemical, mechanical, and thermal stimuli, the skin harbors one of the most sophisticated sensory networks in the body. However, recent studies suggest that the cutaneous nervous system is highly integrated with the immune system to encode specific sensations into evolutionarily conserved protective behaviors. In addition to directly sensing pathogens, neurons employ novel neuroimmune mechanisms to provide host immunity. Therefore, given that sensation underlies various physiologies through increasingly complex reflex arcs, a much more dynamic picture is emerging of the skin as a truly systemic organ with highly coordinated physical, immunologic, and neural functions in barrier immunology.


Assuntos
Sistema Imunitário , Neuroimunomodulação , Animais , Humanos , Sistema Nervoso
2.
Cell ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959890

RESUMO

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.

3.
Cell ; 187(1): 44-61.e17, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38134932

RESUMO

Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPß was dependent on JAK1 in the vagus nerve, and CGRPß suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.


Assuntos
Dermatite Atópica , Imunidade Inata , Pulmão , Células Receptoras Sensoriais , Animais , Humanos , Camundongos , Citocinas , Dermatite Atópica/imunologia , Inflamação , Pulmão/imunologia , Linfócitos , Células Receptoras Sensoriais/enzimologia
4.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518773

RESUMO

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Pulmão , Polissacarídeos Bacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Feminino , Masculino , Camundongos , Biofilmes , Escherichia coli/fisiologia , Hipotermia/metabolismo , Hipotermia/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Pneumonia/microbiologia , Pneumonia/patologia , Pseudomonas aeruginosa/fisiologia , Células Receptoras Sensoriais , Polissacarídeos Bacterianos/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Nociceptores/metabolismo
5.
Cell ; 186(16): 3368-3385.e18, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541195

RESUMO

The properties of dorsal root ganglia (DRG) neurons that innervate the distal colon are poorly defined, hindering our understanding of their roles in normal physiology and gastrointestinal (GI) disease. Here, we report genetically defined subsets of colon-innervating DRG neurons with diverse morphologic and physiologic properties. Four colon-innervating DRG neuron populations are mechanosensitive and exhibit distinct force thresholds to colon distension. The highest threshold population, selectively labeled using Bmpr1b genetic tools, is necessary and sufficient for behavioral responses to high colon distension, which is partly mediated by the mechanosensory ion channel Piezo2. This Aδ-HTMR population mediates behavioral over-reactivity to colon distension caused by inflammation in a model of inflammatory bowel disease. Thus, like cutaneous DRG mechanoreceptor populations, colon-innervating mechanoreceptors exhibit distinct anatomical and physiological properties and tile force threshold space, and genetically defined colon-innervating HTMRs mediate pathophysiological responses to colon distension, revealing a target population for therapeutic intervention.


Assuntos
Gânglios Espinais , Mecanorreceptores , Mecanorreceptores/fisiologia , Colo , Neurônios , Pele/inervação
6.
Cell ; 186(12): 2556-2573.e22, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236194

RESUMO

In Drosophila, a dedicated olfactory channel senses a male pheromone, cis-vaccenyl acetate (cVA), promoting female courtship while repelling males. Here, we show that separate cVA-processing streams extract qualitative and positional information. cVA sensory neurons respond to concentration differences in a 5-mm range around a male. Second-order projection neurons encode the angular position of a male by detecting inter-antennal differences in cVA concentration, which are amplified through contralateral inhibition. At the third circuit layer, we identify 47 cell types with diverse input-output connectivity. One population responds tonically to male flies, a second is tuned to olfactory looming, while a third integrates cVA and taste to coincidentally promote female mating. The separation of olfactory features resembles the mammalian what and where visual streams; together with multisensory integration, this enables behavioral responses appropriate to specific ethological contexts.


Assuntos
Proteínas de Drosophila , Receptores Odorantes , Animais , Feminino , Masculino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Comportamento Sexual Animal/fisiologia , Receptores Odorantes/metabolismo , Feromônios/metabolismo , Olfato/fisiologia , Drosophila/metabolismo , Mamíferos/metabolismo
7.
Cell ; 186(16): 3386-3399.e15, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541196

RESUMO

The gastrointestinal tract is in a state of constant motion. These movements are tightly regulated by the presence of food and help digestion by mechanically breaking down and propelling gut content. Mechanical sensing in the gut is thought to be essential for regulating motility; however, the identity of the neuronal populations, the molecules involved, and the functional consequences of this sensation are unknown. Here, we show that humans lacking PIEZO2 exhibit impaired bowel sensation and motility. Piezo2 in mouse dorsal root, but not nodose ganglia is required to sense gut content, and this activity slows down food transit rates in the stomach, small intestine, and colon. Indeed, Piezo2 is directly required to detect colon distension in vivo. Our study unveils the mechanosensory mechanisms that regulate the transit of luminal contents throughout the gut, which is a critical process to ensure proper digestion, nutrient absorption, and waste removal.


Assuntos
Trânsito Gastrointestinal , Canais Iônicos , Mecanotransdução Celular , Animais , Humanos , Camundongos , Digestão , Canais Iônicos/metabolismo , Neurônios/metabolismo
8.
Cell ; 186(3): 607-620.e17, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640762

RESUMO

Tissue immunity and responses to injury depend on the coordinated action and communication among physiological systems. Here, we show that, upon injury, adaptive responses to the microbiota directly promote sensory neuron regeneration. At homeostasis, tissue-resident commensal-specific T cells colocalize with sensory nerve fibers within the dermis, express a transcriptional program associated with neuronal interaction and repair, and promote axon growth and local nerve regeneration following injury. Mechanistically, our data reveal that the cytokine interleukin-17A (IL-17A) released by commensal-specific Th17 cells upon injury directly signals to sensory neurons via IL-17 receptor A, the transcription of which is specifically upregulated in injured neurons. Collectively, our work reveals that in the context of tissue damage, preemptive immunity to the microbiota can rapidly bridge biological systems by directly promoting neuronal repair, while also identifying IL-17A as a major determinant of this fundamental process.


Assuntos
Interleucina-17 , Microbiota , Regeneração Nervosa , Células Th17 , Axônios , Regeneração Nervosa/fisiologia , Células Receptoras Sensoriais , Animais , Camundongos , Células Th17/citologia
9.
Cell ; 186(26): 5751-5765.e16, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989313

RESUMO

The hedonic value of salt fundamentally changes depending on the internal state. High concentrations of salt induce innate aversion under sated states, whereas such aversive stimuli transform into appetitive ones under sodium depletion. Neural mechanisms underlying this state-dependent salt valence switch are poorly understood. Using transcriptomics state-to-cell-type mapping and neural manipulations, we show that positive and negative valences of salt are controlled by anatomically distinct neural circuits in the mammalian brain. The hindbrain interoceptive circuit regulates sodium-specific appetitive drive , whereas behavioral tolerance of aversive salts is encoded by a dedicated class of neurons in the forebrain lamina terminalis (LT) expressing prostaglandin E2 (PGE2) receptor, Ptger3. We show that these LT neurons regulate salt tolerance by selectively modulating aversive taste sensitivity, partly through a PGE2-Ptger3 axis. These results reveal the bimodal regulation of appetitive and tolerance signals toward salt, which together dictate the amount of sodium consumption under different internal states.


Assuntos
Vias Neurais , Sódio , Paladar , Animais , Vias Neurais/fisiologia , Paladar/fisiologia , Camundongos , Perfilação da Expressão Gênica
10.
Annu Rev Biochem ; 91: 629-649, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35287474

RESUMO

Transient receptor potential (TRP) ion channels are sophisticated signaling machines that detect a wide variety of environmental and physiological signals. Every cell in the body expresses one or more members of the extended TRP channel family, which consists of over 30 subtypes, each likely possessing distinct pharmacological, biophysical, and/or structural attributes. While the function of some TRP subtypes remains enigmatic, those involved in sensory signaling are perhaps best characterized and have served as models for understanding how these excitatory ion channels serve as polymodal signal integrators. With the recent resolution revolution in cryo-electron microscopy, these and other TRP channel subtypes are now yielding their secrets to detailed atomic analysis, which is beginning to reveal structural underpinnings of stimulus detection and gating, ion permeation, and allosteric mechanisms governing signal integration. These insights are providing a framework for designing and evaluating modality-specific pharmacological agents for treating sensory and other TRP channel-associated disorders.


Assuntos
Canais de Potencial de Receptor Transitório , Microscopia Crioeletrônica , Transdução de Sinais , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
11.
Cell ; 185(22): 4190-4205.e25, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36243004

RESUMO

Neuroepithelial crosstalk is critical for gut physiology. However, the mechanisms by which sensory neurons communicate with epithelial cells to mediate gut barrier protection at homeostasis and during inflammation are not well understood. Here, we find that Nav1.8+CGRP+ nociceptor neurons are juxtaposed with and signal to intestinal goblet cells to drive mucus secretion and gut protection. Nociceptor ablation led to decreased mucus thickness and dysbiosis, while chemogenetic nociceptor activation or capsaicin treatment induced mucus growth. Mouse and human goblet cells expressed Ramp1, receptor for the neuropeptide CGRP. Nociceptors signal via the CGRP-Ramp1 pathway to induce rapid goblet cell emptying and mucus secretion. Notably, commensal microbes activated nociceptors to control homeostatic CGRP release. In the absence of nociceptors or epithelial Ramp1, mice showed increased epithelial stress and susceptibility to colitis. Conversely, CGRP administration protected nociceptor-ablated mice against colitis. Our findings demonstrate a neuron-goblet cell axis that orchestrates gut mucosal barrier protection.


Assuntos
Colite , Células Caliciformes , Camundongos , Humanos , Animais , Células Caliciformes/metabolismo , Nociceptores/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colite/metabolismo , Muco/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo
12.
Cell ; 184(2): 441-459.e25, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33333021

RESUMO

Barrier tissue immune responses are regulated in part by nociceptors. Nociceptor ablation alters local immune responses at peripheral sites and within draining lymph nodes (LNs). The mechanisms and significance of nociceptor-dependent modulation of LN function are unknown. Using high-resolution imaging, viral tracing, single-cell transcriptomics, and optogenetics, we identified and functionally tested a sensory neuro-immune circuit that is responsive to lymph-borne inflammatory signals. Transcriptomics profiling revealed that multiple sensory neuron subsets, predominantly peptidergic nociceptors, innervate LNs, distinct from those innervating surrounding skin. To uncover LN-resident cells that may interact with LN-innervating sensory neurons, we generated a LN single-cell transcriptomics atlas and nominated nociceptor target populations and interaction modalities. Optogenetic stimulation of LN-innervating sensory fibers triggered rapid transcriptional changes in the predicted interacting cell types, particularly endothelium, stromal cells, and innate leukocytes. Thus, a unique population of sensory neurons monitors peripheral LNs and may locally regulate gene expression.


Assuntos
Imunomodulação , Linfonodos/imunologia , Linfonodos/inervação , Células Receptoras Sensoriais/imunologia , Potenciais de Ação , Animais , Inflamação/patologia , Camundongos , Nociceptores/metabolismo , Optogenética , Peptídeos/metabolismo , Pele/inervação , Sistema Nervoso Simpático/fisiologia , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
13.
Cell ; 184(2): 422-440.e17, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450207

RESUMO

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.


Assuntos
Basófilos/patologia , Neurônios/patologia , Prurido/patologia , Doença Aguda , Alérgenos/imunologia , Animais , Doença Crônica , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Histamina/metabolismo , Humanos , Imunoglobulina E/imunologia , Inflamação/patologia , Leucotrienos/metabolismo , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Fenótipo , Prurido/imunologia , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo
14.
Cell ; 184(3): 759-774.e18, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33400916

RESUMO

To investigate circuit mechanisms underlying locomotor behavior, we used serial-section electron microscopy (EM) to acquire a synapse-resolution dataset containing the ventral nerve cord (VNC) of an adult female Drosophila melanogaster. To generate this dataset, we developed GridTape, a technology that combines automated serial-section collection with automated high-throughput transmission EM. Using this dataset, we studied neuronal networks that control leg and wing movements by reconstructing all 507 motor neurons that control the limbs. We show that a specific class of leg sensory neurons synapses directly onto motor neurons with the largest-caliber axons on both sides of the body, representing a unique pathway for fast limb control. We provide open access to the dataset and reconstructions registered to a standard atlas to permit matching of cells between EM and light microscopy data. We also provide GridTape instrumentation designs and software to make large-scale EM more accessible and affordable to the scientific community.


Assuntos
Envelhecimento/fisiologia , Drosophila melanogaster/ultraestrutura , Microscopia Eletrônica de Transmissão , Neurônios Motores/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Animais , Automação , Conectoma , Extremidades/inervação , Nervos Periféricos/ultraestrutura , Sinapses/ultraestrutura
15.
Cell ; 184(14): 3762-3773.e10, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34133943

RESUMO

Sneezing is a vital respiratory reflex frequently associated with allergic rhinitis and viral respiratory infections. However, its neural circuit remains largely unknown. A sneeze-evoking region was discovered in both cat and human brainstems, corresponding anatomically to the central recipient zone of nasal sensory neurons. Therefore, we hypothesized that a neuronal population postsynaptic to nasal sensory neurons mediates sneezing in this region. By screening major presynaptic neurotransmitters/neuropeptides released by nasal sensory neurons, we found that neuromedin B (NMB) peptide is essential for signaling sneezing. Ablation of NMB-sensitive postsynaptic neurons in the sneeze-evoking region or deficiency in NMB receptor abolished the sneezing reflex. Remarkably, NMB-sensitive neurons further project to the caudal ventral respiratory group (cVRG). Chemical activation of NMB-sensitive neurons elicits action potentials in cVRG neurons and leads to sneezing behavior. Our study delineates a peptidergic pathway mediating sneezing, providing molecular insights into the sneezing reflex arc.


Assuntos
Tronco Encefálico/fisiopatologia , Neuropeptídeos/metabolismo , Nariz/fisiopatologia , Reflexo/fisiologia , Espirro/fisiologia , Animais , Modelos Animais de Doenças , Hipersensibilidade/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Neurocinina B/análogos & derivados , Neurocinina B/metabolismo , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPV/metabolismo , Gravação em Vídeo
16.
Cell ; 184(26): 6326-6343.e32, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34879231

RESUMO

Animals traversing different environments encounter both stable background stimuli and novel cues, which are thought to be detected by primary sensory neurons and then distinguished by downstream brain circuits. Here, we show that each of the ∼1,000 olfactory sensory neuron (OSN) subtypes in the mouse harbors a distinct transcriptome whose content is precisely determined by interactions between its odorant receptor and the environment. This transcriptional variation is systematically organized to support sensory adaptation: expression levels of more than 70 genes relevant to transforming odors into spikes continuously vary across OSN subtypes, dynamically adjust to new environments over hours, and accurately predict acute OSN-specific odor responses. The sensory periphery therefore separates salient signals from predictable background via a transcriptional rheostat whose moment-to-moment state reflects the past and constrains the future; these findings suggest a general model in which structured transcriptional variation within a cell type reflects individual experience.


Assuntos
Neurônios Receptores Olfatórios/metabolismo , Sensação/genética , Transcrição Gênica , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Odorantes , Bulbo Olfatório/metabolismo , Receptores Odorantes/metabolismo , Transcriptoma/genética
17.
Cell ; 184(24): 5932-5949.e15, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34798069

RESUMO

Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.


Assuntos
Autopsia/métodos , COVID-19/mortalidade , COVID-19/virologia , Bulbo Olfatório/virologia , Mucosa Olfatória/virologia , Mucosa Respiratória/virologia , Idoso , Anosmia , COVID-19/fisiopatologia , Endoscopia/métodos , Feminino , Glucuronosiltransferase/biossíntese , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Transtornos do Olfato , Neurônios Receptores Olfatórios/metabolismo , Sistema Respiratório , SARS-CoV-2 , Olfato
18.
Cell ; 183(3): 594-604.e14, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125889

RESUMO

Animals display wide-ranging evolutionary adaptations based on their ecological niche. Octopuses explore the seafloor with their flexible arms using a specialized "taste by touch" system to locally sense and respond to prey-derived chemicals and movement. How the peripherally distributed octopus nervous system mediates relatively autonomous arm behavior is unknown. Here, we report that octopus arms use a family of cephalopod-specific chemotactile receptors (CRs) to detect poorly soluble natural products, thereby defining a form of contact-dependent, aquatic chemosensation. CRs form discrete ion channel complexes that mediate the detection of diverse stimuli and transduction of specific ionic signals. Furthermore, distinct chemo- and mechanosensory cells exhibit specific receptor expression and electrical activities to support peripheral information coding and complex chemotactile behaviors. These findings demonstrate that the peripherally distributed octopus nervous system is a key site for signal processing and highlight how molecular and anatomical features synergistically evolve to suit an animal's environmental context.


Assuntos
Células Quimiorreceptoras/metabolismo , Octopodiformes/fisiologia , Tato/fisiologia , Acetilcolina/farmacologia , Sequência de Aminoácidos , Animais , Comportamento Animal , Feminino , Células HEK293 , Humanos , Octopodiformes/anatomia & histologia , Octopodiformes/genética , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Receptores Colinérgicos/metabolismo , Transdução de Sinais
19.
Cell ; 181(4): 763-773.e12, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32330415

RESUMO

Paralyzed muscles can be reanimated following spinal cord injury (SCI) using a brain-computer interface (BCI) to enhance motor function alone. Importantly, the sense of touch is a key component of motor function. Here, we demonstrate that a human participant with a clinically complete SCI can use a BCI to simultaneously reanimate both motor function and the sense of touch, leveraging residual touch signaling from his own hand. In the primary motor cortex (M1), residual subperceptual hand touch signals are simultaneously demultiplexed from ongoing efferent motor intention, enabling intracortically controlled closed-loop sensory feedback. Using the closed-loop demultiplexing BCI almost fully restored the ability to detect object touch and significantly improved several sensorimotor functions. Afferent grip-intensity levels are also decoded from M1, enabling grip reanimation regulated by touch signaling. These results demonstrate that subperceptual neural signals can be decoded from the cortex and transformed into conscious perception, significantly augmenting function.


Assuntos
Retroalimentação Sensorial/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Adulto , Interfaces Cérebro-Computador/psicologia , Mãos/fisiopatologia , Força da Mão/fisiologia , Humanos , Masculino , Córtex Motor/fisiologia , Movimento/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
20.
Cell ; 179(2): 392-402.e15, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31543264

RESUMO

The ability to sense sour provides an important sensory signal to prevent the ingestion of unripe, spoiled, or fermented foods. Taste and somatosensory receptors in the oral cavity trigger aversive behaviors in response to acid stimuli. Here, we show that the ion channel Otopetrin-1, a proton-selective channel normally involved in the sensation of gravity in the vestibular system, is essential for sour sensing in the taste system. We demonstrate that knockout of Otop1 eliminates acid responses from sour-sensing taste receptor cells (TRCs). In addition, we show that mice engineered to express otopetrin-1 in sweet TRCs have sweet cells that also respond to sour stimuli. Next, we genetically identified the taste ganglion neurons mediating each of the five basic taste qualities and demonstrate that sour taste uses its own dedicated labeled line from TRCs in the tongue to finely tuned taste neurons in the brain to trigger aversive behaviors.


Assuntos
Encéfalo/fisiologia , Proteínas de Membrana/metabolismo , Papilas Gustativas/metabolismo , Paladar , Ácidos/farmacologia , Vias Aferentes/citologia , Vias Aferentes/metabolismo , Vias Aferentes/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/fisiologia , Percepção Gustatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA