Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 916
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 438(2): 114056, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663475

RESUMO

It was reported that within the head and neck cancer (HNC) cell line CAL21 the epithelial-mesenchymal transition (EMT) and cell proliferation were promoted by Urokinase-Type Plasminogen Activator (PLAU) proteinase through TNFRSF12A. Additionally, in this paper HNC cell lines refer to Fadu and Tu686. A novel PLAU-STAT3 axis was found to be involved in HNC cell line proliferation and metastasis. PLAU expression in HNC samples was upregulated, besides, the elevated expression of PLAU was linked to the lower overall survival (OS) and disease-free survival (DFS). Ectopic PLAU expression promoted cell proliferation and migration, while PLAU knockdown exhibited opposite results. RNA-seq data identified the JAK-STAT signaling pathway, confirmed by western blotting. A recovery assay using S3I-201, a selective inhibitor of signal transducer and activator of transcription 3 (STAT3), indicated that PLAU promoted HNC cell line progression via STAT3 signaling in vitro. The oncogenic role of PLAU in HNC tumor growth in vivo was confirmed using xenograft models. In summary, we identified the tumorigenic PLAU function in the HNC progress. PLAU may represent a potential prognostic biomarker of HNC and the PLAU-STAT3 pathway might be considered a therapeutic target of HNC.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias de Cabeça e Pescoço , Fator de Transcrição STAT3 , Transdução de Sinais , Ativador de Plasminogênio Tipo Uroquinase , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Cell Mol Med ; 28(10): e18381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780509

RESUMO

Peritoneal fibrosis is a common pathological response to long-term peritoneal dialysis (PD) and a major cause for PD discontinuation. Understanding the cellular and molecular mechanisms underlying the induction and progression of peritoneal fibrosis is of great interest. In our study, in vitro study revealed that signal transducer and activator of transcription 3 (STAT3) is a key factor in fibroblast activation and extracellular matrix (ECM) synthesis. Furthermore, STAT3 induced by IL-6 trans-signalling pathway mediate the fibroblasts of the peritoneal stroma contributed to peritoneal fibrosis. Inhibition of STAT3 exerts an antifibrotic effect by attenuating fibroblast activation and ECM production with an in vitro co-culture model. Moreover, STAT3 plays an important role in the peritoneal fibrosis in an animal model of peritoneal fibrosis developed in mice. Blocking STAT3 can reduce the peritoneal morphological changes induced by chlorhexidine gluconate. In conclusion, our findings suggested STAT3 signalling played an important role in peritoneal fibrosis. Therefore, blocking STAT3 might become a potential treatment strategy in peritoneal fibrosis.


Assuntos
Ácidos Aminossalicílicos , Fibroblastos , Fibrose Peritoneal , Fenótipo , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Ácidos Aminossalicílicos/farmacologia , Benzenossulfonatos/farmacologia , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Peritônio/patologia , Peritônio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo
3.
J Neuroinflammation ; 21(1): 60, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419042

RESUMO

BACKGROUND: The spinal inflammatory signal often spreads to distant segments, accompanied by widespread pain symptom under neuropathological conditions. Multiple cytokines are released into the cerebrospinal fluid (CSF), potentially inducing the activation of an inflammatory cascade at remote segments through CSF flow. However, the detailed alteration of CSF in neuropathic pain and its specific role in widespread pain remain obscure. METHODS: A chronic constriction injury of the infraorbital nerve (CCI-ION) model was constructed, and pain-related behavior was observed on the 7th, 14th, 21st, and 28th days post surgery, in both vibrissa pads and hind paws. CSF from CCI-ION rats was transplanted to naïve rats through intracisternal injection, and thermal and mechanical allodynia were measured in hind paws. The alteration of inflammatory cytokines in CCI-ION's CSF was detected using an antibody array and bioinformatic analysis. Pharmacological intervention targeting the changed cytokine in the CSF and downstream signaling was performed to evaluate its role in widespread pain. RESULTS: CCI-ION induced local pain in vibrissa pads together with widespread pain in hind paws. CCI-ION's CSF transplantation, compared with sham CSF, contributed to vibrissa pad pain and hind paw pain in recipient rats. Among the measured cytokines, interleukin-6 (IL-6) and leptin were increased in CCI-ION's CSF, while interleukin-13 (IL-13) was significantly reduced. Furthermore, the concentration of CSF IL-6 was correlated with nerve injury extent, which gated the occurrence of widespread pain. Both astrocytes and microglia were increased in remote segments of the CCI-ION model, while the inhibition of astrocytes in remote segments, but not microglia, significantly alleviated widespread pain. Mechanically, astroglial signal transducer and activator of transcription 3 (STAT3) in remote segments were activated by CSF IL-6, the inhibition of which significantly mitigated widespread pain in CCI-ION. CONCLUSION: IL-6 was induced in the CSF of the CCI-ION model, triggering widespread pain via activating astrocyte STAT3 signal in remote segments. Therapies targeting IL-6/STAT3 signaling might serve as a promising strategy for the widespread pain symptom under neuropathological conditions.


Assuntos
Interleucina-6 , Neuralgia , Ratos , Animais , Interleucina-6/metabolismo , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Gliose/complicações , Constrição , Hiperalgesia/etiologia , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Citocinas
4.
J Med Virol ; 96(4): e29522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533889

RESUMO

The tick-borne encephalitis virus (TBEV) serocomplex includes several medically important flavivirus members endemic to Europe, Asia, and North America, which can induce severe neuroinvasive or viscerotropic diseases with unclear mechanisms of pathogenesis. Langat virus (LGTV) shares a high sequence identity with TBEV but exhibits lower pathogenic potential in humans and serves as a model for virus-host interactions. In this study, we demonstrated that LGTV infection inhibits the activation of gp130/JAK/STAT (Janus kinases (JAK) and signal transducer and activator of transcription (STAT)) signaling, which plays a pivotal role in numerous biological processes. Our data show that the LGTV-infected cells had significantly lower phosphorylated STAT3 (pSTAT3) protein upon oncostatin M (OSM) stimulation than the mock-infected control. LGTV infection blocked the nuclear translocation of STAT3 without a significant effect on total STAT3 protein level. LGTV inhibited JAK1 activation and reduced gp130 protein expression in infected cells, with the viral NS5 protein mediating this effect. TBEV infection also reduces gp130 level. On the other hand, pretreatment of Vero cells with OSM significantly reduces LGTV replication, and STAT1/STAT2 knockdown had little effect on OSM-mediated antiviral effect, which suggests it is independent of STAT1/STAT2 and, instead, it is potentially mediated by STAT3 signlaing. These findings shed light on the LGTV and TBEV-cell interactions, offering insights for the future development of antiviral therapeutics and improved vaccines.


Assuntos
Fenômenos Biológicos , Vírus da Encefalite Transmitidos por Carrapatos , Animais , Chlorocebus aethiops , Humanos , Janus Quinases/metabolismo , Células Vero , Receptor gp130 de Citocina/metabolismo , Antivirais/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38391023

RESUMO

OBJECTIVE: Immune-mediated necrotizing myopathy (IMNM) is pathologically characterized by diffuse myofiber necrosis and regeneration, myophagocytosis, and a sparse inflammatory infiltrate. The monocyte chemoattractant protein-1 (MCP-1) is a key chemokine that regulates monocyte/macrophage infiltration into injured tissues. The interleukin-6 (IL-6) signalling in the induction of MCP-1 expression has not been investigated in IMNM. METHODS: MCP-1 expression in muscle specimens was assessed using immunohistochemistry and real-time quantitative polymerase chain reaction (RT-qPCR). Levels of multiple serological cytokines were evaluated using the Meso Scale Discovery electrochemiluminescence system. Flow cytometry, RT-qPCR, enzyme-linked immunosorbent assay, western blot, dual-luciferase reporter assays, and chromatin immunoprecipitation-qPCR were performed to explore the effects of IL-6 signalling on MCP-1 production in human myoblasts. RESULTS: MCP-1 was scattered and was positively expressed within myofibers and a few inflammatory cells in the muscles of patients with IMNM. Sarcoplasmic MCP-1 expression significantly correlated with myonecrosis, myoregeneration, and inflammatory infiltration. Serum MCP-1, IL-6, and the soluble form of the IL-6 receptor (sIL-6R) were elevated in patients with IMNM compared with controls. Serological MCP-1 levels were significantly associated with serum IL-6 expression and clinical disease severity in IMNM patients. The IL-6/sIL-6R complex induced MCP-1 expression via the signal transducer and activator of transcription 3 (STAT3) pathway in human myoblasts. Mechanistically, phospho-STAT3 was enriched in the MCP-1 promoter region and promoted the transcription. CONCLUSION: IL-6 trans-signalling may contribute to the immunopathogenesis of IMNM by augmenting inflammation through regulation of MCP-1 expression in IMNM.

6.
Cancer Cell Int ; 24(1): 286, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135042

RESUMO

BACKGROUND: Cervical cancer (CC) is a significant global health concern, demanding the consideration of novel therapeutic strategies. The signal transducer and activator of transcription 3 (STAT3) pathway has been implicated in cancer progression and is a potential target for therapeutic intervention. This study aimed to explore the therapeutic potential of TTI-101, a small molecule STAT3 inhibitor, in CC and investigate its underlying mechanisms. METHODS: Molecular docking studies and molecular dynamics simulations were performed to explore the binding interaction between TTI-101 and STAT3 and assess the stability of the STAT3-TTI-101 complex. Cell viability assays, wound healing assays, colony formation assays, flow cytometry analysis, and gene expression analysis were conducted. In vivo xenograft models were used to assess the antitumor efficacy of TTI-101. RESULTS: The in silico analysis shows a stable binding interaction between TTI-101 and STAT3. TTI-101 treatment inhibits cell viability, clonogenic ability, and cell migration in CC cells. Furthermore, TTI-101 induces apoptosis and cell cycle arrest. Analysis of apoptosis-related markers demonstrated dysregulation of Bax, Bcl-2, and Caspase-3 upon TTI-101 treatment. Moreover, TTI-101 caused G2/M phase arrest accompanied by a decrease in CDK1 and Cyclin B1 at mRNA levels. In the xenograft model, TTI-101 significantly inhibited tumor growth without adverse effects on body weight. CONCLUSION: TTI-101 exhibited anticancer effects by targeting the STAT3/c-Myc signaling pathway, inducing cell cycle arrest, and promoting apoptosis in CC cells. These findings provide valuable insights into the development of novel therapeutic strategies for cervical cancer. Further investigation is warranted to validate the clinical application of TTI-101.

7.
Brain Behav Immun ; 119: 836-850, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735405

RESUMO

INTRODUCTION: During postherpetic neuralgia (PHN), the cerebral spinal fluid (CSF) possesses the capability to trigger glial activation and inflammation, yet the specific changes in its composition remain unclear. Recent findings from our research indicate elevations of central bone morphogenetic protein 4 (BMP4) during neuropathic pain (NP), serving as an independent modulator of glial cells. Herein, the aim of the present study is to test the CSF-BMP4 expressions and its role in the glial modulation in the process of PHN. METHODS: CSF samples were collected from both PHN patients and non-painful individuals (Control) to assess BMP4 and its antagonist Noggin levels. Besides, intrathecal administration of both CSF types was conducted in normal rats to evaluate the impact on pain behavior, glial activity, and inflammation.; Additionally, both Noggin and STAT3 antagonist-Stattic were employed to treat the PHN-CSF or exogenous BMP4 challenged cultured astrocytes to explore downstream signals. Finally, microglial depletion was performed prior to the PHN-CSF intervention so as to elucidate the microglia-astrocyte crosstalk. RESULTS: BMP4 levels were significantly higher in PHN-CSF compared to Control-CSF (P < 0.001), with a positive correlation with pain duration (P < 0.05, r = 0.502). Comparing with the Control-CSF producing moderate paw withdrawal threshold (PWT) decline and microglial activation, PHN-CSF further exacerbated allodynia and triggered both microglial and astrocytic activation (P < 0.05). Moreover, PHN-CSF rather than Control-CSF evoked microglial proliferation and pro-inflammatory transformation, reinforced iron storage, and activated astrocytes possibly through both SMAD159 and STAT3 signaling, which were all mitigated by the Noggin application (P < 0.05). Next, both Noggin and Stattic effectively attenuated BMP4-induced GFAP and IL-6 upregulation, as well as SMAD159 and STAT3 phosphorylation in the cultured astrocytes (P < 0.05). Finally, microglial depletion diminished PHN-CSF induced astrogliosis, inflammation and endogenous BMP4 expression (P < 0.05). CONCLUSION: Our study highlights the role of CSF-BMP4 elevation in glial activation and allodynia during PHN, suggesting a potential therapeutic avenue for future exploration.


Assuntos
Astrócitos , Proteína Morfogenética Óssea 4 , Hiperalgesia , Microglia , Neuralgia Pós-Herpética , Animais , Microglia/metabolismo , Astrócitos/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Masculino , Ratos , Humanos , Idoso , Neuralgia Pós-Herpética/líquido cefalorraquidiano , Neuralgia Pós-Herpética/metabolismo , Feminino , Hiperalgesia/metabolismo , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Proteínas de Transporte/metabolismo
8.
Cell Commun Signal ; 22(1): 116, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347540

RESUMO

BACKGROUND: R140Q mutation in isocitrate dehydrogenase 2 (IDH2) promotes leukemogenesis. Targeting IDH2/R140Q yields encouraging therapeutic effects in the clinical setting. However, therapeutic resistance occurs in 12% of IDH2/R140Q inhibitor treated patients. The IDH2/R140Q mutant converted TF-1 cells to proliferate in a cytokine-independent manner. This study investigated the signaling pathways involved in TF-1(R140Q) cell proliferation conversion as alternative therapeutic strategies to improve outcomes in patients with acute myeloid leukemia (AML) harboring IDH2/R140Q. METHODS: The effects of IDH2/R140Q mutation on TF-1 cell survival induced by GM-CSF withdrawal were evaluated using flow cytometry assay. The expression levels of apoptosis-related proteins, total or phosphorylated STAT3/5, ERK, and AKT in wild-type TF-1(WT) or TF-1(R140Q) cells under different conditions were evaluated using western blot analysis. Cell viability was tested using MTT assay. The mRNA expression levels of GM-CSF, IL-3, IL-6, G-CSF, leukemia inhibitory factor (LIF), oncostatin M (OSM), and IL-11 in TF-1(WT) and TF-1(R140Q) cells were quantified via RT-PCR. The secretion levels of GM-CSF, OSM, and LIF were determined using ELISA. RESULTS: Our results showed that STAT3 and STAT5 exhibited aberrant constitutive phosphorylation in TF-1(R140Q) cells compared with TF-1(WT) cells. Inhibition of STAT3/5 phosphorylation suppressed the cytokine-independent proliferation of TF-1(R140Q) cells. Moreover, the autocrine GM-CSF, LIF and OSM levels increased, which is consistent with constitutive STAT5/3 activation in TF-1(R140Q) cells, as compared with TF-1(WT) cells. CONCLUSIONS: The autocrine cytokines, including GM-CSF, LIF, and OSM, contribute to constitutive STAT3/5 activation in TF-1(R140Q) cells, thereby modulating IDH2/R140Q-mediated malignant proliferation in TF-1 cells. Targeting STAT3/5 phosphorylation may be a novel strategy for the treatment of AML in patients harboring the IDH2/R140Q mutation. Video Abstract.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Leucemia Mieloide Aguda , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator de Transcrição STAT5/metabolismo , Fosforilação , Leucemia Mieloide Aguda/genética , Mutação , Proliferação de Células , Fator de Transcrição STAT3/metabolismo
9.
Biol Pharm Bull ; 47(9): 1504-1510, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39284734

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a pleiotropic factor involved in multiple vital biological processes and a key mediator of gene transcription in response to cytokines, growth factors and aberrant activation of oncogenic signaling. STAT3 has two splicing isoforms, STAT3α and STAT3ß, derived from alternative splicing of exon 23 within pre-mRNA. STAT3ß differs from STAT3α by replacement of 55 amino-acid residues in the C-terminal transactivation domain with 7 specific amino acids. Thus, a shorter STAT3ß was originally regarded as a dominant negative isoform of STAT3α. Recently accumulating evidence from independent studies have shown STAT3 splicing isoforms confer distinct and overlapping functions in many fundamental cellular regulatory steps such as cell differentiation, inflammatory responses, and cancer progression. However, relatively little is known about the mechanisms of STAT3 pre-mRNA splicing, and it remains undiscovered which chemical compounds or bioactive substances can induce the STAT3ß expression. In this study, we generated a potent reporter for detection of alternative splicing of STAT3 pre-mRNA optimized for the screening of function-known chemical library, and successfully identified entinostat, a histone deacetylase inhibitor, as a novel inducer of STAT3ß through modulating mRNA splicing. Our findings demonstrate that alternative splicing of STAT3 can be regulated by a compound, providing an important clue for understanding the regulation mechanisms of the expression balance of STAT3 isoforms in a chemical biology approach. Entinostat is likely to be a promising seed compound for elucidating how the higher ratio of STAT3ß expression impacts on biological responses associated with Janus kinase (JAK)/STAT3 signaling pathway.


Assuntos
Processamento Alternativo , Benzamidas , Piridinas , Precursores de RNA , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Processamento Alternativo/efeitos dos fármacos , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Piridinas/farmacologia , Benzamidas/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Células HEK293 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
10.
Biol Pharm Bull ; 47(9): 1487-1493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39261048

RESUMO

The signal transducer and activator of transcription 3 (STAT3) protein is a key regulator of cell differentiation, proliferation, and survival in hematopoiesis, immune responses, and other biological systems. STAT3 transcriptional activity is strictly regulated through various mechanisms, such as phosphorylation and dephosphorylation. In this study, we attempted to identify novel phosphatases which regulate STAT3 activity in response to cytokine stimulations. To this end, leukemia inhibitory factor (LIF)/STAT3 dependent phosphatase induction was evaluated in the mouse hepatoma cell line Hepa1-6. After LIF stimulation, the expression of several atypical dual specific phosphatases (aDUSPs) was upregulated in Hepa1-6 cells. Among the LIF-induced aDUSPs, we focused on DUSP15 and clarified its functions in LIF/STAT3 signaling using RNA interference. DUSP15 knockdown decreased LIF-induced Socs3 mRNA expression and STAT3 translocation. Furthermore, loss of DUSP15 reduced the phosphorylation of STAT3 at Tyr705 and Janus family tyrosine kinase 1 (Jak1) at Tyr1034/1035 in response to LIF. The interaction between Jak1 and DUSP15 was observed in LIF-stimulated Hepa1-6 cells. We also demonstrated the suppression of granulocyte colony-stimulating factor (G-CSF)-mediated gp130/STAT3-dependent cell growth of Ba/F-G133 cells via DUSP15 knockdown. Therefore, DUSP15 functions as a positive feedback regulator in the Jak1/STAT3 signaling cascade.


Assuntos
Fosfatases de Especificidade Dupla , Janus Quinase 1 , Fator Inibidor de Leucemia , Fator de Transcrição STAT3 , Animais , Camundongos , Linhagem Celular Tumoral , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Janus Quinase 1/metabolismo , Janus Quinase 1/genética , Fator Inibidor de Leucemia/metabolismo , Fosforilação , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
11.
Mol Divers ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369170

RESUMO

Qiling Baitouweng Tang (QLBTWT) is a traditional clinical formula for treating diffuse large B-cell lymphoma (DLBCL), but its molecular action is not fully understood. This research is utilized in silico analysis and liquid chromatography tandem mass spectrometry (LC‒MS/MS) to identify the active constituents of QLBTWT with anti-DLBCL properties and their targets. The study identified 14 compounds, including quercetin, naringenin, and astilbin, as potentially effective against DLBCL. Molecular modeling highlighted the favorable interaction of quercetin with the JAK2 protein. In vitro studies confirmed the ability of quercetin to inhibit DLBCL cell growth and migration while inducing apoptosis and causing G2/M phase cell cycle arrest. Molecular dynamics simulations revealed that quercetin binds to JAK2 as a type II inhibitor. In vivo studies in U2932 xenograft models demonstrated that QLBTWT inhibited tumor growth in a dose-dependent manner, which was associated with the JAK2/STAT3 signaling pathway. Overall, this study elucidates the therapeutic effect of QLBTWT on DLBCL through quercetin-mediated suppression of the JAK2/STAT3 pathway, offering novel therapeutic insights for DLBCL.

12.
Biol Pharm Bull ; 47(9): 1511-1524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39284735

RESUMO

Siweixizangmaoru decoction (SXD) is widely used as an anti-rheumatoid arthritis (RA) in Tibet, however, the specific anti-inflammatory mechanism of SXD is still unclear. This research attempts to examine the efficacy and possible mechanisms of SXD in treating RA. The primary chemical components of SXD were identified using UHPLC-Q-Exactive Orbitrap MS. We established a lipopolysaccharide (LPS)-induced RAW264.7 macrophage inflammatory injury model to explore the anti-inflammatory mechanism of SXD and validated it through in vivo experiments. According to our research in vitro as well as in vivo, SXD exhibits anti-inflammatory qualities. SXD can suppress nitric oxide (NO) and pro-inflammatory factor production in RAW264.7 cells activated by LPS. The mechanism underlying this effect might be connected to the janus tyrosine kinase 2-signal transducer and activator of transcription 3 (JAK2/STAT3) and nuclear factor-κB (NF-κB) signaling pathways. In vivo, SXD alleviates joint swelling, decreases the generation of inflammatory factors in the serum, lowers oxidative stress, and improves joint damage. In short, SXD improves joint degeneration and lowers symptoms associated with RA by regulating inflammation via the suppression of NF-κB and JAK2/STAT3 signaling pathway activation.


Assuntos
Anti-Inflamatórios , Artrite Experimental , Medicamentos de Ervas Chinesas , Janus Quinase 2 , NF-kappa B , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Janus Quinase 2/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Células RAW 264.7 , Camundongos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ratos , Ratos Sprague-Dawley , Colágeno Tipo II/metabolismo , Lipopolissacarídeos , Óxido Nítrico/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Medicina Tradicional Tibetana/métodos
13.
Cell Mol Life Sci ; 80(6): 160, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210406

RESUMO

We previously reported that permanent ischemia induces marked dysfunction of the autophagy-lysosomal pathway (ALP) in rats, which is possibly mediated by the transcription factor EB (TFEB). However, it is still unclear whether signal transducer and activator of transcription 3 (STAT3) is responsible for the TFEB-mediated dysfunction of ALP in ischemic stroke. In the present study, we used AAV-mediated genetic knockdown and pharmacological blockade of p-STAT3 to investigate the role of p-STAT3 in regulating TFEB-mediated ALP dysfunction in rats subjected to permanent middle cerebral occlusion (pMCAO). The results showed that the level of p-STAT3 (Tyr705) in the rat cortex increased at 24 h after pMCAO and subsequently led to lysosomal membrane permeabilization (LMP) and ALP dysfunction. These effects can be alleviated by inhibitors of p-STAT3 (Tyr705) or by STAT3 knockdown. Additionally, STAT3 knockdown significantly increased the nuclear translocation of TFEB and the transcription of TFEB-targeted genes. Notably, TFEB knockdown markedly reversed STAT3 knockdown-mediated improvement in ALP function after pMCAO. This is the first study to show that the contribution of p-STAT3 (Tyr705) to ALP dysfunction may be partly associated with its inhibitory effect on TFEB transcriptional activity, which further leads to ischemic injury in rats.


Assuntos
Autofagia , Fator de Transcrição STAT3 , Animais , Ratos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Isquemia/metabolismo , Lisossomos/metabolismo , Fosforilação , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
14.
Adv Exp Med Biol ; 1460: 463-487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287862

RESUMO

Leptin resistance is induced via leptin signaling blockade by chronic overstimulation of the leptin receptor and intracellular signaling defect or increased hypothalamic inflammation and suppressor of cytokine signaling (SOCS)-3 expression. High-fat diet triggers leptin resistance induced by at least two independent causes: first, the limited ability of peripheral leptin to activate hypothalamic signaling transducers and activators of transcription (STAT) signaling and secondly a signaling defect in leptin-responsive hypothalamic neurons. Central leptin resistance is dependent on decreased leptin transport efficiency across the blood brain barrier (BBB) rather than hypothalamic leptin insensitivity. Since the hypothalamic phosphorylated STAT3 (pSTAT3) represents a sensitive and specific readout of leptin receptor-B signaling, the assessment of pSTAT3 levels is the gold standard. Hypertriglyceridemia is one of important factors to inhibit the transport of leptin across BBB in obesity. Mismatch between high leptin and the amount of leptin receptor expression in obesity triggers brain leptin resistance via increasing hypothalamic inflammation and SOCS-3 expression. Therapeutic strategies that regulate the passage of leptin to the brain include the development of modifications in the structure of leptin analogues as well as the synthesis of new leptin receptor agonists with increased BBB permeability. In the hyperleptinemic state, polyethylene glycol (PEG)-modified leptin is unable to pass through the BBB. Peripheral histone deacetylase (HDAC) 6 inhibitor, tubastatin, and metformin increase central leptin sensitization. While add-on therapy with anagliptin, metformin and miglitol reduce leptin concentrations, the use of long-acting leptin analogs, and exendin-4 lead to the recovery of leptin sensitivity. Contouring surgery with fat removal, and bariatric surgery independently of the type of surgery performed provide significant improvement in leptin concentrations. Although approaches to correcting leptin resistance have shown some success, no clinically effective application has been developed to date. Due to the impairment of central and peripheral leptin signaling, as well as the extensive integration of leptin-sensitive metabolic pathways with other neurons, the effectiveness of methods used to eliminate leptin resistance is extremely limited.


Assuntos
Leptina , Obesidade , Transdução de Sinais , Humanos , Leptina/metabolismo , Obesidade/metabolismo , Animais , Receptores para Leptina/metabolismo , Hipotálamo/metabolismo , Barreira Hematoencefálica/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Fator de Transcrição STAT3/metabolismo
15.
Phytother Res ; 38(8): 4307-4320, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38973353

RESUMO

American ginseng (AG) has been reported to have anti-inflammatory effects in many diseases, but the key molecules and mechanisms are unclear. This study aims to evaluate the anti-inflammatory mechanism of AG and identify the key molecules by in vivo and in vitro models. Zebrafish was employed to assess the anti-inflammatory properties of AG and the compounds. Metabolomics was utilized to identify potential anti-inflammatory molecules in AG, while molecular dynamics simulations were conducted to forecast the interaction capabilities of these compounds with inflammatory targets. Additionally, macrophage cell was employed to investigate the anti-inflammatory mechanisms of the key molecules in AG by enzyme-linked immunosorbent assay and western blotting. Seven potential anti-inflammatory molecules were discovered in AG, with ginsenoside Rg1, ginsenoside Rs3 (G-Rs3), and oleanolic acid exhibiting the strongest affinity for signal transducer and activator of transcription 3. These compounds demonstrated inhibitory effects on macrophage migration in zebrafish models and the ability to regulate ROS levels in both zebrafish and macrophages. The cell experiments found that ginsenoside Rg1, ginsenoside Rs3, and oleanolic acid could promote macrophage M2/M1 polarization ratio and inhibit phosphorylation overexpression of signal transducer and activator of transcription 3. This study revealed the key anti-inflammatory molecules and mechanisms of AG, and provided new evidence of anti-inflammatory for the scientific use of AG.


Assuntos
Anti-Inflamatórios , Ginsenosídeos , Macrófagos , Panax , Fator de Transcrição STAT3 , Peixe-Zebra , Animais , Panax/química , Anti-Inflamatórios/farmacologia , Fator de Transcrição STAT3/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Simulação de Dinâmica Molecular
16.
Chem Pharm Bull (Tokyo) ; 72(7): 693-699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39048375

RESUMO

This study evaluated the ability of isolated or semisynthesized trichothecene sesquiterpenes to prevent cancer emergence and proliferation and inhibit signal transducer and activator of transcription-3 (STAT3) phosphorylation through in vitro assays. Trichothecinol A (TTC-A), which bears a hydroxy group at C3, exhibited greater cancer prevention, antiproliferation, and STAT3 phosphorylation inhibition effects than trichothecin (TTC), which lacks a hydroxy group at C3. Furthermore, trichothecinol B (TTC-B), which is a reduced derivative of TTC and has similar cytotoxic effect, showed substantially weaker chemoprotection and STAT3 phosphorylation inhibition effects than TTC. These results clearly indicate that the hydroxy group at C3 and carbonyl group at C8 are crucial for inducing both potent chemoprevention and STAT3 phosphorylation inhibition.


Assuntos
Proliferação de Células , Fator de Transcrição STAT3 , Tricotecenos , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Tricotecenos/química , Tricotecenos/farmacologia , Tricotecenos/antagonistas & inibidores , Humanos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Fosforilação/efeitos dos fármacos , Linhagem Celular Tumoral , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Antineoplásicos/farmacologia , Antineoplásicos/química
17.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474197

RESUMO

Glioblastoma stem cells (GSCs) play a pivotal role in the initiation, progression, resistance to treatment, and relapse of glioblastoma multiforme (GBM). Thus, identifying potential therapeutic targets and drugs that interfere with the growth of GSCs may contribute to improved treatment outcomes for GBM. In this study, we first demonstrated the functional role of protein arginine methyltransferase 1 (PRMT1) in GSC growth. Furamidine, a PRMT1 inhibitor, effectively inhibited the proliferation and tumorsphere formation of U87MG-derived GSCs by inducing cell cycle arrest at the G0/G1 phase and promoting the intrinsic apoptotic pathway. Moreover, furamidine potently suppressed the in vivo tumor growth of U87MG GSCs in a chick embryo chorioallantoic membrane model. In particular, the inhibitory effect of furamidine on U87MG GSC growth was associated with the downregulation of signal transducer and activator of transcription 3 (STAT3) and key GSC markers, including CD133, Sox2, Oct4, Nanog, aldehyde dehydrogenase 1, and integrin α6. Our results also showed that the knockdown of PRMT1 by small interfering RNA significantly inhibited the proliferation of U87MG GSCs in vitro and in vivo through a molecular mechanism similar to furamidine. In addition, combined treatment with furamidine and berbamine, a calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ) inhibitor, inhibited the growth of U87MG GSCs more strongly than single-compound treatment. The increased antiproliferative effect of combining the two compounds resulted from a stronger downregulation of STAT3-mediated downstream GBM stemness regulators through dual PRMT1 and CaMKIIγ function blockade. In conclusion, these findings suggest that PRMT1 and its inhibitor, furamidine, are potential novel therapeutic targets and drug candidates for effectively suppressing GSC growth.


Assuntos
Benzamidinas , Neoplasias Encefálicas , Glioblastoma , Embrião de Galinha , Animais , Humanos , Glioblastoma/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Proliferação de Células , Transdução de Sinais , Neoplasias Encefálicas/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
18.
Korean J Physiol Pharmacol ; 28(5): 457-467, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39198226

RESUMO

Nanobodies derived from camelids and sharks offer unique advantages in therapeutic applications due to their ability to bind to epitopes that were previously inaccessible. Traditional methods of nanobody development face challenges such as ethical concerns and antigen toxicity. Our study presents a synthetic, phagedisplayed nanobody library using trinucleotide-directed mutagenesis technology, which allows precise amino acid composition in complementarity-determining regions (CDRs), with a focus on CDR3 diversity. This approach avoids common problems such as frameshift mutations and stop codon insertions associated with other synthetic antibody library construction methods. By analyzing FDA-approved nanobodies and Protein Data Bank sequences, we designed sub-libraries with different CDR3 lengths and introduced amino acid substitutions to improve solubility. The validation of our library through the successful isolation of nanobodies against targets such as PD-1, ATXN1 and STAT3 demonstrates a versatile and ethical platform for the development of high specificity and affinity nanobodies and represents a significant advance in biotechnology.

19.
Hum Reprod ; 38(1): 14-29, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36413036

RESUMO

STUDY QUESTION: Is interleukin-10 (IL-10) anti-fibrotic in endometriosis? SUMMARY ANSWER: IL-10 is not anti-fibrotic but pro-fibrotic in endometriosis, because IL-10 treatment of endometriotic stromal cells in vitro promotes myofibroblast proliferation and collagen type I protein expression. WHAT IS KNOWN ALREADY: We previously showed that persistent activation of signal transducer and activator of transcription 3 (STAT3) via IL-6 trans-signaling promotes fibrosis of endometriosis. Studies showed marked anti-fibrotic effects of IL-10 via the STAT3 signaling pathway, which is generally considered to be anti-inflammatory, in various organs. STUDY DESIGN, SIZE, DURATION: Endometrial and/or endometriotic samples of 54 patients who had histological evidence of deep endometriosis, and endometrial samples from 30 healthy fertile women were analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS: The effects of IL-10/STAT3 signaling as well as inhibition of STAT3 activation by knockdown of STAT3 gene on the pro-fibrotic phenotype in endometrial and endometriotic stromal cells in vitro were investigated. Then, the effects of various time points of IL-10 treatment in combination with transforming growth factor (TGF)-ß1 and/or IL-6/soluble IL-6 receptor (sIL-6R) on the profibrotic phenotype of endometrial and endometriotic stromal cells were investigated. MAIN RESULTS AND THE ROLE OF CHANCE: IL-10 induced pro-fibrotic phenotype (cell proliferation, collagen type I synthesis, α-smooth muscle actin positive stress fibers and collagen gel contraction) of endometriotic stromal cells. Knockdown of STAT3 gene decreased the IL-10 induced pro-fibrotic phenotype of endometriotic stromal cells. In contrast, IL-10 had no significant effects on pro-fibrotic phenotype of endometrial stromal cells of healthy women. Sequential IL-10 treatment with or without TGF-ß1 and/or IL-6/sIL-6R induced persistent activation of STAT3 and significantly increased proliferation of myofibroblasts (cells with α-smooth muscle actin positive stress fibers) and protein expression of collagen type I in endometriotic stromal cells. TGF-ß1 and/or IL-6/sIL6RIL-6/sIL6R treatment significantly increased tissue inhibitor of metalloproteinase 1 (TIMP1) protein expression, whereas IL-10 had no significant effects. Knockdown of STAT3 gene significantly decreased the TGF-ß1 and/or IL-6/sIL6R induced TIMP1 protein expression. In contrast, pre-treatment with IL-10 before TGF-ß1 and/or IL-6/sIL-6R treatment and sequential IL-10 treatment with or without TGF-ß1 and/or IL-6/sIL-6R significantly decreased proliferation of fibroblasts (cells without α-smooth muscle actin positive stress fibers) and collagen type I protein expression in endometrial stromal cells of healthy women. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Given the large number of complex interactions and signaling pathways of pro- and anti-inflammatory mediators that are involved in the pathophysiology of endometriosis, the present study investigated only a very small portion of the whole. Further in vivo studies are required to validate the present findings. WIDER IMPLICATIONS OF THE FINDINGS: Inflammatory mediators in the pathophysiology of endometriosis have been extensively investigated as potential therapeutic targets. However, the present study showed that anti-inflammatory signals of IL-10 and IL-6 through persistent STAT3 activation may promote endometriosis fibrosis. Therapeutic strategies, such as suppression of 'inflammation', might dysregulate the cross-regulation of 'pro- and anti-inflammatory mediators', leading to detrimental effects in patients with endometriosis, such as fibrosis. To develop new, but not deleterious, therapeutic strategies, studies are required to investigate whether, how and what 'anti-inflammatory mediators' along with pro-inflammatory mediators are involved in individual patients with endometriosis. STUDY FUNDING/COMPETING INTEREST(S): This study was supported in part by KARL STORZ SE & Co. KG (Tuttlingen, Germany). The authors have no conflict of interest to disclose.


Assuntos
Colágeno Tipo I , Endometriose , Humanos , Feminino , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Interleucina-10/metabolismo , Actinas/metabolismo , Endometriose/metabolismo , Interleucina-6/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Células Estromais/metabolismo , Proliferação de Células , Fibrose , Endométrio/metabolismo
20.
Arch Biochem Biophys ; 746: 109719, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591369

RESUMO

Kv1.3 channel has been shown to participate in regulating inflammatory activation, proliferation and apoptosis in several cell types. However, most of those existing studies focused on the ion-conducting properties of Kv1.3 in maintaining the resting potential and regulating Ca2+ influx. The aim of our study was to explore whether the Kv1.3-JAK2/STAT3 signaling pathway was involved in oxidized low density lipoprotein (ox-LDL) induced vascular smooth muscle cell (VSMC) proliferation. VSMCs from mouse aorta were cultured and treated with ox-LDL (25 µg/mL). The cell counting kit-8 was used to assess cell proliferation, and western blotting was performed to detect expression levels of Kv1.3, JAK2/STAT3, phosphorylated JAK2/STAT3, cyclin B1 and cyclin D1 in treated VSMCs. VSMCs were transfected with Kv1.3 small interfering RNA (Kv1.3-siRNA) or infected with a Kv1.3 lentiviral expression vector (Lv-Kv1.3) and treated with a JAK2 inhibitor LY2784544 to assess the role of Kv1.3 and JAK2/STAT3 signaling in mediating VSMC proliferation induced by ox-LDL. Ox-LDL induced cell proliferation and upregulated the expression of Kv1.3 in mouse VSMCs. In VSMCs transfected with Kv1.3-siRNA, ox-LDL was not efficient in inducing cell proliferation or the levels of proliferation associated proteins, cyclin B1 and cyclin D1. However, cell proliferation, cyclin B1 and cyclin D1 levels increased in VSMCs infected with Lv-Kv1.3. Levels of phosphorylated JAK2 and STAT3 were increased in ox-LDL-treated VSMCs, and this increase was prevented in VSMCs transfected with Kv1.3-siRNA. Treatment with the JAK2 inhibitor LY2784544 also prevented the increase in VSMCs proliferation treated with ox-LDL. Our findings demonstrated that Kv1.3 promoted proliferation of VSMCs treated with ox-LDL, and that this effect might be mediated through activation of the JAK2/STAT3 signaling pathway.


Assuntos
Ciclina D1 , Músculo Liso Vascular , Animais , Camundongos , Proliferação de Células , Ciclina B1 , RNA Interferente Pequeno , Transdução de Sinais , Canal de Potássio Kv1.3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA