Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.928
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 39: 175-196, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37418775

RESUMO

The neural retina, at the back of the eye, is a fascinating system to use to discover how cells form tissues in the context of the developing nervous system. The retina is the tissue responsible for perception and transmission of visual information from the environment. It consists of five types of neurons and one type of glia cells that are arranged in a highly organized, layered structure to assure visual information flow. To reach this highly ordered arrangement, intricate morphogenic movements are occurring at the cell and tissue levels. I here discuss recent advances made to understand retinal development, from optic cup formation to neuronal layering. It becomes clear that these complex morphogenetic processes must be studied by taking the cellular as well as the tissue-wide aspects into account. The loop has to be closed between exploring how cell behavior influences tissue development and how the surrounding tissue itself influences single cells. Furthermore, it was recently revealed that the retina is a great system to study neuronal migration phenomena, and more is yet to be discovered in this aspect. Constantly developing imaging and image analysis toolboxes as well as the use of machine learning and synthetic biology make the retina the perfect system to explore more of its exciting neurodevelopmental biology.

2.
Cell ; 184(8): 2084-2102.e19, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765444

RESUMO

The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion.


Assuntos
Evolução Biológica , Encéfalo/citologia , Forma Celular/fisiologia , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Gorilla gorilla , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Organoides/citologia , Organoides/metabolismo , Pan troglodytes , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
3.
Annu Rev Cell Dev Biol ; 37: 1-21, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34186006

RESUMO

One of the most common bacterial shapes is a rod, yet we have a limited understanding of how this simple shape is constructed. While only six proteins are required for rod shape, we are just beginning to understand how they self-organize to build the micron-sized enveloping structures that define bacterial shape out of nanometer-sized glycan strains. Here, we detail and summarize the insights gained over the last 20 years into this complex problem that have been achieved with a wide variety of different approaches. We also explain and compare both current and past models of rod shape formation and maintenance and then highlight recent insights into how the Rod complex might be regulated.


Assuntos
Bactérias , Proteínas de Bactérias , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética
4.
Annu Rev Cell Dev Biol ; 37: 257-283, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613816

RESUMO

Morphological transitions are typically attributed to the actions of proteins and lipids. Largely overlooked in membrane shape regulation is the glycocalyx, a pericellular membrane coat that resides on all cells in the human body. Comprised of complex sugar polymers known as glycans as well as glycosylated lipids and proteins, the glycocalyx is ideally positioned to impart forces on the plasma membrane. Large, unstructured polysaccharides and glycoproteins in the glycocalyx can generate crowding pressures strong enough to induce membrane curvature. Stress may also originate from glycan chains that convey curvature preference on asymmetrically distributed lipids, which are exploited by binding factors and infectious agents to induce morphological changes. Through such forces, the glycocalyx can have profound effects on the biogenesis of functional cell surface structures as well as the secretion of extracellular vesicles. In this review, we discuss recent evidence and examples of these mechanisms in normal health and disease.


Assuntos
Glicocálix , Membrana Celular/metabolismo , Glicocálix/química , Glicocálix/metabolismo , Glicoproteínas , Humanos , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo
5.
Cell ; 177(6): 1405-1418.e17, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31130379

RESUMO

How do genes modify cellular growth to create morphological diversity? We study this problem in two related plants with differently shaped leaves: Arabidopsis thaliana (simple leaf shape) and Cardamine hirsuta (complex shape with leaflets). We use live imaging, modeling, and genetics to deconstruct these organ-level differences into their cell-level constituents: growth amount, direction, and differentiation. We show that leaf shape depends on the interplay of two growth modes: a conserved organ-wide growth mode that reflects differentiation; and a local, directional mode that involves the patterning of growth foci along the leaf edge. Shape diversity results from the distinct effects of two homeobox genes on these growth modes: SHOOTMERISTEMLESS broadens organ-wide growth relative to edge-patterning, enabling leaflet emergence, while REDUCED COMPLEXITY inhibits growth locally around emerging leaflets, accentuating shape differences created by patterning. We demonstrate the predictivity of our findings by reconstructing key features of C. hirsuta leaf morphology in A. thaliana. VIDEO ABSTRACT.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Cardamine/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/genética , Cardamine/genética , Linhagem da Célula/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo
6.
Cell ; 172(4): 758-770.e14, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425492

RESUMO

The means by which the physicochemical properties of different cellular components together determine bacterial cell shape remain poorly understood. Here, we investigate a programmed cell-shape change during Bacillus subtilis sporulation, when a rod-shaped vegetative cell is transformed to an ovoid spore. Asymmetric cell division generates a bigger mother cell and a smaller, hemispherical forespore. The septum traps the forespore chromosome, which is translocated to the forespore by SpoIIIE. Simultaneously, forespore size increases as it is reshaped into an ovoid. Using genetics, timelapse microscopy, cryo-electron tomography, and mathematical modeling, we demonstrate that forespore growth relies on membrane synthesis and SpoIIIE-mediated chromosome translocation, but not on peptidoglycan or protein synthesis. Our data suggest that the hydrated nucleoid swells and inflates the forespore, displacing ribosomes to the cell periphery, stretching septal peptidoglycan, and reshaping the forespore. Our results illustrate how simple biophysical interactions between core cellular components contribute to cellular morphology.


Assuntos
Divisão Celular Assimétrica/fisiologia , Bacillus subtilis/fisiologia , Cromossomos Bacterianos/metabolismo , Esporos Bacterianos/metabolismo , Translocação Genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , Peptidoglicano/biossíntese , Peptidoglicano/genética , Biossíntese de Proteínas/fisiologia , Esporos Bacterianos/genética , Esporos Bacterianos/ultraestrutura
7.
Cell ; 168(1-2): 172-185.e15, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086090

RESUMO

Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.


Assuntos
Vibrio cholerae/citologia , Vibrio cholerae/patogenicidade , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Locomoção , Camundongos , Peptidoglicano/metabolismo , Periplasma/metabolismo , Alinhamento de Sequência , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulência
8.
Mol Cell ; 81(3): 584-598.e5, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33444546

RESUMO

Severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2) is the positive-sense RNA virus that causes coronavirus disease 2019 (COVID-19). The genome of SARS-CoV-2 is unique among viral RNAs in its vast potential to form RNA structures, yet as much as 97% of its 30 kilobases have not been structurally explored. Here, we apply a novel long amplicon strategy to determine the secondary structure of the SARS-CoV-2 RNA genome at single-nucleotide resolution in infected cells. Our in-depth structural analysis reveals networks of well-folded RNA structures throughout Orf1ab and reveals aspects of SARS-CoV-2 genome architecture that distinguish it from other RNA viruses. Evolutionary analysis shows that several features of the SARS-CoV-2 genomic structure are conserved across ß-coronaviruses, and we pinpoint regions of well-folded RNA structure that merit downstream functional analysis. The native, secondary structure of SARS-CoV-2 presented here is a roadmap that will facilitate focused studies on the viral life cycle, facilitate primer design, and guide the identification of RNA drug targets against COVID-19.


Assuntos
COVID-19 , Genoma Viral , Conformação de Ácido Nucleico , RNA Viral , Elementos de Resposta , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , Linhagem Celular Tumoral , Humanos , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
9.
Mol Cell ; 81(4): 870-883.e10, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33453165

RESUMO

The series of RNA folding events that occur during transcription can critically influence cellular RNA function. Here, we present reconstructing RNA dynamics from data (R2D2), a method to uncover details of cotranscriptional RNA folding. We model the folding of the Escherichia coli signal recognition particle (SRP) RNA and show that it requires specific local structural fluctuations within a key hairpin to engender efficient cotranscriptional conformational rearrangement into the functional structure. All-atom molecular dynamics simulations suggest that this rearrangement proceeds through an internal toehold-mediated strand-displacement mechanism, which can be disrupted with a point mutation that limits local structural fluctuations and rescued with compensating mutations that restore these fluctuations. Moreover, a cotranscriptional folding intermediate could be cleaved in vitro by recombinant E. coli RNase P, suggesting potential cotranscriptional processing. These results from experiment-guided multi-scale modeling demonstrate that even an RNA with a simple functional structure can undergo complex folding and processing during synthesis.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Dobramento de RNA , RNA Bacteriano/química , Ribonuclease P/química , Partícula de Reconhecimento de Sinal/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , Ribonuclease P/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
10.
Mol Cell ; 78(1): 152-167.e11, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32053778

RESUMO

Eukaryotic transcription factors (TFs) form complexes with various partner proteins to recognize their genomic target sites. Yet, how the DNA sequence determines which TF complex forms at any given site is poorly understood. Here, we demonstrate that high-throughput in vitro DNA binding assays coupled with unbiased computational analysis provide unprecedented insight into how different DNA sequences select distinct compositions and configurations of homeodomain TF complexes. Using inferred knowledge about minor groove width readout, we design targeted protein mutations that destabilize homeodomain binding both in vitro and in vivo in a complex-specific manner. By performing parallel systematic evolution of ligands by exponential enrichment sequencing (SELEX-seq), chromatin immunoprecipitation sequencing (ChIP-seq), RNA sequencing (RNA-seq), and Hi-C assays, we not only classify the majority of in vivo binding events in terms of complex composition but also infer complex-specific functions by perturbing the gene regulatory network controlled by a single complex.


Assuntos
DNA/química , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética
11.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619319

RESUMO

Adult planarians can grow when fed and degrow (shrink) when starved while maintaining their whole-body shape. It is unknown how the morphogens patterning the planarian axes are coordinated during feeding and starvation or how they modulate the necessary differential tissue growth or degrowth. Here, we investigate the dynamics of planarian shape together with a theoretical study of the mechanisms regulating whole-body proportions and shape. We found that the planarian body proportions scale isometrically following similar linear rates during growth and degrowth, but that fed worms are significantly wider than starved worms. By combining a descriptive model of planarian shape and size with a mechanistic model of anterior-posterior and medio-lateral signaling calibrated with a novel parameter optimization methodology, we theoretically demonstrate that the feedback loop between these positional information signals and the shape they control can regulate the planarian whole-body shape during growth. Furthermore, the computational model produced the correct shape and size dynamics during degrowth as a result of a predicted increase in apoptosis rate and pole signal during starvation. These results offer mechanistic insights into the dynamic regulation of whole-body morphologies.


Assuntos
Modelos Biológicos , Planárias , Animais , Planárias/crescimento & desenvolvimento , Padronização Corporal , Transdução de Sinais , Apoptose , Morfogênese
12.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38864272

RESUMO

Tissue morphogenesis is often controlled by actomyosin networks pulling on adherens junctions (AJs), but junctional myosin levels vary. At an extreme, the Drosophila embryo amnioserosa forms a horseshoe-shaped strip of aligned, spindle-shaped cells lacking junctional myosin. What are the bases of amnioserosal cell interactions and alignment? Compared with surrounding tissue, we find that amnioserosal AJ continuity has lesser dependence on α-catenin, the mediator of AJ-actomyosin association, and greater dependence on Bazooka/Par-3, a junction-associated scaffold protein. Microtubule bundles also run along amnioserosal AJs and support their long-range curvilinearity. Amnioserosal confinement is apparent from partial overlap of its spindle-shaped cells, its outward bulging from surrounding tissue and from compressive stress detected within the amnioserosa. Genetic manipulations that alter amnioserosal confinement by surrounding tissue also result in amnioserosal cells losing alignment and gaining topological defects characteristic of nematically ordered systems. With Bazooka depletion, confinement by surrounding tissue appears to be relatively normal and amnioserosal cells align despite their AJ fragmentation. Overall, the fully elongated amnioserosa appears to form through tissue-autonomous generation of spindle-shaped cells that nematically align in response to confinement by surrounding tissue.


Assuntos
Junções Aderentes , Proteínas de Drosophila , Desenvolvimento Embrionário , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Junções Aderentes/metabolismo , Microtúbulos/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , alfa Catenina/metabolismo , Actomiosina/metabolismo , Morfogênese , Drosophila/embriologia , Forma Celular , Peptídeos e Proteínas de Sinalização Intracelular
13.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240393

RESUMO

The spheroidal shape of the eye lens is crucial for precise light focusing onto the retina. This shape is determined by concentrically aligned, convexly elongated lens fiber cells along the anterior and posterior axis of the lens. Upon differentiation at the lens equator, the fiber cells increase in height as their apical and basal tips migrate towards the anterior and posterior poles, respectively. The forces driving this elongation and migration remain unclear. We found that, in the mouse lens, membrane protrusions or lamellipodia are observed only in the maturing fibers undergoing cell curve conversion, indicating that lamellipodium formation is not the primary driver of earlier fiber migration. We demonstrated that elevated levels of fibroblast growth factor (FGF) suppressed the extension of Rac-dependent protrusions, suggesting changes in the activity of FGF controlling Rac activity, switching to lamellipodium-driven migration. Inhibitors of ROCK, myosin and actin reduced the height of both early and later fibers, indicating that elongation of these fibers relies on actomyosin contractility. Consistent with this, active RhoA was detected throughout these fibers. Given that FGF promotes fiber elongation, we propose that it does so through regulation of Rho activity.


Assuntos
Fatores de Crescimento de Fibroblastos , Cristalino , Camundongos , Animais , Cristalino/metabolismo , Epitélio/metabolismo , Actinas/metabolismo , Diferenciação Celular/fisiologia
14.
Mol Cell ; 74(2): 245-253.e6, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30826165

RESUMO

Transcription factors (TFs) control gene expression by binding DNA recognition sites in genomic regulatory regions. Although most forkhead TFs recognize a canonical forkhead (FKH) motif, RYAAAYA, some forkheads recognize a completely different (FHL) motif, GACGC. Bispecific forkhead proteins recognize both motifs, but the molecular basis for bispecific DNA recognition is not understood. We present co-crystal structures of the FoxN3 DNA binding domain bound to the FKH and FHL sites, respectively. FoxN3 adopts a similar conformation to recognize both motifs, making contacts with different DNA bases using the same amino acids. However, the DNA structure is different in the two complexes. These structures reveal how a single TF binds two unrelated DNA sequences and the importance of DNA shape in the mechanism of bispecific recognition.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , DNA/química , Conformação de Ácido Nucleico , Proteínas Repressoras/química , Sequência de Aminoácidos/genética , Sequência de Bases/genética , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X , DNA/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica/genética , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Motivos de Nucleotídeos/genética , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Repressoras/genética
15.
Proc Natl Acad Sci U S A ; 121(6): e2307061121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285942

RESUMO

Industrial and environmental granular flows commonly exhibit a phenomenon known as "granular segregation," in which grains separate according to physical characteristics (size, shape, density), interfering with industrial applications (cement mixing, medicine, and food production) and fundamentally altering the behavior of geophysical flows (landslides, debris flows, pyroclastic flows, riverbeds). While size-induced segregation has been well studied, the role of grain shape has not. Here we conduct numerical experiments to investigate how grain shape affects granular segregation in dry and wet flows. To isolate the former, we compare dry, bidisperse mixtures of spheres alone with mixtures of spheres and cubes in a rotating drum. Results show that while segregation level generally increases with particle size ratio, the presence of cubes decreases segregation levels compared to cases with only spheres. Further, we find differences in the segregation level depending on which shape makes up each size class, reflecting differences in mobility when smaller grains are cubic or spherical. We find similar dynamics in simulations of a shear-driven coupled fluid-granular flow (e.g., a simulated riverbed), demonstrating that this phenomenon is not unique to rotating drums; however, in contrast to the dry system, we find that the segregation level increases in the presence of cubic grains, and fluid drag effects can qualitatively change segregation trends. Our findings demonstrate competing shape-induced segregation patterns in wet and dry flows that are independent from grain size controls, with implications for many industrial and geophysical processes.

16.
Proc Natl Acad Sci U S A ; 121(6): e2314661121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289954

RESUMO

Shape transformation, a key mechanism for organismal survival and adaptation, has gained importance in developing synthetic shape-shifting systems with diverse applications ranging from robotics to bioengineering. However, designing and controlling microscale shape-shifting materials remains a fundamental challenge in various actuation modalities. As materials and structures are scaled down to the microscale, they often exhibit size-dependent characteristics, and the underlying physical mechanisms can be significantly affected or rendered ineffective. Additionally, surface forces such as van der Waals forces and electrostatic forces become dominant at the microscale, resulting in stiction and adhesion between small structures, making them fracture and more difficult to deform. Furthermore, despite various actuation approaches, acoustics have received limited attention despite their potential advantages. Here, we introduce "SonoTransformer," the acoustically activated micromachine that delivers shape transformability using preprogrammed soft hinges with different stiffnesses. When exposed to an acoustic field, these hinges concentrate sound energy through intensified oscillation and provide the necessary force and torque for the transformation of the entire micromachine within milliseconds. We have created machine designs to predetermine the folding state, enabling precise programming and customization of the acoustic transformation. Additionally, we have shown selective shape transformable microrobots by adjusting acoustic power, realizing high degrees of control and functional versatility. Our findings open new research avenues in acoustics, physics, and soft matter, offering new design paradigms and development opportunities in robotics, metamaterials, adaptive optics, flexible electronics, and microtechnology.

17.
Proc Natl Acad Sci U S A ; 121(7): e2309984121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38324567

RESUMO

The protein crescentin is required for the crescent shape of the freshwater bacterium Caulobacter crescentus (vibrioides). Crescentin forms a filamentous structure on the inner, concave side of the curved cells. It shares features with eukaryotic intermediate filament (IF) proteins, including the formation of static filaments based on long and parallel coiled coils, the protein's length, structural roles in cell and organelle shape determination and the presence of a coiled coil discontinuity called the "stutter." Here, we have used electron cryomicroscopy (cryo-EM) to determine the structure of the full-length protein and its filament, exploiting a crescentin-specific nanobody. The filament is formed by two strands, related by twofold symmetry, that each consist of two dimers, resulting in an octameric assembly. Crescentin subunits form longitudinal contacts head-to-head and tail-to-tail, making the entire filament non-polar. Using in vivo site-directed cysteine cross-linking, we demonstrated that contacts observed in the in vitro filament structure exist in cells. Electron cryotomography (cryo-ET) of cells expressing crescentin showed filaments on the concave side of the curved cells, close to the inner membrane, where they form a band. When comparing with current models of IF proteins and their filaments, which are also built from parallel coiled coil dimers and lack overall polarity, it emerges that IF proteins form head-to-tail longitudinal contacts in contrast to crescentin and hence several inter-dimer contacts in IFs have no equivalents in crescentin filaments. Our work supports the idea that intermediate filament-like proteins achieve their shared polymerization and mechanical properties through a variety of filament architectures.


Assuntos
Caulobacter crescentus , Filamentos Intermediários , Filamentos Intermediários/metabolismo , Proteínas de Bactérias/metabolismo , Citoesqueleto/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Caulobacter crescentus/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(15): e2319127121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557191

RESUMO

Organic compounds can crystallize in different forms known as polymorphs. Discovery and control of polymorphism is crucial to the pharmaceutical industry since different polymorphs can have significantly different physical properties which impacts their utilization in drug delivery. Certain polymorphs have been reported to 'disappear' from the physical world, irreversibly converting to new ones. These unwanted polymorph conversions, initially prevented by slow nucleation kinetics, are eventually observed driven by significant gains in thermodynamic stabilities. The most infamous of these cases is that of the HIV drug ritonavir (RVR): Once its reluctant form was unwillingly nucleated for the first time, its desired form could no longer be produced with the same manufacturing process. Here we show that RVR's extraordinary disappearing polymorph as well as its reluctant form can be consistently produced by ball-milling under different environmental conditions. We demonstrate that the significant difference in stability between its polymorphs can be changed and reversed in the mill-a process we show is driven by crystal size as well as crystal shape and conformational effects. We also show that those effects can be controlled through careful design of milling conditions since they dictate the kinetics of crystal breakage, dissolution, and growth processes that eventually lead to steady-state crystal sizes and shapes in the mill. This work highlights the huge potential of mechanochemistry in polymorph discovery of forms initially difficult to nucleate, recovery of disappearing polymorphs, and polymorph control of complex flexible drug compounds such as RVR.

19.
Proc Natl Acad Sci U S A ; 121(9): e2310082121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377205

RESUMO

Embryonic development is often considered shielded from the effects of natural selection, being selected primarily for reliable development. However, embryos sometimes represent virulent parasites, triggering a coevolutionary "arms race" with their host. We have examined embryonic adaptations to a parasitic lifestyle in the bitterling fish. Bitterlings are brood parasites that lay their eggs in the gill chamber of host mussels. Bitterling eggs and embryos have adaptations to resist being flushed out by the mussel. These include a pair of projections from the yolk sac that act as an anchor. Furthermore, bitterling eggs all adopt a head-down position in the mussel gills which further increases their chances of survival. To examine these adaptations in detail, we have studied development in the rosy bitterling (Rhodeus ocellatus) using molecular markers, X-ray tomography, and time-lapse imaging. We describe a suite of developmental adaptations to brood parasitism in this species. We show that the mechanism underlying these adaptions is a modified pattern of blastokinesis-a process unique, among fish, to bitterlings. Tissue movements during blastokinesis cause the embryo to do an extraordinary "front-flip" on the yolk. We suggest that this movement determines the spatial orientation of the other developmental adaptations to parasitism, ensuring that they are optimally positioned to help resist the ejection of the embryo from the mussel. Our study supports the notion that natural selection can drive the evolution of a suite of adaptations, both embryonic and extra-embryonic, via modifications in early development.


Assuntos
Cyprinidae , Parasitos , Animais , Interações Hospedeiro-Parasita
20.
Proc Natl Acad Sci U S A ; 121(4): e2313278121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232286

RESUMO

Trans-Himalayan geodetic data show that, between both syntaxes, India/Asia convergence is steadily oriented ≈ N20°E. However, surface faulting near both syntaxes, along the 2005 and 1950 earthquake ruptures, imply long-term thrusting directed ≈ 130° apart, and post-LGM (last Glacial Maximum) shortening rates of ≈ 5 to 6 mm/y, ≈ 2 to 3 times slower than in Nepal (≈ 15 to 20 mm/y). Syntaxial earthquakes' return-time are also ≈ 3 times longer (>2,000 y) than in Nepal (≈ 700 y). In a structural frame centered halfway between the syntaxial cusps, the tectonic features of the range show remarkable symmetry. In map view, the overall shapes of the Main Front Thrust (MFT) and the Main Central Thrust (MCT) closely fit ellipses, with major-to-minor axis ratios of ≈ 2.5 to 3. This suggests that the range growth atop subducting India is "pinned" by the strike-slip faults that bound it to the east and west. Discrete Element Modeling corroborates a late-Tertiary elliptical range growth. This accounts for the ≈ 65° angles and twofold to threefold decrease in active thrusting between Nepal and the syntaxes, for the maximum Himalayan heights (≥8,000 m), larger magnitudes (≥8), and shorter return-time (≈ 700 y) of great earthquakes in Nepal, for the existence of two 500- to 600 km-long, south-concave mountain ranges north of both syntaxes and for the ≈ 9 mm/y, N100 to 110°E extension across southern Tibet. It also suggests that predictions of impending or frequent great earthquakes in the eastern- and westernmost Himalayas may be overstated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA