Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 678
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215751

RESUMO

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Assuntos
Linfócitos T CD8-Positivos , Serotonina , Linfócitos T CD8-Positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
2.
Trends Biochem Sci ; 49(3): 189-191, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38160063

RESUMO

A recent report by Chen et al. describes the discovery of RmNMT, a highly active and promiscuous tryptamine N-methyltransferase from the cane toad, Rhinella marina. N,N-dimethyltryptamine derivatives produced by this enzyme were then evaluated for their potential to serve as next-generation treatments for mental health disorders.


Assuntos
Alucinógenos , Alucinógenos/farmacologia , N,N-Dimetiltriptamina
3.
EMBO Rep ; 25(1): 304-333, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177905

RESUMO

The gastrointestinal epithelium constitutes a chemosensory system for microbiota-derived metabolites such as short-chain fatty acids (SCFA). Here, we investigate the spatial distribution of Olfr78, one of the SCFA receptors, in the mouse intestine and study the transcriptome of colon enteroendocrine cells expressing Olfr78. The receptor is predominantly detected in the enterochromaffin and L subtypes in the proximal and distal colon, respectively. Using the Olfr78-GFP and VilCre/Olfr78flox transgenic mouse lines, we show that loss of epithelial Olfr78 results in impaired enterochromaffin cell differentiation, blocking cells in an undefined secretory lineage state. This is accompanied by a reduced defense response to bacteria in colon crypts and slight dysbiosis. Using organoid cultures, we further show that maintenance of enterochromaffin cells involves activation of the Olfr78 receptor via the SCFA ligand acetate. Taken together, our work provides evidence that Olfr78 contributes to colon homeostasis by promoting enterochromaffin cell differentiation.


Assuntos
Células Enterocromafins , Receptores Odorantes , Camundongos , Animais , Células Enterocromafins/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Diferenciação Celular , Células Enteroendócrinas/metabolismo , Colo
4.
EMBO Rep ; 25(2): 570-592, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253686

RESUMO

Patients with neuropsychiatric disorders often exhibit a combination of clinical symptoms such as autism, epilepsy, or schizophrenia, complicating diagnosis and development of therapeutic strategies. Functional studies of novel genes associated with co-morbidities can provide clues to understand the pathogenic mechanisms and interventions. NOMO1 is one of the candidate genes located at 16p13.11, a hotspot of neuropsychiatric diseases. Here, we generate nomo1-/- zebrafish to get further insight into the function of NOMO1. Nomo1 mutants show abnormal brain and neuronal development and activation of apoptosis and inflammation-related pathways in the brain. Adult Nomo1-deficient zebrafish exhibit multiple neuropsychiatric behaviors such as hyperactive locomotor activity, social deficits, and repetitive stereotypic behaviors. The Habenular nucleus and the pineal gland in the telencephalon are affected, and the melatonin level of nomo1-/- is reduced. Melatonin treatment restores locomotor activity, reduces repetitive stereotypic behaviors, and rescues the noninfectious brain inflammatory responses caused by nomo1 deficiency. These results suggest melatonin supplementation as a potential therapeutic regimen for neuropsychiatric disorders caused by NOMO1 deficiency.


Assuntos
Transtorno Autístico , Melatonina , Animais , Adulto , Humanos , Peixe-Zebra/genética , Transtorno Autístico/genética , Encéfalo
5.
Bioessays ; 46(4): e2300213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38314963

RESUMO

Aggressive behavior is instinctively driven behavior that helps animals to survive and reproduce and is closely related to multiple behavioral and physiological processes. The dorsal raphe nucleus (DRN) is an evolutionarily conserved midbrain structure that regulates aggressive behavior by integrating diverse brain inputs. The DRN consists predominantly of serotonergic (5-HT:5-hydroxytryptamine) neurons and decreased 5-HT activity was classically thought to increase aggression. However, recent studies challenge this 5-HT deficiency model, revealing a more complex role for the DRN 5-HT system in aggression. Furthermore, emerging evidence has shown that non-5-HT populations in the DRN and specific neural circuits contribute to the escalation of aggressive behavior. This review argues that the DRN serves as a multifaceted modulator of aggression, acting not only via 5-HT but also via other neurotransmitters and neural pathways, as well as different subsets of 5-HT neurons. In addition, we discuss the contribution of DRN neurons in the behavioral and physiological aspects implicated in aggressive behavior, such as arousal, reward, and impulsivity, to further our understanding of DRN-mediated aggression modulation.


Assuntos
Agressão , Núcleo Dorsal da Rafe , Animais , Núcleo Dorsal da Rafe/metabolismo , Agressão/fisiologia , Serotonina/metabolismo , Neurônios/metabolismo
6.
J Neurosci ; 44(33)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38937100

RESUMO

To visualize the cellular and subcellular localization of neuromodulatory G-protein-coupled receptors in Drosophila, we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Oct ß 1R, Oct ß 2R, two isoforms of OAMB, and mGluR The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show expression patterns for these receptors in female brains and that 5-HT1A and 5-HT2B localize to the mushroom bodies (MBs) and central complex, respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octß1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their functions at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the MBs as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor.


Assuntos
Proteínas de Drosophila , Drosophila , Epitopos , Corpos Pedunculados , Receptores Acoplados a Proteínas G , Animais , Feminino , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Corpos Pedunculados/metabolismo , Animais Geneticamente Modificados , Encéfalo/metabolismo
7.
J Neurosci ; 44(6)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38169457

RESUMO

It is well established that, during neural circuit development, glutamatergic synapses become strengthened via NMDA receptor (NMDAR)-dependent upregulation of AMPA receptor (AMPAR)-mediated currents. In addition, however, it is known that the neuromodulator serotonin is present throughout most regions of the vertebrate brain while synapses are forming and being shaped by activity-dependent processes. This suggests that serotonin may modulate or contribute to these processes. Here, we investigate the role of serotonin in the developing retinotectal projection of the Xenopus tadpole. We altered endogenous serotonin transmission in stage 48/49 (∼10-21 days postfertilization) Xenopus tadpoles and then carried out a set of whole-cell electrophysiological recordings from tectal neurons to assess retinotectal synaptic transmission. Because tadpole sex is indeterminate at these early stages of development, experimental groups were composed of randomly chosen tadpoles. We found that pharmacologically enhancing and reducing serotonin transmission for 24 h up- and downregulates, respectively, AMPAR-mediated currents at individual retinotectal synapses. Inhibiting 5-HT2 receptors also significantly weakened AMPAR-mediated currents and abolished the synapse strengthening effect seen with enhanced serotonin transmission, indicating a 5-HT2 receptor-dependent effect. We also determine that the serotonin-dependent upregulation of synaptic AMPAR currents was mediated via an NMDAR-independent, PI3K-dependent mechanism. Altogether, these findings indicate that serotonin regulates AMPAR currents at developing synapses independent of NMDA transmission, which may explain its role as an enabler of activity-dependent plasticity.


Assuntos
Fosfatidilinositol 3-Quinases , Serotonina , Sinapses/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
8.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38514181

RESUMO

The initiation of abstinence after chronic drug self-administration is stressful. Cocaine-seeking behavior on the first day of the absence of the expected drug (Extinction Day 1, ED1) is reduced by blocking 5-HT signaling in dorsal hippocampal cornu ammonis 1 (CA1) in both male and female rats. We hypothesized that the experience of ED1 can substantially influence later relapse behavior and that dorsal raphe (DR) serotonin (5-HT) input to CA1 may be involved. We inhibited 5-HT1A/1B receptors (WAY-100635 plus GR-127935), or DR input (chemogenetics), in CA1 on ED1 to test the role of this pathway on cocaine-seeking persistence 2 weeks later. We also inhibited 5-HT1A or 5-HT1B receptors in CA1 during conditioned place preference (CPP) for cocaine, to examine mechanisms involved in the persistent effects of ED1 manipulations. Inhibition of DR inputs, or 5-HT1A/1B signaling, in CA1 decreased drug seeking on ED1 and decreased cocaine seeking 2 weeks later revealing that 5-HT signaling in CA1 during ED1 contributes to persistent drug seeking during abstinence. In addition, 5-HT1B antagonism alone transiently decreased drug-associated memory performance when given prior to a CPP test, whereas similar antagonism of 5-HT1A alone had no such effect but blocked CPP retrieval on a test 24 h later. These CPP findings are consistent with prior work showing that DR inputs to CA1 augment recall of the drug-associated context and drug seeking via 5-HT1B receptors and prevent consolidation of the updated nondrug context via 5-HT1A receptors. Thus, treatments that modulate 5-HT-dependent memory mechanisms in CA1 during initial abstinence may facilitate later maintenance of abstinence.


Assuntos
Cocaína , Comportamento de Procura de Droga , Oxidiazóis , Serotonina , Animais , Masculino , Comportamento de Procura de Droga/fisiologia , Comportamento de Procura de Droga/efeitos dos fármacos , Ratos , Serotonina/metabolismo , Feminino , Cocaína/administração & dosagem , Cocaína/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Piridinas/farmacologia , Antagonistas da Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Piperazinas/farmacologia , Ratos Sprague-Dawley , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Autoadministração , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Receptor 5-HT1B de Serotonina/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo
9.
J Neurosci ; 44(32)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38977301

RESUMO

Overexpression of the agouti-signaling protein (asip1), an endogenous melanocortin antagonist, under the control of a constitutive promoter in zebrafish [Tg(Xla.Eef1a1:Cau.Asip1]iim4] (asip1-Tg) increases food intake by reducing sensitivity of the central satiety systems and abolish circadian activity rhythms. The phenotype also shows increased linear growth and body weight, yet no enhanced aggressiveness in dyadic fights is observed. In fact, asip1-Tg animals choose to flee to safer areas rather than face a potential threat, thus suggesting a potential anxiety-like behavior (ALB). Standard behavioral tests, i.e., the open field test (OFT), the novel object test (NOT), and the novel tank dive test (NTDT), were used to investigate thigmotaxis and ALB in male and female zebrafish. Results showed that the asip1-Tg strain exhibited severe ALB in every test, mainly characterized by pronounced freezing behavior and increased linear and angular swimming velocities. asip1-Tg animals exhibited low central serotonin (5-HT) and dopamine (DA) levels and high turnover rates, thus suggesting that central monoaminergic pathways might mediate melanocortin antagonist-induced ALB. Accordingly, the treatment of asip1-Tg animals with fluoxetine, a selective serotonin reuptake inhibitor (SSRI), reversed the ALB phenotype in NTDT as well as 5-HT turnover. Genomic and anatomical data further supported neuronal interaction between melanocortinergic and serotonergic systems. These results suggest that inhibition of the melanocortin system by ubiquitous overexpression of endogenous antagonist has an anxiogenic effect mediated by serotonergic transmission.


Assuntos
Ansiedade , Serotonina , Peixe-Zebra , Animais , Ansiedade/metabolismo , Ansiedade/psicologia , Masculino , Feminino , Serotonina/metabolismo , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Fluoxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Dopamina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/genética
10.
Gastroenterology ; 166(6): 976-994, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38325759

RESUMO

Chronic visceral pain is one of the most common reasons for patients with gastrointestinal disorders, such as inflammatory bowel disease or disorders of brain-gut interaction, to seek medical attention. It represents a substantial burden to patients and is associated with anxiety, depression, reductions in quality of life, and impaired social functioning, as well as increased direct and indirect health care costs to society. Unfortunately, the diagnosis and treatment of chronic visceral pain is difficult, in part because our understanding of the underlying pathophysiologic basis is incomplete. In this review, we highlight recent advances in peripheral pain signaling and specific physiologic and pathophysiologic preclinical mechanisms that result in the sensitization of peripheral pain pathways. We focus on preclinical mechanisms that have been translated into treatment approaches and summarize the current evidence base for directing treatment toward these mechanisms of chronic visceral pain derived from clinical trials. The effective management of chronic visceral pain remains of critical importance for the quality of life of suffers. A deeper understanding of peripheral pain mechanisms is necessary and may provide the basis for novel therapeutic interventions.


Assuntos
Dor Crônica , Dor Visceral , Humanos , Dor Visceral/fisiopatologia , Dor Visceral/terapia , Dor Visceral/diagnóstico , Dor Visceral/etiologia , Dor Crônica/terapia , Dor Crônica/fisiopatologia , Dor Crônica/diagnóstico , Dor Crônica/psicologia , Animais , Qualidade de Vida , Transdução de Sinais
11.
FASEB J ; 38(11): e23648, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38822661

RESUMO

Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.


Assuntos
Comportamento Animal , Vida Livre de Germes , Serotonina , Animais , Serotonina/metabolismo , Camundongos , Masculino , Microbioma Gastrointestinal/fisiologia , Encéfalo/metabolismo , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/genética , Ansiedade/metabolismo , Ansiedade/microbiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Camundongos Endogâmicos C57BL , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Colo/metabolismo , Colo/microbiologia
12.
Brain ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703387

RESUMO

The use of psilocybin to treat alcohol use disorder is very promising, but the mechanisms of action remain poorly understood. We combined behavioral, pharmacological and gene expression analyses to decipher the mechanisms of action of psilocybin, for the first time injected into the brain. Male Long Evans rats underwent chronic operant ethanol self-administration before testing the effect of intraperitoneal psilocybin or directly within the nucleus accumbens core or the ventral tegmental area. Transcripts from the dopaminergic system were quantified in the nucleus accumbens and prefrontal cortex. Psilocybin significantly reduced (50%) ethanol self-administration when injected 4 hours before the session either intraperitoneally (1mg/kg) or directly within the left nucleus accumbens (0.15µg) but not the right nucleus accumbens or the left ventral tegmental area. The effect of intraperitoneal injection of psilocybin was prevented by intra left nucleus accumbens injection of 0.3µg of the 5-HT2AR antagonist ketanserin. In rats that self-administered ethanol but not in those self-administering saccharin, dopamine D2 receptor mRNA were increased in both the nucleus accumbens and the prefrontal cortex by psilocybin, while D1R mRNA was increased only in the prefrontal cortex. As in humans, psilocybin reduced ethanol self-administration in rats through the 5-HT2AR within the left nucleus accumbens possibly through increased D2R expression. Our results open unexpected perspectives regarding the hemispheric lateralization of psychedelic effects.

13.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39128940

RESUMO

The orbitofrontal cortex and amygdala collaborate in outcome-guided decision-making through reciprocal projections. While serotonin transporter knockout (SERT-/-) rodents show changes in outcome-guided decision-making, and in orbitofrontal cortex and amygdala neuronal activity, it remains unclear whether SERT genotype modulates orbitofrontal cortex-amygdala synchronization. We trained SERT-/- and SERT+/+ male rats to execute a task requiring to discriminate between two auditory stimuli, one predictive of a reward (CS+) and the other not (CS-), by responding through nose pokes in opposite-side ports. Overall, task acquisition was not influenced by genotype. Next, we simultaneously recorded local field potentials in the orbitofrontal cortex and amygdala of both hemispheres while the rats performed the task. Behaviorally, SERT-/- rats showed a nonsignificant trend for more accurate responses to the CS-. Electrophysiologically, orbitofrontal cortex-amygdala synchronization in the beta and gamma frequency bands during response selection was significantly reduced and associated with decreased hubness and clustering coefficient in both regions in SERT-/- rats compared to SERT+/+ rats. Conversely, theta synchronization at the time of behavioral response in the port associated with reward was similar in both genotypes. Together, our findings reveal the modulation by SERT genotype of the orbitofrontal cortex-amygdala functional connectivity during an auditory discrimination task.


Assuntos
Tonsila do Cerebelo , Discriminação Psicológica , Ritmo Gama , Córtex Pré-Frontal , Proteínas da Membrana Plasmática de Transporte de Serotonina , Animais , Masculino , Córtex Pré-Frontal/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Tonsila do Cerebelo/fisiologia , Ritmo Gama/fisiologia , Ratos , Discriminação Psicológica/fisiologia , Ritmo beta/fisiologia , Vias Neurais/fisiologia , Recompensa , Percepção Auditiva/fisiologia , Estimulação Acústica , Ratos Transgênicos
14.
Med Res Rev ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808959

RESUMO

5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.

15.
J Physiol ; 602(9): 2061-2087, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554126

RESUMO

Motoneuron properties and their firing patterns undergo significant changes throughout development and in response to neuromodulators such as serotonin. Here, we examined the age-related development of self-sustained firing and general excitability of tibialis anterior motoneurons in a young development (7-17 years), young adult (18-28 years) and adult (32-53 years) group, as well as in a separate group of participants taking selective serotonin reuptake inhibitors (SSRIs, aged 11-28 years). Self-sustained firing, as measured by ΔF, was larger in the young development (∼5.8 Hz, n = 20) compared to the young adult (∼4.9 Hz, n = 13) and adult (∼4.8 Hz, n = 8) groups, consistent with a developmental decrease in self-sustained firing mediated by persistent inward currents (PIC). ΔF was also larger in participants taking SSRIs (∼6.5 Hz, n = 9) compared to their age-matched controls (∼5.3 Hz, n = 26), consistent with increased levels of spinal serotonin facilitating the motoneuron PIC. Participants in the young development and SSRI groups also had higher firing rates and a steeper acceleration in initial firing rates (secondary ranges), consistent with the PIC producing a steeper acceleration in membrane depolarization at the onset of motoneuron firing. In summary, both the young development and SSRI groups exhibited increased intrinsic motoneuron excitability compared to the adults, which, in the young development group, was also associated with a larger unsteadiness in the dorsiflexion torque profiles. We propose several intrinsic and extrinsic factors that affect both motoneuron PICs and cell discharge which vary during development, with a time course similar to the changes in motoneuron firing behaviour observed in the present study. KEY POINTS: Neurons in the spinal cord that activate muscles in the limbs (motoneurons) undergo increases in excitability shortly after birth to help animals stand and walk. We examined whether the excitability of human ankle flexor motoneurons also continues to change from child to adulthood by recording the activity of the muscle fibres they innervate. Motoneurons in children and adolescents aged 7-17 years (young development group) had higher signatures of excitability that included faster firing rates and more self-sustained activity compared to adults aged ≥18 years. Participants aged 11-28 years of age taking serotonin reuptake inhibitors had the highest measures of motoneuron excitability compared to their age-matched controls. The young development group also had more unstable contractions, which might partly be related to the high excitability of the motoneurons.


Assuntos
Neurônios Motores , Humanos , Neurônios Motores/fisiologia , Neurônios Motores/efeitos dos fármacos , Adulto , Adolescente , Feminino , Masculino , Criança , Adulto Jovem , Pessoa de Meia-Idade , Potenciais de Ação/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/inervação , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
16.
Stroke ; 55(7): 1748-1757, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38860389

RESUMO

BACKGROUND: Studies in individuals with chronic stroke indicate high-intensity training (HIT) focused on walking improves locomotor function, which may be due to repeated activation of locomotor circuits and serotonin-dependent modulation of motor output. Separate studies in animals and individuals with spinal cord injury suggest acute intermittent hypoxia (AIH) can augment the effects of locomotor interventions through similar serotonin-dependent mechanisms, although no studies have coupled AIH with HIT in individuals poststroke. The goal of this study was to evaluate the safety and efficacy of AIH+HIT versus HIT alone in individuals with chronic stroke. METHODS: This phase II double-blind randomized, crossover trial recruited individuals between 18 and 85 years old, >6 months poststroke, and self-selected speeds <1.0 m/s. Participants received up to 15 sessions of AIH for 30 minutes using 15 cycles of hypoxia (60-90 seconds; 8%-9% O2) and normoxia (30-60 seconds; 21% O2), followed by 1 hour of HIT targeting >75% heart rate reserve. The control condition received normoxia for 30 minutes before HIT. Following the first training phase, participants performed the second phase >1 month later. The primary outcomes were self-selected speed and fastest speed, a 6-minute walk test, and peak treadmill speed. A 3-way mixed-model ANOVA assessed the effects of time, training, and order of interventions. RESULTS: Of 55 individuals screened, 35 were randomized to AIH+HIT or normoxia+HIT first, and 28 individuals completed both interventions, revealing greater gains in self-selected speeds (0.14 [0.08-0.18] versus 0.05 [0.01-0.10] m/s), fastest speed (0.16 [0.10-0.21] versus 0.06 [0.02-0.10] m/s), and peak treadmill speed (0.21 [0.14-0.29] versus 0.11 [0.06-0.16] m/s) following AIH+HIT versus normoxia+HIT (P<0.01) with no order effects. Greater gains in spatiotemporal symmetry were observed with AIH+HIT, with worse outcomes for those prescribed serotonin-mediated antidepressant medications. CONCLUSIONS: AIH+HIT resulted in greater gains in locomotor function than normoxia+HIT. Subsequent phase III trials should further evaluate the efficacy of this intervention. REGISTRATION: URL: https://clinicaltrials.gov/; Unique identifier: NCT04472442.


Assuntos
Estudos Cross-Over , Hipóxia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Reabilitação do Acidente Vascular Cerebral/métodos , Método Duplo-Cego , Hipóxia/fisiopatologia , Hipóxia/terapia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Adulto , Marcha/fisiologia , Doença Crônica , Idoso de 80 Anos ou mais , Resultado do Tratamento , Terapia por Exercício/métodos , Treinamento Intervalado de Alta Intensidade/métodos
17.
Neuroimage ; 297: 120718, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964563

RESUMO

N, N-dimethyltryptamine (DMT) is a psychedelic tryptamine acting on 5-HT2A serotonin receptors, which is associated with intense visual hallucinatory phenomena and perceptual changes such as distortions in visual space. The neural underpinnings of these effects remain unknown. We hypothesised that changes in population receptive field (pRF) properties in the primary visual cortex (V1) might underlie visual perceptual experience. We tested this hypothesis using magnetic resonance imaging (MRI) in a within-subject design. We used a technique called pRF mapping, which measures neural population visual response properties and retinotopic maps in early visual areas. We show that in the presence of visual effects, as documented by the Hallucinogen Rating Scale (HRS), the mean pRF sizes in V1 significantly increase in the peripheral visual field for active condition (inhaled DMT) compared to the control. Eye and head movement differences were absent across conditions. This evidence for short-term effects of DMT in pRF may explain perceptual distortions induced by psychedelics such as field blurring, tunnel vision (peripheral vision becoming blurred while central vision remains sharp) and the enlargement of nearby visual space, particularly at the visual locations surrounding the fovea. Our findings are also consistent with a mechanistic framework whereby gain control of ongoing and evoked activity in the visual cortex is controlled by activation of 5-HT2A receptors.


Assuntos
Alucinógenos , Imageamento por Ressonância Magnética , Humanos , Alucinógenos/farmacologia , Adulto , Masculino , Feminino , Adulto Jovem , Córtex Visual/efeitos dos fármacos , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Distorção da Percepção/efeitos dos fármacos , Distorção da Percepção/fisiologia , N,N-Dimetiltriptamina/farmacologia , Campos Visuais/efeitos dos fármacos , Campos Visuais/fisiologia , Percepção Visual/efeitos dos fármacos , Percepção Visual/fisiologia , Triptaminas/farmacologia , Córtex Visual Primário/efeitos dos fármacos , Córtex Visual Primário/fisiologia , Córtex Visual Primário/diagnóstico por imagem , Mapeamento Encefálico/métodos
18.
J Neurophysiol ; 131(4): 577-588, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380829

RESUMO

Bistability in spinal motoneurons supports tonic spike activity in the absence of excitatory drive. Earlier work in adult preparations suggested that smaller motoneurons innervating slow antigravity muscle fibers are more likely to generate bistability for postural maintenance. However, whether large motoneurons innervating fast-fatigable muscle fibers display bistability is still controversial. To address this, we examined the relationship between soma size and bistability in lumbar (L4-L5) ventrolateral α-motoneurons of choline acetyltransferase (ChAT)-green fluorescent protein (GFP) and Hb9-GFP mice during the first 4 wk of life. We found that as neuron size increases, the prevalence of bistability rises. Smaller α-motoneurons lack bistability, whereas larger fast α-motoneurons [matrix metalloproteinase-9 (MMP-9)+/Hb9+] with a soma area ≥ 400 µm2 exhibit significantly higher bistability. Ionic currents associated with bistability, including the persistent Nav1.6 current, the thermosensitive Trpm5 Ca2+-activated Na+ current, and the slowly inactivating Kv1.2 current, also scale with cell size. Serotonin evokes full bistability in large motoneurons with partial bistable properties but not in small motoneurons. Our study provides important insights into the neural mechanisms underlying bistability and how motoneuron size correlates with bistability in mice.NEW & NOTEWORTHY Bistability is not a common feature of all mouse spinal motoneurons. It is absent in small, slow motoneurons but present in most large, fast motoneurons. This difference results from differential expression of ionic currents that enable bistability, which are highly expressed in large motoneurons but small or absent in small motoneurons. These results support a possible role for fast motoneurons in maintenance of tonic posture in addition to their known roles in fast movements.


Assuntos
Neurônios Motores , Medula Espinal , Camundongos , Animais , Medula Espinal/fisiologia , Neurônios Motores/fisiologia , Coluna Vertebral , Fibras Musculares Esqueléticas
19.
J Neurophysiol ; 131(5): 903-913, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38478883

RESUMO

Neuronal signals mediated by the biogenic amine serotonin (5-HT) underlie critical survival strategies across the animal kingdom. This investigation examined serotonin-like immunoreactive neurons in the cerebral ganglion of the panpulmonate snail Biomphalaria glabrata, a major intermediate host for the trematode parasite Schistosoma mansoni. Five neurons comprising the cerebral serotonergic F (CeSF) cluster of B. glabrata shared morphological characteristics with neurons that contribute to withdrawal behaviors in numerous heterobranch species. The largest member of this group, designated CeSF-1, projected an axon to the tentacle, a major site of threat detection. Intracellular recordings demonstrated repetitive activity and electrical coupling between the bilateral CeSF-1 cells. In semi-intact preparations, the CeSF-1 cells were not responsive to cutaneous stimuli but did respond to photic stimuli. A large FMRF-NH2-like immunoreactive neuron, termed C2, was also located on the dorsal surface of each cerebral hemiganglion near the origin of the tentacular nerve. C2 and CeSF-1 received coincident bouts of inhibitory synaptic input. Moreover, in the presence of 5-HT they both fired rhythmically and in phase. As the CeSF and C2 cells of Biomphalaria share fundamental properties with neurons that participate in withdrawal responses in Nudipleura and Euopisthobranchia, our observations support the proposal that features of this circuit are conserved in the Panpulmonata.NEW & NOTEWORTHY Neuronal signals mediated by the biogenic amine serotonin underlie critical survival strategies across the animal kingdom. This investigation identified a group of serotonergic cells in the panpulmonate snail Biomphalaria glabrata that appear to be homologous to neurons that mediate withdrawal responses in other gastropod taxa. It is proposed that an ancient withdrawal circuit has been highly conserved in three major gastropod lineages.


Assuntos
Biomphalaria , Neurônios Serotoninérgicos , Serotonina , Animais , Biomphalaria/fisiologia , Biomphalaria/parasitologia , Serotonina/metabolismo , Neurônios Serotoninérgicos/fisiologia , Gânglios dos Invertebrados/fisiologia , Gânglios dos Invertebrados/citologia
20.
J Neurophysiol ; 131(4): 626-637, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380827

RESUMO

Serotonergic neurons in the dorsal raphe nucleus (DRN) play important roles early in postnatal development in the maturation and modulation of higher-order emotional, sensory, and cognitive circuitry. The pivotal functions of these cells in brain development make them a critical substrate by which early experience can be wired into the brain. In this study, we investigated the maturation of synapses onto dorsal raphe serotonergic neurons in typically developing male and female mice using whole cell patch-clamp recordings in ex vivo brain slices. We show that while inhibition of these neurons is relatively stable across development, glutamatergic synapses greatly increase in strength between postnatal day 6 (P6) and P21-23. In contrast to forebrain regions, where the components making up glutamatergic synapses are dynamic across early life, we find that DRN excitatory synapses maintain a very high ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to N-methyl-d-aspartate (NMDA) receptors and a rectifying component of the AMPA response until adulthood. Overall, these findings reveal that the development of serotonergic neurons is marked by a significant refinement of glutamatergic synapses during the first three postnatal weeks. This suggests this time is a sensitive period of heightened plasticity for the integration of information from upstream brain areas. Genetic and environmental insults during this period could lead to alterations in serotonergic output, impacting both the development of forebrain circuits and lifelong neuromodulatory actions.NEW & NOTEWORTHY Serotonergic neurons are regulators of both the development of and ongoing activity in neuronal circuits controlling affective, cognitive, and sensory processing. Here, we characterize the maturation of extrinsic synaptic inputs onto these cells, showing that the first three postnatal weeks are a period of synaptic refinement and a potential window for experience-dependent plasticity in response to both enrichment and adversity.


Assuntos
Núcleo Dorsal da Rafe , Neurônios Serotoninérgicos , Masculino , Camundongos , Feminino , Animais , Núcleo Dorsal da Rafe/fisiologia , Neurônios Serotoninérgicos/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Serotonina/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA