Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(1): 149-165.e23, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38134933

RESUMO

Deciphering the cell-state transitions underlying immune adaptation across time is fundamental for advancing biology. Empirical in vivo genomic technologies that capture cellular dynamics are currently lacking. We present Zman-seq, a single-cell technology recording transcriptomic dynamics across time by introducing time stamps into circulating immune cells, tracking them in tissues for days. Applying Zman-seq resolved cell-state and molecular trajectories of the dysfunctional immune microenvironment in glioblastoma. Within 24 hours of tumor infiltration, cytotoxic natural killer cells transitioned to a dysfunctional program regulated by TGFB1 signaling. Infiltrating monocytes differentiated into immunosuppressive macrophages, characterized by the upregulation of suppressive myeloid checkpoints Trem2, Il18bp, and Arg1, over 36 to 48 hours. Treatment with an antagonistic anti-TREM2 antibody reshaped the tumor microenvironment by redirecting the monocyte trajectory toward pro-inflammatory macrophages. Zman-seq is a broadly applicable technology, enabling empirical measurements of differentiation trajectories, which can enhance the development of more efficacious immunotherapies.


Assuntos
Glioblastoma , Humanos , Perfilação da Expressão Gênica , Glioblastoma/patologia , Imunoterapia , Células Matadoras Naturais , Macrófagos , Microambiente Tumoral , Análise de Célula Única
2.
Cell ; 186(19): 4117-4133.e22, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37591239

RESUMO

Aging is the key risk factor for cognitive decline, yet the molecular changes underlying brain aging remain poorly understood. Here, we conducted spatiotemporal RNA sequencing of the mouse brain, profiling 1,076 samples from 15 regions across 7 ages and 2 rejuvenation interventions. Our analysis identified a brain-wide gene signature of aging in glial cells, which exhibited spatially defined changes in magnitude. By integrating spatial and single-nucleus transcriptomics, we found that glial aging was particularly accelerated in white matter compared with cortical regions, whereas specialized neuronal populations showed region-specific expression changes. Rejuvenation interventions, including young plasma injection and dietary restriction, exhibited distinct effects on gene expression in specific brain regions. Furthermore, we discovered differential gene expression patterns associated with three human neurodegenerative diseases, highlighting the importance of regional aging as a potential modulator of disease. Our findings identify molecular foci of brain aging, providing a foundation to target age-related cognitive decline.


Assuntos
Envelhecimento , Disfunção Cognitiva , Substância Branca , Animais , Humanos , Camundongos , Disfunção Cognitiva/genética , Perfilação da Expressão Gênica , Núcleo Solitário , Substância Branca/patologia , Análise da Expressão Gênica de Célula Única , Encéfalo/patologia
3.
Cell ; 173(1): 196-207.e14, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502970

RESUMO

Microbial populations can maximize fitness in dynamic environments through bet hedging, a process wherein a subpopulation assumes a phenotype not optimally adapted to the present environment but well adapted to an environment likely to be encountered. Here, we show that oxygen induces fluctuating expression of the trimethylamine oxide (TMAO) respiratory system of Escherichia coli, diversifying the cell population and enabling a bet-hedging strategy that permits growth following oxygen loss. This regulation by oxygen affects the variance in gene expression but leaves the mean unchanged. We show that the oxygen-sensitive transcription factor IscR is the key regulator of variability. Oxygen causes IscR to repress expression of a TMAO-responsive signaling system, allowing stochastic effects to have a strong effect on the output of the system and resulting in heterogeneous expression of the TMAO reduction machinery. This work reveals a mechanism through which cells regulate molecular noise to enhance fitness.


Assuntos
Escherichia coli/metabolismo , Transdução de Sinais , Aerobiose , Anaerobiose , Sequência de Bases , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metilaminas/metabolismo , Metilaminas/farmacologia , Oxigênio/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Fosfotransferases/química , Fosfotransferases/genética , Fosfotransferases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima
4.
Immunity ; 55(6): 1118-1134.e8, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35447093

RESUMO

Understanding the mechanisms of HIV tissue persistence necessitates the ability to visualize tissue microenvironments where infected cells reside; however, technological barriers limit our ability to dissect the cellular components of these HIV reservoirs. Here, we developed protein and nucleic acid in situ imaging (PANINI) to simultaneously quantify DNA, RNA, and protein levels within these tissue compartments. By coupling PANINI with multiplexed ion beam imaging (MIBI), we measured over 30 parameters simultaneously across archival lymphoid tissues from healthy or simian immunodeficiency virus (SIV)-infected nonhuman primates. PANINI enabled the spatial dissection of cellular phenotypes, functional markers, and viral events resulting from infection. SIV infection induced IL-10 expression in lymphoid B cells, which correlated with local macrophage M2 polarization. This highlights a potential viral mechanism for conditioning an immunosuppressive tissue environment for virion production. The spatial multimodal framework here can be extended to decipher tissue responses in other infectious diseases and tumor biology.


Assuntos
Infecções por HIV , Ácidos Nucleicos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Vírus de DNA , Terapia de Imunossupressão , Macaca mulatta , Macrófagos , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral
5.
Annu Rev Neurosci ; 43: 375-389, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640930

RESUMO

Scientists have been fascinated by the human brain for centuries, yet knowledge of the cellular and molecular events that build the human brain during embryogenesis and of how abnormalities in this process lead to neurological disease remains very superficial. In particular, the lack of experimental models for a process that largely occurs during human in utero development, and is therefore poorly accessible for study, has hindered progress in mechanistic understanding. Advances in stem cell-derived models of human organogenesis, in the form of three-dimensional organoid cultures, and transformative new analytic technologies have opened new experimental pathways for investigation of aspects of development, evolution, and pathology of the human brain. Here, we consider the biology of brain organoids, compared and contrasted with the endogenous human brain, and highlight experimental strategies to use organoids to pioneer new understanding of human brain pathology.


Assuntos
Encéfalo/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Organogênese/fisiologia , Organoides/citologia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Doenças do Sistema Nervoso/patologia
6.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39207729

RESUMO

Several methods have been developed to computationally predict cell-types for single cell RNA sequencing (scRNAseq) data. As methods are developed, a common problem for investigators has been identifying the best method they should apply to their specific use-case. To address this challenge, we present CHAI (consensus Clustering tHrough similArIty matrix integratIon for single cell-type identification), a wisdom of crowds approach for scRNAseq clustering. CHAI presents two competing methods which aggregate the clustering results from seven state-of-the-art clustering methods: CHAI-AvgSim and CHAI-SNF. CHAI-AvgSim and CHAI-SNF demonstrate superior performance across several benchmarking datasets. Furthermore, both CHAI methods outperform the most recent consensus clustering method, SAME-clustering. We demonstrate CHAI's practical use case by identifying a leader tumor cell cluster enriched with CDH3. CHAI provides a platform for multiomic integration, and we demonstrate CHAI-SNF to have improved performance when including spatial transcriptomics data. CHAI overcomes previous limitations by incorporating the most recent and top performing scRNAseq clustering algorithms into the aggregation framework. It is also an intuitive and easily customizable R package where users may add their own clustering methods to the pipeline, or down-select just the ones they want to use for the clustering aggregation. This ensures that as more advanced clustering algorithms are developed, CHAI will remain useful to the community as a generalized framework. CHAI is available as an open source R package on GitHub: https://github.com/lodimk2/chai.


Assuntos
Algoritmos , Análise de Célula Única , Análise por Conglomerados , Humanos , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Software , Perfilação da Expressão Gênica/métodos
7.
Annu Rev Microbiol ; 75: 107-128, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34228491

RESUMO

Recent developments in single-cell and single-molecule techniques have revealed surprising levels of heterogeneity among isogenic cells. These advances have transformed the study of cell-to-cell heterogeneity into a major area of biomedical research, revealing that it can confer essential advantages, such as priming populations of unicellular organisms for future environmental stresses. Protozoan parasites, such as trypanosomes, face multiple and often hostile environments, and to survive, they undergo multiple changes, including changes in morphology, gene expression, and metabolism. But why does only a subset of proliferative cells differentiate to the next life cycle stage? Why do only some bloodstream parasites undergo antigenic switching while others stably express one variant surface glycoprotein? And why do some parasites invade an organ while others remain in the bloodstream? Building on extensive research performed in bacteria, here we suggest that biological noise can contribute to the fitness of eukaryotic pathogens and discuss the importance of cell-to-cell heterogeneity in trypanosome infections.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Animais , Estágios do Ciclo de Vida , Estresse Fisiológico , Trypanosoma/genética , Trypanosoma brucei brucei/genética
8.
Trends Immunol ; 44(12): 954-964, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37945504

RESUMO

Single-cell approaches have shone a spotlight on discrete context-specific tissue macrophage states, deconstructed to their most minute details. Machine-learning (ML) approaches have recently challenged that dogma by revealing a context-agnostic continuum of states shared across tissues. Both approaches agree that 'brake' and 'accelerator' macrophage subpopulations must be balanced to achieve homeostasis. Both approaches also highlight the importance of ensemble fluidity as subpopulations switch between wide ranges of accelerator and brake phenotypes to mount the most optimal wholistic response to any threat. A full comprehension of the rules that govern these brake and accelerator states is a promising avenue because it can help formulate precise macrophage re-education therapeutic strategies that might selectively boost or suppress disease-associated states and phenotypes across various tissues.


Assuntos
Macrófagos , Humanos
9.
J Proteome Res ; 23(2): 523-531, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38096378

RESUMO

The trends of the last 20 years in biotechnology were revealed using artificial intelligence and natural language processing (NLP) of publicly available data. Implementing this "science-of-science" approach, we capture convergent trends in the field of proteomics in both technology development and application across the phylogenetic tree of life. With major gaps in our knowledge about protein composition, structure, and location over time, we report trends in persistent, popular approaches and emerging technologies across 94 ideas from a corpus of 29 journals in PubMed over two decades. New metrics for clusters of these ideas reveal the progression and popularity of emerging approaches like single-cell, spatial, compositional, and chemical proteomics designed to better capture protein-level chemistry and biology. This analysis of the proteomics literature with advanced analytic tools quantifies the Rate of Rise for a next generation of technologies to better define, quantify, and visualize the multiple dimensions of the proteome that will transform our ability to measure and understand proteins in the coming decade.


Assuntos
Inteligência Artificial , Proteômica , Proteômica/métodos , Filogenia , Proteoma/metabolismo , Tecnologia
10.
BMC Genomics ; 25(1): 464, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741085

RESUMO

Gonad development includes sex determination and divergent maturation of the testes and ovaries. Recent advances in measuring gene expression in single cells are providing new insights into this complex process. However, the underlying epigenetic regulatory mechanisms remain unclear. Here, we profiled chromatin accessibility in mouse gonadal cells of both sexes from embryonic day 11.5 to 14.5 using single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq). Our results showed that individual cell types can be inferred by the chromatin landscape, and that cells can be temporally ordered along developmental trajectories. Integrative analysis of transcriptomic and chromatin-accessibility maps identified multiple putative regulatory elements proximal to key gonadal genes Nr5a1, Sox9 and Wt1. We also uncover cell type-specific regulatory factors underlying cell type specification. Overall, our results provide a better understanding of the epigenetic landscape associated with the progressive restriction of cell fates in the gonad.


Assuntos
Linhagem da Célula , Cromatina , Gônadas , Fatores de Transcrição SOX9 , Análise de Célula Única , Animais , Cromatina/metabolismo , Cromatina/genética , Camundongos , Linhagem da Célula/genética , Feminino , Masculino , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Gônadas/metabolismo , Gônadas/citologia , Gônadas/embriologia , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Testículo/metabolismo , Testículo/citologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Ovário/metabolismo , Ovário/citologia
11.
J Cell Sci ; 135(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36285538

RESUMO

A large group of keratin genes (n=54 in the human genome) code for intermediate filament (IF)-forming proteins and show differential regulation in epithelial cells and tissues. Keratin expression can be highly informative about the type of epithelial tissue, differentiation status of constituent cells and biological context (e.g. normal versus diseased settings). The foundational principles underlying the use of keratin expression to gain insight about epithelial cells and tissues primarily originated in pioneering studies conducted in the 1980s. The recent emergence of single cell transcriptomics provides an opportunity to revisit these principles and gain new insight into epithelial biology. Re-analysis of single-cell RNAseq data collected from human and mouse skin has confirmed long-held views regarding the quantitative importance and pairwise regulation of specific keratin genes in keratinocytes of surface epithelia. Furthermore, such analyses confirm and extend the notion that changes in keratin gene expression occur gradually as progenitor keratinocytes commit to and undergo differentiation, and challenge the prevailing assumption that specific keratin combinations reflect a mitotic versus a post-mitotic differentiating state. Our findings provide a blueprint for similar analyses in other tissues, and warrant a more nuanced approach in the use of keratin genes as biomarkers in epithelia.


Assuntos
Queratinócitos , Queratinas , Camundongos , Animais , Humanos , Queratinas/genética , Queratinas/metabolismo , Epitélio/metabolismo , Queratinócitos/metabolismo , Células Epiteliais/metabolismo , Diferenciação Celular/genética
12.
EMBO Rep ; 23(10): e55502, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35971894

RESUMO

Hematopoietic stem cells (HSCs) cultured outside the body are the fundamental component of a wide range of cellular and gene therapies. Recent efforts have achieved > 200-fold expansion of functional HSCs, but their molecular characterization has not been possible since the majority of cells are non-HSCs and single cell-initiated cultures have substantial clone-to-clone variability. Using the Fgd5 reporter mouse in combination with the EPCR surface marker, we report exclusive identification of HSCs from non-HSCs in expansion cultures. By directly linking single-clone functional transplantation data with single-clone gene expression profiling, we show that the molecular profile of expanded HSCs is similar to proliferating fetal HSCs and reveals a gene expression signature, including Esam, Prdm16, Fstl1, and Palld, that can identify functional HSCs from multiple cellular states. This "repopulation signature" (RepopSig) also enriches for HSCs in human datasets. Together, these findings demonstrate the power of integrating functional and molecular datasets to better derive meaningful gene signatures and opens the opportunity for a wide range of functional screening and molecular experiments previously not possible due to limited HSC numbers.


Assuntos
Proteínas Relacionadas à Folistatina , Animais , Células Cultivadas , Receptor de Proteína C Endotelial/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Fatores de Transcrição/metabolismo
13.
Mol Cell Proteomics ; 21(7): 100254, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654359

RESUMO

All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/metabolismo , Proteômica/métodos
14.
Mol Cell Proteomics ; 21(1): 100179, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808355

RESUMO

Single-cell tandem MS has enabled analyzing hundreds of single cells per day and quantifying thousands of proteins across the cells. The broad dissemination of these capabilities can empower the dissection of pathophysiological mechanisms in heterogeneous tissues. Key requirements for achieving this goal include robust protocols performed on widely accessible hardware, robust quality controls, community standards, and automated data analysis pipelines that can pinpoint analytical problems and facilitate their timely resolution. Toward meeting these requirements, this perspective outlines both existing resources and outstanding opportunities, such as parallelization, for catalyzing the wide dissemination of quantitative single-cell proteomics analysis that can be scaled up to tens of thousands of single cells. Indeed, simultaneous parallelization of the analysis of peptides and single cells is a promising approach for multiplicative increase in the speed of performing deep and quantitative single-cell proteomics. The community is ready to begin a virtuous cycle of increased adoption fueling the development of more technology and resources for single-cell proteomics that in turn drive broader adoption, scientific discoveries, and clinical applications.


Assuntos
Proteínas , Proteômica , Peptídeos , Proteômica/métodos , Análise de Célula Única/métodos
15.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931503

RESUMO

Despite a boost of recent progress in dynamic single-cell measurements and analyses in Escherichia coli, we still lack a mechanistic understanding of the determinants of the decision to divide. Specifically, the debate is open regarding the processes linking growth and chromosome replication to division and on the molecular origin of the observed "adder correlations," whereby cells divide, adding roughly a constant volume independent of their initial volume. In order to gain insight into these questions, we interrogate dynamic size-growth behavior of single cells across nutrient upshifts with a high-precision microfluidic device. We find that the division rate changes quickly after nutrients change, much before growth rate goes to a steady state, and in a way that adder correlations are robustly conserved. Comparison of these data to simple mathematical models falsifies proposed mechanisms, where replication-segregation or septum completions are the limiting step for cell division. Instead, we show that the accumulation of a putative constitutively expressed "P-sector divisor" protein explains the behavior during the shift.


Assuntos
Divisão Celular/genética , Proliferação de Células/genética , Cromossomos Bacterianos/genética , Modelos Teóricos , Ciclo Celular/genética , Replicação do DNA/genética , Escherichia coli/genética , Nutrientes/metabolismo , Análise de Célula Única
16.
Eur Heart J ; 44(14): 1216-1230, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478058

RESUMO

The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Aterosclerose/patologia , Placa Aterosclerótica/patologia
17.
Development ; 147(15)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32792338

RESUMO

Blood vessels have long been considered as passive conduits for delivering blood. However, in recent years, cells of the vessel wall (endothelial cells, smooth muscle cells and pericytes) have emerged as active, highly dynamic components that orchestrate crosstalk between the circulation and organs. Encompassing the whole body and being specialized to the needs of distinct organs, it is not surprising that vessel lining cells come in different flavours. There is calibre-specific specialization (arteries, arterioles, capillaries, venules, veins), but also organ-specific heterogeneity in different microvascular beds (continuous, discontinuous, sinusoidal). Recent technical advances in the field of single cell biology have enabled the profiling of thousands of single cells and, hence, have allowed for the molecular dissection of such angiodiversity, yielding a hitherto unparalleled level of spatial and functional resolution. Here, we review how these approaches have contributed to our understanding of angiodiversity.


Assuntos
Células Endoteliais/fisiologia , Microcirculação/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Animais , Vasos Sanguíneos/fisiologia , Humanos
18.
Mol Syst Biol ; 18(6): e10670, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35694820

RESUMO

Combining single-cell measurements of ERK activity dynamics with perturbations provides insights into the MAPK network topology. We built circuits consisting of an optogenetic actuator to activate MAPK signaling and an ERK biosensor to measure single-cell ERK dynamics. This allowed us to conduct RNAi screens to investigate the role of 50 MAPK proteins in ERK dynamics. We found that the MAPK network is robust against most node perturbations. We observed that the ERK-RAF and the ERK-RSK2-SOS negative feedback operate simultaneously to regulate ERK dynamics. Bypassing the RSK2-mediated feedback, either by direct optogenetic activation of RAS, or by RSK2 perturbation, sensitized ERK dynamics to further perturbations. Similarly, targeting this feedback in a human ErbB2-dependent oncogenic signaling model increased the efficiency of a MEK inhibitor. The RSK2-mediated feedback is thus important for the ability of the MAPK network to produce consistent ERK outputs, and its perturbation can enhance the efficiency of MAPK inhibitors.


Assuntos
Técnicas Biossensoriais , Optogenética , Humanos , Sistema de Sinalização das MAP Quinases , Fosforilação , Inibidores de Proteínas Quinases , Transdução de Sinais
19.
Eur J Immunol ; 51(5): 1262-1277, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548142

RESUMO

Multiparameter tissue imaging enables analysis of cell-cell interactions in situ, the cellular basis for tissue structure, and novel cell types that are spatially restricted, giving clues to biological mechanisms behind tissue homeostasis and disease. Here, we streamlined and simplified the multiplexed imaging method CO-Detection by indEXing (CODEX) by validating 58 unique oligonucleotide barcodes that can be conjugated to antibodies. We showed that barcoded antibodies retained their specificity for staining cognate targets in human tissue. Antibodies were visualized one at a time by adding a fluorescently labeled oligonucleotide complementary to oligonucleotide barcode, imaging, stripping, and repeating this cycle. With this we developed a panel of 46 antibodies that was used to stain five human lymphoid tissues: three tonsils, a spleen, and a LN. To analyze the data produced, an image processing and analysis pipeline was developed that enabled single-cell analysis on the data, including unsupervised clustering, that revealed 31 cell types across all tissues. We compared cell-type compositions within and directly surrounding follicles from the different lymphoid organs and evaluated cell-cell density correlations. This sequential oligonucleotide exchange technique enables a facile imaging of tissues that leverages pre-existing imaging infrastructure to decrease the barriers to broad use of multiplexed imaging.


Assuntos
Anticorpos , Histocitoquímica/métodos , Imagem Molecular/métodos , Oligonucleotídeos , Comunicação Celular , Contagem de Células , Humanos , Hibridização In Situ/métodos , Tecido Linfoide , Especificidade de Órgãos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Célula Única/métodos
20.
Development ; 145(13)2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986899

RESUMO

In March 2018, over 250 researchers came together at the Wellcome Genome Campus in Hinxton, Cambridge, UK, to present their latest research in the area of single-cell biology. A highly interdisciplinary meeting, the Single Cell Biology conference covered a variety of topics, ranging from cutting-edge technological innovation, developmental biology and stem cell research to evolution and cancer. This meeting report summarises the key findings presented and the major research themes that emerged during the conference.


Assuntos
Evolução Biológica , Biologia Celular , Neoplasias , Células-Tronco , Animais , Congressos como Assunto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA