RESUMO
Cortical dynamics and computations are strongly influenced by diverse GABAergic interneurons, including those expressing parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP). Together with excitatory (E) neurons, they form a canonical microcircuit and exhibit counterintuitive nonlinear phenomena. One instance of such phenomena is response reversal, whereby SST neurons show opposite responses to top-down modulation via VIP depending on the presence of bottom-up sensory input, indicating that the network may function in different regimes under different stimulation conditions. Combining analytical and computational approaches, we demonstrate that model networks with multiple interneuron subtypes and experimentally identified short-term plasticity mechanisms can implement response reversal. Surprisingly, despite not directly affecting SST and VIP activity, PV-to-E short-term depression has a decisive impact on SST response reversal. We show how response reversal relates to inhibition stabilization and the paradoxical effect in the presence of several short-term plasticity mechanisms demonstrating that response reversal coincides with a change in the indispensability of SST for network stabilization. In summary, our work suggests a role of short-term plasticity mechanisms in generating nonlinear phenomena in networks with multiple interneuron subtypes and makes several experimentally testable predictions.
Assuntos
Interneurônios , Neurônios , Interneurônios/fisiologia , ParvalbuminasRESUMO
The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.
Assuntos
Sinapses , Vesículas Sinápticas , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Potenciais de Ação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transmissão Sináptica/fisiologiaRESUMO
Pronounced differences in neurotransmitter release from a given presynaptic neuron, depending on the synaptic target, are among the most intriguing features of cortical networks. Hippocampal pyramidal cells (PCs) release glutamate with low probability to somatostatin expressing oriens-lacunosum-moleculare (O-LM) interneurons (INs), and the postsynaptic responses show robust short-term facilitation, whereas the release from the same presynaptic axons onto fast-spiking INs (FSINs) is ~10-fold higher and the excitatory postsynaptic currents (EPSCs) display depression. The mechanisms underlying these vastly different synaptic behaviors have not been conclusively identified. Here, we applied a combined functional, pharmacological, and modeling approach to address whether the main difference lies in the action potential-evoked fusion or else in upstream priming processes of synaptic vesicles (SVs). A sequential two-step SV priming model was fitted to the peak amplitudes of unitary EPSCs recorded in response to complex trains of presynaptic stimuli in acute hippocampal slices of adult mice. At PC-FSIN connections, the fusion probability (Pfusion) of well-primed SVs is 0.6, and 44% of docked SVs are in a fusion-competent state. At PC-O-LM synapses, Pfusion is only 40% lower (0.36), whereas the fraction of well-primed SVs is 6.5-fold smaller. Pharmacological enhancement of fusion by 4-AP and priming by PDBU was recaptured by the model with a selective increase of Pfusion and the fraction of well-primed SVs, respectively. Our results demonstrate that the low fidelity of transmission at PC-O-LM synapses can be explained by a low occupancy of the release sites by well-primed SVs.
Assuntos
Neurotransmissores , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Camundongos , Neurotransmissores/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Transmissão Sináptica/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Modelos NeurológicosRESUMO
Long-term potentiation (LTP) of excitatory synapses is a leading model to explain the concept of information storage in the brain. Multiple mechanisms contribute to LTP, but central amongst them is an increased sensitivity of the postsynaptic membrane to neurotransmitter release. This sensitivity is predominantly determined by the abundance and localization of AMPA-type glutamate receptors (AMPARs). A combination of AMPAR structural data, super-resolution imaging of excitatory synapses, and an abundance of electrophysiological studies are providing an ever-clearer picture of how AMPARs are recruited and organized at synaptic junctions. Here, we review the latest insights into this process, and discuss how both cytoplasmic and extracellular receptor elements cooperate to tune the AMPAR response at the hippocampal CA1 synapse.
Assuntos
Potenciação de Longa Duração , Receptores de AMPA , Sinapses , Receptores de AMPA/metabolismo , Animais , Humanos , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologiaRESUMO
Post-tetanic Ca2+ release from mitochondria produces presynaptic residual calcium, which contributes to post-tetanic potentiation. The loss of mitochondria-dependent post-tetanic potentiation is one of the earliest signs of Alzheimer's model mice. Post-tetanic potentiation at intracortical synapses of medial prefrontal cortex has been implicated in working memory. Although mitochondrial contribution to post-tetanic potentiation differs depending on synapse types, it is unknown which synapse types express mitochondria-dependent post-tetanic potentiation in the medial prefrontal cortex. We studied expression of mitochondria-dependent post-tetanic potentiation at different intracortical synapses of the rat medial prefrontal cortex. Post-tetanic potentiation occurred only at intracortical synapses onto layer 5 corticopontine cells from commissural cells and L2/3 pyramidal neurons. Among post-tetanic potentiation-expressing synapses, L2/3-corticopontine synapses in the prelimbic cortex were unique in that post-tetanic potentiation depends on mitochondria because post-tetanic potentiation at corresponding synapse types in other cortical areas was independent of mitochondria. Supporting mitochondria-dependent post-tetanic potentiation at L2/3-to-corticopontine synapses, mitochondria-dependent residual calcium at the axon terminals of L2/3 pyramidal neurons was significantly larger than that at commissural and corticopontine cells. Moreover, post-tetanic potentiation at L2/3-corticopontine synapses, but not at commissural-corticopontine synapses, was impaired in the young adult Alzheimer's model mice. These results would provide a knowledge base for comprehending synaptic mechanisms that underlies the initial clinical signs of neurodegenerative disorders.
Assuntos
Doença de Alzheimer , Ratos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Sinapses/fisiologia , Mitocôndrias/metabolismo , Córtex Pré-Frontal/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologiaRESUMO
A Disintegrin And Metalloproteinase 10 (ADAM10) plays a pivotal role in shaping neuronal networks by orchestrating the activity of numerous membrane proteins through the shedding of their extracellular domains. Despite its significance in the brain, the specific cellular localization of ADAM10 remains not well understood due to a lack of appropriate tools. Here, using a specific ADAM10 antibody suitable for immunostainings, we observed that ADAM10 is localized to presynapses and especially enriched at presynaptic vesicles of mossy fiber (MF)-CA3 synapses in the hippocampus. These synapses undergo pronounced frequency facilitation of neurotransmitter release, a process that play critical roles in information transfer and neural computation. We demonstrate, that in conditional ADAM10 knockout mice the ability of MF synapses to undergo this type of synaptic plasticity is greatly reduced. The loss of facilitation depends on the cytosolic domain of ADAM10 and association with the calcium sensor synaptotagmin 7 rather than ADAM10's proteolytic activity. Our findings unveil a new role of ADAM10 in the regulation of synaptic vesicle exocytosis.
Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Proteínas de Membrana , Camundongos Knockout , Plasticidade Neuronal , Vesículas Sinápticas , Animais , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Plasticidade Neuronal/fisiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Vesículas Sinápticas/metabolismo , Camundongos Endogâmicos C57BL , Sinapses/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Hipocampo/metabolismo , Exocitose/fisiologia , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica , Sinaptotagminas/metabolismo , Sinaptotagminas/genéticaRESUMO
During prolonged trains of presynaptic action potentials (APs), synaptic release reaches a stable level that reflects the speed of replenishment of the readily releasable pool (RRP). Determining the size and filling dynamics of vesicular pools upstream of the RRP has been hampered by a lack of precision of synaptic output measurements during trains. Using the recent technique of tracking vesicular release in single active zone synapses, we now developed a method that allows the sizes of the RRP and upstream pools to be followed in time. We find that the RRP is fed by a small-sized pool containing approximately one to four vesicles per docking site at rest. This upstream pool is significantly depleted by short AP trains, and reaches a steady, depleted state for trains of >10 APs. We conclude that a small, highly dynamic vesicular pool upstream of the RRP potently controls synaptic strength during sustained stimulation.
Assuntos
Potenciais Sinápticos/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Potenciais de Ação/fisiologia , Animais , Masculino , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologiaRESUMO
Glutamatergic synapses display variable strength and diverse short-term plasticity (STP), even for a given type of connection. Using nonnegative tensor factorization and conventional state modeling, we demonstrate that a kinetic scheme consisting of two sequential and reversible steps of release-machinery assembly and a final step of synaptic vesicle (SV) fusion reproduces STP and its diversity among synapses. Analyzing transmission at the calyx of Held synapses reveals that differences in synaptic strength and STP are not primarily caused by variable fusion probability (pfusion) but are determined by the fraction of docked synaptic vesicles equipped with a mature release machinery. Our simulations show that traditional quantal analysis methods do not necessarily report pfusion of SVs with a mature release machinery but reflect both pfusion and the distribution between mature and immature priming states at rest. Thus, the approach holds promise for a better mechanistic dissection of the roles of presynaptic proteins in the sequence of SV docking, two-step priming, and fusion. It suggests a mechanism for activity-induced redistribution of synaptic efficacy.
Assuntos
Fusão de Membrana , Plasticidade Neuronal , Sinapses , Vesículas Sinápticas , Exocitose , Sinapses/fisiologia , Transmissão Sináptica , Vesículas Sinápticas/fisiologiaRESUMO
Mitral/tufted cells (M/TCs) form complex local circuits with interneurons in the olfactory bulb and are powerfully inhibited by these interneurons. The horizontal limb of the diagonal band of Broca (HDB), the only GABAergic/inhibitory source of centrifugal circuit with the olfactory bulb, is known to target olfactory bulb interneurons, and we have shown targeting also to olfactory bulb glutamatergic neurons in vitro. However, the net efficacy of these circuits under different patterns of activation in vivo and the relative balance between the various targeted intact local and centrifugal circuits was the focus of this study. Here channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate the short-term plasticity of HDB-activated disinhibitory rebound excitation of M/TCs. Optical activation of HDB interneurons increased spontaneous M/TC firing without odor presentation and increased odor-evoked M/TC firing. HDB activation induced disinhibitory rebound excitation (burst or cluster of spiking) in all classes of M/TCs. This excitation was frequency dependent, with short-term facilitation only at higher HDB stimulation frequency (5 Hz and above). However, frequency-dependent HDB regulation was more potent in the deeper layer M/TCs compared with more superficial layer M/TCs. In all neural circuits the balance between inhibition and excitation in local and centrifugal circuits plays a critical functional role, and this patterned input-dependent regulation of inhibitory centrifugal inputs to the olfactory bulb may help maintain the precise balance across the populations of output neurons in different environmental odors, putatively to sharpen the enhancement of tuning specificity of individual or classes of M/TCs to odors.NEW & NOTEWORTHY Neuronal local circuits in the olfactory bulb are modulated by centrifugal long circuits. In vivo study here shows that inhibitory horizontal limb of the diagonal band of Broca (HDB) modulates all five types of mitral/tufted cells (M/TCs), by direct inhibitory circuits HDB â M/TCs and indirect disinhibitory long circuits HDB â interneurons â M/TCs. The HDB net effect exerts excitation in all types of M/TCs but more powerful in deeper layer output neurons as HDB activation frequency increases, which may sharpen the tuning specificity of classes of M/TCs to odors during sensory processing.
Assuntos
Interneurônios , Bulbo Olfatório , Bulbo Olfatório/fisiologia , Bulbo Olfatório/citologia , Animais , Interneurônios/fisiologia , Camundongos , Neurônios GABAérgicos/fisiologia , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Masculino , Camundongos Endogâmicos C57BL , Potenciais de Ação/fisiologia , Inibição Neural/fisiologia , Feminino , OptogenéticaRESUMO
The excitatory monosynaptic activation of hippocampal CA1 pyramidal cells is spatially segregated such that the proximal part of the apical dendritic tree in stratum radiatum (SR) receives input from the hippocampal CA3 region while the distal part in the stratum-lacunosum-moleculare (SLM) receives input mainly from the entorhinal cortex. The AMPA receptor-mediated (AMPA) signalling of SLM synapses in slices from neonatal rats was previously found to considerably differ from that of the SR synapses. In the present study, AMPA signalling of SLM synapses in 1-month-old rats has been examined, that is, when the hippocampus is essentially functionally mature. For the SR synapses, this time is characterized by a facilitatory shift in short-term plasticity, in the disappearance of labile postsynaptic AMPA signalling, a property thought to be important for early activity-dependent organization of neural circuits, and the expression of an adult form of long-term potentiation. We found that the SLM synapses alter their short-term plasticity similarly to that of the SR synapses. However, the labile postsynaptic AMPA signalling was not only maintained but substantially enhanced in the SLM synapses. The long-term potentiation observed was not of the adult form but like that of the neonatal SR synapses based on unsilencing of AMPA labile synapses. We propose that these features of the SLM synapses in the mature hippocampus will help to produce a flexible map of the multimodal sensory input reaching the SLM required for its conjunctive operation with the SR input to generate a proper functional output from the CA1 region.
Assuntos
Região CA1 Hipocampal , Ácido Glutâmico , Ratos Wistar , Receptores de AMPA , Transmissão Sináptica , Animais , Ratos , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/metabolismo , Transmissão Sináptica/fisiologia , Ácido Glutâmico/metabolismo , Receptores de AMPA/metabolismo , Plasticidade Neuronal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Sinapses/fisiologia , Sinapses/metabolismo , Masculino , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Células Piramidais/fisiologia , Células Piramidais/metabolismo , Técnicas de Patch-ClampRESUMO
Major burdens for patients suffering from stroke are cognitive co-morbidities and epileptogenesis. Neural network disinhibition and deficient inhibitive pulses for fast network activities may result from impaired presynaptic release of the inhibitory neurotransmitter GABA. To test this hypothesis, a cortical photothrombotic stroke was induced in Sprague Dawley rats, and inhibitory currents were recorded seven days later in the peri-infarct blood-brain barrier disrupted (BBBd) hippocampus via patch-clamp electrophysiology in CA1 pyramidal cells (PC). Miniature inhibitory postsynaptic current (mIPSC) frequency was reduced to about half, and mIPSCs decayed faster in the BBBd hippocampus. Furthermore, the paired-pulse ratio of evoked GABA release was increased at 100 Hz, and train stimulations with 100 Hz revealed that the readily releasable pool (RRP), usually assumed to correspond to the number of tightly docked presynaptic vesicles, is reduced by about half in the BBBd hippocampus. These pathophysiologic changes are likely to contribute significantly to disturbed fast oscillatory activity, like cognition-associated gamma oscillations or sharp wave ripples and epileptogenesis in the BBBd hippocampus.
Assuntos
Barreira Hematoencefálica , Hipocampo , Potenciais Pós-Sinápticos Inibidores , Ratos Sprague-Dawley , Ácido gama-Aminobutírico , Animais , Barreira Hematoencefálica/metabolismo , Ratos , Ácido gama-Aminobutírico/metabolismo , Hipocampo/metabolismo , Masculino , Células Piramidais/metabolismo , Vesículas Sinápticas/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Transmissão SinápticaRESUMO
Many controlled in vitro studies have demonstrated how postsynaptic responses to presynaptic spikes are not constant but depend on short-term synaptic plasticity (STP) and the detailed timing of presynaptic spikes. However, the effects of short-term plasticity (depression and facilitation) are not limited to short, subsecond timescales. The effects of STP appear on long timescales as changes in presynaptic firing rates lead to changes in steady-state synaptic transmission. Here, we examine the relationship between natural variations in the presynaptic firing rates and spike transmission in vivo Using large-scale spike recordings in awake male and female mice from the Allen Institute Neuropixels dataset, we first detect putative excitatory synaptic connections based on cross-correlations between the spike trains of millions of pairs of neurons. For the subset of pairs where a transient, excitatory effect was detected, we use a model-based approach to track fluctuations in synaptic efficacy and find that efficacy varies substantially on slow (â¼1 min) timescales over the course of these recordings. For many connections, the efficacy fluctuations are correlated with fluctuations in the presynaptic firing rate. To understand the potential mechanisms underlying this relationship, we then model the detailed probability of postsynaptic spiking on a millisecond timescale, including both slow changes in postsynaptic excitability and monosynaptic inputs with short-term plasticity. The detailed model reproduces the slow efficacy fluctuations observed with many putative excitatory connections, suggesting that these fluctuations can be both directly predicted based on the time-varying presynaptic firing rate and, at least partly, explained by the cumulative effects of STP.SIGNIFICANCE STATEMENT The firing rates of individual neurons naturally vary because of stimuli, movement, and brain state. Models of synaptic transmission predict that these variations in firing rates should be accompanied by slow fluctuations in synaptic strength because of short-term depression and facilitation. Here, we characterize the magnitude and predictability of fluctuations in synaptic strength in vivo using large-scale spike recordings. For putative excitatory connections from a wide range of brain areas, we find that typical synaptic efficacy varies as much as â¼70%, and in many cases the fluctuations are well described by models of short-term synaptic plasticity. These results highlight the dynamic nature of in vivo synaptic transmission and the interplay between synaptic strength and firing rates in awake animals.
Assuntos
Sinapses , Transmissão Sináptica , Animais , Masculino , Feminino , Camundongos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Encéfalo/fisiologia , Potenciais de Ação/fisiologiaRESUMO
When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labelling action potentials emitted at a particularly high frequency with a metonym - bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. The burst coding hypothesis advances that the neural code has three syllables: silences, spikes and bursts. We review evidence supporting this ternary code in terms of devoted mechanisms for burst generation, synaptic transmission and synaptic plasticity. We also review the learning and attention theories for which such a triad is beneficial.
Assuntos
Neurônios , Transmissão Sináptica , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Plasticidade Neuronal/fisiologiaRESUMO
Between the onset of the critical period of mouse primary visual cortex and eye opening at postnatal day 14 is a complex process and that is vital for the cognitive function of vision. The onset of the critical period of mouse primary visual cortex involves changes of the intrinsic firing property of each neuron and short term plasticity of synapses. In order to investigate the functional role of each factor in regulating the circuit firing activity during the critical period plasticity, we adopted the Markram's model for short term plasticity and Wilson's model for intrinsic neuron firing activity, and construct a microcircuit for mouse visual cortex layer IV based on the connection probabilities from experimental results. Our results indicate that, during CP development, the most critical factors that regulate the firing pattern of microcircuit is the short term plasticity of the synapse from PC to PV and SST interneurons, which upregulates the PV interneuron firing and produces new balance between excitation and inhibition; the intrinsic firing activity of PC and PV during development downregulates the firing frequency of the circuits. In addition, we have investigated the function of feedforward excitatory thalamic-cortical projection to PC and PV interneuron during CP, and found that neural firing activity largely depends on the TC input and the results are similar to the local circuit with minor differences. We conclude that the short term plasticity development during critical period plays a crucial role in regulating the circuit behavior.
Assuntos
Modelos Neurológicos , Córtex Visual , Camundongos , Animais , Plasticidade Neuronal/fisiologia , Neurônios , Interneurônios/fisiologia , Córtex Visual/fisiologiaRESUMO
The readout margin of the one selector-one RRAM crossbar array architecture is strongly dependent on the nonlinearity of the selector device. In this work, we demonstrated that the nonlinearity of Pt/TiO2/Pt exponential selectors increases with decreasing oxygen vacancy defect density. The defect density is controlled by modulating the sputtering pressure in the oxide deposition process. Our results reveal that the dominant conduction mechanisms of the Pt/TiO2/Pt structure transit from Schottky emission to Poole-Frenkel emission with the increase of sputtering pressure. Such transition is attributed to the rise of oxygen vacancy concentration. In addition, the short-term plasticity feature of the Pt/TiO2/Pt selector is shown to be enhanced with a lower defect density. These results suggest that low defect density is necessary for improved exponential selector performances.
RESUMO
Synapsin I (SynI) is a synaptic vesicle (SV)-associated phosphoprotein that modulates neurotransmission by controlling SV trafficking. The SynI C-domain contains a highly conserved ATP binding site mediating SynI oligomerization and SV clustering and an adjacent main Ca2+ binding site, whose physiological role is unexplored. Molecular dynamics simulations revealed that the E373K point mutation irreversibly deletes Ca2+ binding to SynI, still allowing ATP binding, but inducing a destabilization of the SynI oligomerization interface. Here, we analyzed the effects of this mutation on neurotransmitter release and short-term plasticity in excitatory and inhibitory synapses from primary hippocampal neurons. Patch-clamp recordings showed an increase in the frequency of miniature excitatory postsynaptic currents (EPSCs) that was totally occluded by exogenous Ca2+ chelators and associated with a constitutive increase in resting terminal Ca2+ concentrations. Evoked EPSC amplitude was also reduced, due to a decreased readily releasable pool (RRP) size. Moreover, in both excitatory and inhibitory synapses, we observed a marked impaired recovery from synaptic depression, associated with impaired RRP refilling and depletion of the recycling pool of SVs. Our study identifies SynI as a novel Ca2+ buffer in excitatory terminals. Blocking Ca2+ binding to SynI results in higher constitutive Ca2+ levels that increase the probability of spontaneous release and disperse SVs. This causes a decreased size of the RRP and an impaired recovery from depression due to the failure of SV reclustering after sustained high-frequency stimulation. The results indicate a physiological role of Ca2+ binding to SynI in the regulation of SV clustering and trafficking in nerve terminals.
Assuntos
Depressão , Sinapsinas , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Camundongos Knockout , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Cálcio/metabolismoRESUMO
A high-fructose diet causes metabolic abnormalities in rats, and the cluster of complications points to microvascular and neuronal disorders of the brain. The aim of this study was to evaluate i) the involvement of microvascular disorders and neuronal plasticity in the deleterious effects of a high-fructose diet on the rat brain and ii) a comparative assessment of the effectiveness of Phytocollection therapy (with antidiabetic, antioxidant, and acetylcholinesterase inhibitory activities) compared to Galantamine as first-line therapy for dementia and Diabeton as first-line therapy for hyperglycemia. The calcium adenosine triphosphate non-injection histoangiological method was used to assess capillary network diameter and density. A high-fructose diet resulted in a significant decrease in the diameter and density of the capillary bed, and pharmacological manipulations had a modulatory effect on microcirculatory adaptive mechanisms. In vivo single-unit extracellular recording was used to investigate short-term plasticity in the medial prefrontal cortex. Differences in the parameters of spike background activity and expression of excitatory and inhibitory responses of cortical neurons have been discovered, allowing for flexibility and neuronal function stabilization in pathology and pharmacological prevention. Integration of the coupling mechanism between microvascular function and neuronal spike activity could delay the progressive decline in cognitive function in rats fed a high fructose diet.
Assuntos
Acetilcolinesterase , Frutose , Ratos , Animais , Frutose/farmacologia , Frutose/metabolismo , Microcirculação , Acetilcolinesterase/metabolismo , Encéfalo/metabolismo , Dieta , Neurônios/metabolismoRESUMO
Rab-interacting molecule (RIM)-binding protein 2 (BP2) is a multidomain protein of the presynaptic active zone (AZ). By binding to RIM, bassoon (Bsn), and voltage-gated Ca2+ channels (CaV), it is considered to be a central organizer of the topography of CaV and release sites of synaptic vesicles (SVs) at the AZ. Here, we used RIM-BP2 knock-out (KO) mice and their wild-type (WT) littermates of either sex to investigate the role of RIM-BP2 at the endbulb of Held synapse of auditory nerve fibers (ANFs) with bushy cells (BCs) of the cochlear nucleus, a fast relay of the auditory pathway with high release probability. Disruption of RIM-BP2 lowered release probability altering short-term plasticity and reduced evoked EPSCs. Analysis of SV pool dynamics during high-frequency train stimulation indicated a reduction of SVs with high release probability but an overall normal size of the readily releasable SV pool (RRP). The Ca2+-dependent fast component of SV replenishment after RRP depletion was slowed. Ultrastructural analysis by superresolution light and electron microscopy revealed an impaired topography of presynaptic CaV and a reduction of docked and membrane-proximal SVs at the AZ. We conclude that RIM-BP2 organizes the topography of CaV, and promotes SV tethering and docking. This way RIM-BP2 is critical for establishing a high initial release probability as required to reliably signal sound onset information that we found to be degraded in BCs of RIM-BP2-deficient mice in vivoSIGNIFICANCE STATEMENT Rab-interacting molecule (RIM)-binding proteins (BPs) are key organizers of the active zone (AZ). Using a multidisciplinary approach to the calyceal endbulb of Held synapse that transmits auditory information at rates of up to hundreds of Hertz with submillisecond precision we demonstrate a requirement for RIM-BP2 for normal auditory signaling. Endbulb synapses lacking RIM-BP2 show a reduced release probability despite normal whole-terminal Ca2+ influx and abundance of the key priming protein Munc13-1, a reduced rate of SV replenishment, as well as an altered topography of voltage-gated (CaV)2.1 Ca2+ channels, and fewer docked and membrane proximal synaptic vesicles (SVs). This hampers transmission of sound onset information likely affecting downstream neural computations such as of sound localization.
Assuntos
Canais de Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologiaRESUMO
Decades of literature indicate that the AMPA-type glutamate receptor is among the fastest acting of all neurotransmitter receptors. These receptors are located at excitatory synapses, and conventional wisdom says that they activate in hundreds of microseconds, deactivate in milliseconds due to their low affinity for glutamate and also desensitize profoundly. These properties circumscribe AMPA receptor activation in both space and time. However, accumulating evidence shows that AMPA receptors can also activate with slow, indefatigable responses. They do so through interactions with auxiliary subunits that are able promote a switch to a high open probability, high-conductance 'superactive' mode. In this review, we show that any assumption that this phenomenon is limited to heterologous expression is false and rather that slow AMPA currents have been widely and repeatedly observed throughout the nervous system. Hallmarks of the superactive mode are a lack of desensitization, resistance to competitive antagonists and a current decay that outlives free glutamate by hundreds of milliseconds. Because the switch to the superactive mode is triggered by activation, AMPA receptors can generate accumulating 'pedestal' currents in response to repetitive stimulation, constituting a postsynaptic mechanism for short-term potentiation in the range 5-100 Hz. Further, slow AMPA currents span 'cognitive' time intervals in the 100 ms range (theta rhythms), of particular interest for hippocampal function, where slow AMPA currents are widely expressed in a synapse-specific manner. Here, we outline the implications that slow AMPA receptors have for excitatory synaptic transmission and computation in the nervous system.
Assuntos
Receptores de AMPA , Sinapses , Ácido Glutâmico , Técnicas de Patch-Clamp , Transmissão SinápticaRESUMO
Repetitive synapse activity induces various forms of short-term plasticity. The role of presynaptic mechanisms such as residual Ca2+ and vesicle depletion in short-term facilitation and short-term depression is well established. On the other hand, the contribution of postsynaptic mechanisms such as receptor desensitization and saturation to short-term plasticity is less well known and often ignored. In this review, I will describe short-term plasticity in retinogeniculate synapses of relay neurons of the dorsal lateral geniculate nucleus (dLGN) to exemplify the synaptic properties that facilitate the contribution of AMPA receptor desensitization to short-term plasticity. These include high vesicle release probability, glutamate spillover and, importantly, slow recovery from desensitization of AMPA receptors. The latter is strongly regulated by the interaction of AMPA receptors with auxiliary proteins such as CKAMP44. Finally, I discuss the relevance of short-term plasticity in retinogeniculate synapses for the processing of visual information by LGN relay neurons.