Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794050

RESUMO

Reverberation in real environments is an important factor affecting the high resolution of target sound source localization (SSL) methods. Broadband low-frequency signals are common in real environments. This study focuses on the localization of this type of signal in reverberant environments. Because the time reversal (TR) method can overcome multipath effects and realize adaptive focusing, it is particularly suitable for SSL in a reverberant environment. On the basis of the significant advantages of the sparse Bayesian learning algorithm in the estimation of wave direction, a novel SSL is proposed in reverberant environments. First, the sound propagation model in a reverberant environment is studied and the TR focusing signal is obtained. We then use the sparse Bayesian framework to locate the broadband low-frequency sound source. To validate the effectiveness of the proposed method for broadband low-frequency targeting in a reverberant environment, simulations and real data experiments were performed. The localization performance under different bandwidths, different numbers of microphones, signal-to-noise ratios, reverberation times, and off-grid conditions was studied in the simulation experiments. The practical experiment was conducted in a reverberation chamber. Simulation and experimental results indicate that the proposed method can achieve satisfactory spatial resolution in reverberant environments and is robust.

2.
Sensors (Basel) ; 24(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38610548

RESUMO

For direction-of-arrival (DOA) estimation problems in a sparse domain, sparse Bayesian learning (SBL) is highly favored by researchers owing to its excellent estimation performance. However, traditional SBL-based methods always assign Gaussian priors to parameters to be solved, leading to moderate sparse signal recovery (SSR) effects. The reason is Gaussian priors play a similar role to l2 regularization in sparsity constraint. Therefore, numerous methods are developed by adopting hierarchical priors that are used to perform better than Gaussian priors. However, these methods are in straitened circumstances when multiple measurement vector (MMV) data are adopted. On this basis, a block-sparse SBL method (named BSBL) is developed to handle DOA estimation problems in MMV models. The novelty of BSBL is the combination of hierarchical priors and block-sparse model originating from MMV data. Therefore, on the one hand, BSBL transfers the MMV model to a block-sparse model by vectorization so that Bayesian learning is directly performed, regardless of the prior independent assumption of different measurement vectors and the inconvenience caused by the solution of matrix form. On the other hand, BSBL inherited the advantage of hierarchical priors for better SSR ability. Despite the benefit, BSBL still has the disadvantage of relatively large computation complexity caused by high dimensional matrix operations. In view of this, two operations are implemented for low complexity. One is reducing the matrix dimension of BSBL by approximation, generating a method named BSBL-APPR, and the other is embedding the generalized approximate message passing (GAMB) technique into BSBL so as to decompose matrix operations into vector or scale operations, named BSBL-GAMP. Moreover, BSBL is able to suppress temporal correlation and handle wideband sources easily. Extensive simulation results are presented to prove the superiority of BSBL over other state-of-the-art algorithms.

3.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676102

RESUMO

Partially impaired sensor arrays pose a significant challenge in accurately estimating signal parameters. The occurrence of bad data is highly probable, resulting in random loss of source information and substantial performance degradation in parameter estimation. In this paper, a tensor variational sparse Bayesian learning (TVSBL) method is proposed for the estimate of direction of arrival (DOA) and polarization parameters jointly based on a conformal polarization sensitive array (CPSA), taking into account scenarios with the partially impaired sensor array. First, a sparse tensor-based received data model is developed for CPSAs that incorporates bad data. Then, a column vector detection method is proposed to diagnose the positions of the impaired sensors. In scenarios involving partially impaired sensor arrays, a low-rank matrix completion method is employed to recover the random loss of signal information. Finally, variational sparse Bayesian learning (VSBL) and minimum eigenvector methods are utilized sequentially to obtain the DOA and polarization parameters estimation, successively. Furthermore, the Cramér-Rao bound is given for the proposed method. Simulation results validated the effectiveness of the proposed method.

4.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960606

RESUMO

For the traditional uniform linear array (ULA) direction of arrival (DOA) estimation method with a limited array aperture, a non-circular signal off-grid sparse Bayesian DOA estimation method based on nested arrays is proposed. Firstly, the extended matrix of the received data is constructed by taking advantage of the fact that the statistical properties of non-circular signals are not rotationally invariant. Secondly, we use the difference and sum co-arrays for the nested array technique, thus increasing the array aperture and improving the estimation accuracy. Finally, we take the noise as part of the interest signal and iteratively update the grid points using the sparse Bayesian learning (SBL) method to eliminate the modeling errors caused by off-grid gaps. The simulation results show that the proposed algorithm can improve the accuracy of DOA estimation compared with the existing algorithms.

5.
Sensors (Basel) ; 23(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38067793

RESUMO

To reduce the influence of gain-phase errors and improve the performance of direction-of-arrival (DOA) estimation, a robust sparse Bayesian two-dimensional (2D) DOA estimation method with gain-phase errors is proposed for L-shaped sensor arrays. The proposed method introduces an auxiliary angle to transform the 2D DOA estimation problem into two 1D angle estimation problems. A sparse representation model with gain-phase errors is constructed using the diagonal element vector of the cross-correlation covariance matrix of two submatrices of the L-shaped sensor array. The expectation maximization algorithm derives unknown parameter expression, which is used for iterative operations to obtain off-grid and signal precision. Using these parameters, a new spatial spectral function is constructed to estimate the auxiliary angle. The obtained auxiliary angle is substituted into a sparse representation model with gain and phase errors, and then the sparse Bayesian learning method is used to estimate the elevation angle of the incident signal. Finally, according to the relationship of the three angles, the azimuth angle can be estimated. The simulation results show that the proposed method can effectively realize the automatic matching of the azimuth and elevation angles of the incident signal, and improves the accuracy of DOA estimation and angular resolution.

6.
Entropy (Basel) ; 25(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37238516

RESUMO

Orthogonal time-frequency space (OTFS) modulation has been advocated as a promising waveform for achieving integrated sensing and communication (ISAC) due to its superiority in high-mobility adaptability and spectral efficiency. In OTFS modulation-based ISAC systems, accurate channel acquisition is critical for both communication reception and sensing parameter estimation. However, the existence of the fractional Doppler frequency shift spreads the effective channels of the OTFS signal significantly, making efficient channel acquisition very challenging. In this paper, we first derive the sparse structure of the channel in the delay Doppler (DD) domain according to the input and output relationship of OTFS signals. On this basis, a new structured Bayesian learning approach is proposed for accurate channel estimation, which includes a novel structured prior model for the delay-Doppler channel and a successive majorization-minimization (SMM) algorithm for efficient posterior channel estimate computation. Simulation results show that the proposed approach significantly outperforms the reference schemes, especially in the low signal-to-noise ratio (SNR) region.

7.
Entropy (Basel) ; 25(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36981398

RESUMO

Compressive sensing is a sub-Nyquist sampling technique for efficient signal acquisition and reconstruction of sparse or compressible signals. In order to account for the sparsity of the underlying signal of interest, it is common to use sparsifying priors such as Bernoulli-Gaussian-inverse Gamma (BGiG) and Gaussian-inverse Gamma (GiG) priors on the components of the signal. With the introduction of variational Bayesian inference, the sparse Bayesian learning (SBL) methods for solving the inverse problem of compressive sensing have received significant interest as the SBL methods become more efficient in terms of execution time. In this paper, we consider the sparse signal recovery problem using compressive sensing and the variational Bayesian (VB) inference framework. More specifically, we consider two widely used Bayesian models of BGiG and GiG for modeling the underlying sparse signal for this problem. Although these two models have been widely used for sparse recovery problems under various signal structures, the question of which model can outperform the other for sparse signal recovery under no specific structure has yet to be fully addressed under the VB inference setting. Here, we study these two models specifically under VB inference in detail, provide some motivating examples regarding the issues in signal reconstruction that may occur under each model, perform comparisons and provide suggestions on how to improve the performance of each model.

8.
Sensors (Basel) ; 22(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35632206

RESUMO

Synthetic aperture sonar (SAS) and interferometric synthetic aperture sonar (InSAS) have a range layover phenomenon during underwater observation, the AUV-mounted circular synthetic aperture sonar (CSAS) system, that insonifies targets using multiple circular scans that vary in height and can eliminate the layover phenomenon. However, this observation method is time-consuming and difficult to compensate. To solve this problem, the circular array synthetic aperture sonar (CASAS) based on the equivalent phase center was established for unmanned surface vehicles. Corresponding to the echo signal model of circular array synthetic aperture sonar, a novel three-dimensional imaging algorithm was derived. Firstly, the echo datacube was processed by signal calibration with near-field to far-field transformation and grid interpolation. Then, the sparse recover method was adopted to achieve the scattering coefficient in the height direction by sparse Bayesian learning. Thirdly, the Fourier slice theorem was adopted to obtain the 2D image of the ground plane. After the reconstruction of all height slice cells was accomplished, the final 3D image was obtained. Numerical simulations and experiments using the USV-mounted CASAS system were performed. The imaging results verify the effectiveness of the 3D imaging algorithm for the proposed model and validate the feasibility of CASAS applied in underwater target imaging and detection.

9.
Sensors (Basel) ; 22(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366208

RESUMO

Accurate estimation of the frequency component is an important issue to identify and track marine objects (e.g., surface ship, submarine, etc.). In general, a passive sonar system consists of a sensor array, and each sensor receives data that have common information of the target signal. In this paper, we consider multiple-measurement sparse Bayesian learning (MM-SBL), which reconstructs sparse solutions in a linear system using Bayesian frameworks, to detect the common frequency components received by each sensor. In addition, the direction of arrival estimation was performed on each detected common frequency component using the MM-SBL based on beamforming. The azimuth for each common frequency component was confirmed in the frequency-azimuth plot, through which we identified the target. In addition, we perform target tracking using the target detection results along time, which are derived from the sum of the signal spectrum at the azimuth angle. The performance of the MM-SBL and the conventional target detection method based on energy detection were compared using in-situ data measured near the Korean peninsula, where MM-SBL displays superior detection performance and high-resolution results.


Assuntos
Localização de Som , Som , Teorema de Bayes , Espectrografia do Som
10.
Sensors (Basel) ; 22(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897983

RESUMO

Space-time adaptive processing (STAP) is an effective technology in clutter suppression and moving target detection for airborne radar. Because airborne radar moves at a constant acceleration, and there is a lack of independent and identically distributed (IID) training samples caused by the heterogeneous environment, using the conventional STAP methods directly cannot ensure a good performance. To eliminate these effects and improve the performance of clutter suppression, a STAP method based on a sparse Bayesian learning (SBL) framework for uniform acceleration radar is proposed here. This paper introduces the signal model of the uniform acceleration radar. To promote the sparsity, a generalized double Pareto (GDP) prior is introduced into our method, and the estimation of hyper parameters via expectation maximization (EM) is given. The effectiveness of the proposed method is demonstrated by simulations.

11.
Sensors (Basel) ; 22(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36433231

RESUMO

Obtaining accurate angle parameters using direction-of-arrival (DOA) estimation algorithms is crucial for acquiring channel state information (CSI) in massive multiple-input multiple-output (MIMO) systems. However, the performance of the existing algorithms deteriorates severely due to mutual coupling between antenna elements in practical engineering. Therefore, for solving the array mutual coupling, the array output signal vector is modeled by mutual coupling coefficients and the DOA estimation problem is transformed into block sparse signal reconstruction and parameter optimization in this paper. Then, a novel sparse Bayesian learning (SBL)-based algorithm is proposed, in which the expectation-maximum (EM) algorithm is used to estimate the unknown parameters iteratively, and the convergence speed of the algorithm is enhanced by utilizing the approximate approximation. Moreover, considering the off-grid error caused by discretization processes, the grid refinement is carried out using the polynomial roots to realize the dynamic update of the grid points, so as to improve the DOA estimation accuracy. Simulation results show that compared with the existing algorithms, the proposed algorithm is more robust to mutual coupling and off-grid error and can obtain better estimation performance.

12.
Sensors (Basel) ; 23(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616904

RESUMO

In this paper, we derive the Cramér-Rao lower bounds (CRLB) for direction of arrival (DoA) estimation by using sparse Bayesian learning (SBL) and the Laplace prior. CRLB is a lower bound on the variance of the estimator, the change of CRLB can indicate the effect of the specific factor to the DoA estimator, and in this paper a Laplace prior and the three-stage framework are used for the DoA estimation. We derive the CRLBs under different scenarios: (i) if the unknown parameters consist of deterministic and random variables, a hybrid CRLB is derived; (ii) if all the unknown parameters are random, a Bayesian CRLB is derived, and the marginalized Bayesian CRLB is obtained by marginalizing out the nuisance parameter. We also derive the CRLBs of the hyperparameters involved in the three-stage model and explore the effect of multiple snapshots to the CRLBs. We compare the derived CRLBs of SBL, finding that the marginalized Bayesian CRLB is tighter than other CRLBs when SNR is low and the differences between CRLBs become smaller when SNR is high. We also study the relationship between the mean squared error of the source magnitudes and the CRLBs, including numerical simulation results with a variety of antenna configurations such as different numbers of receivers and different noise conditions.

13.
Sensors (Basel) ; 22(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36016027

RESUMO

Direction of arrival (DOA) estimation is an essential and fundamental part of array signal processing, which has been widely used in radio monitoring, autonomous driving of vehicles, intelligent navigation, etc. However, it remains a challenge to accurately estimate DOA for multiple-input multiple-output (MIMO) radar in impulsive noise environments. To address this problem, an off-grid DOA estimation method for monostatic MIMO radar is proposed to deal with non-circular signals under impulsive noise. In the proposed method, firstly, based on the property of non-circular signal and array structure, a virtual array output was built and a real-valued sparse representation for the signal model was constructed. Then, an off-grid sparse Bayesian learning (SBL) framework is proposed and further applied to the virtual array to construct novel off-grid sparse model. Finally, off-grid DOA estimation was realized through the solution of the sparse reconstruction with high accuracy even in impulsive noise. Numerous simulations were performed to compare the algorithm with existing methods. Simulation results verify that the proposed off-grid DOA method enables evident performance improvement in terms of accuracy and robustness compared with other works on impulsive noise.

14.
Sensors (Basel) ; 22(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408278

RESUMO

Space-time adaptive processing (STAP) plays an essential role in clutter suppression and moving target detection in airborne radar systems. The main difficulty is that independent and identically distributed (i.i.d) training samples may not be sufficient to guarantee the performance in the heterogeneous clutter environment. Currently, most sparse recovery/representation (SR) techniques to reduce the requirement of training samples still suffer from high computational complexities. To remedy this problem, a fast group sparse Bayesian learning approach is proposed. Instead of employing all the dictionary atoms, the proposed algorithm identifies the support space of the data and then employs the support space in the sparse Bayesian learning (SBL) algorithm. Moreover, to extend the modified hierarchical model, which can only apply to real-valued signals, the real and imaginary components of the complex-valued signals are treated as two independent real-valued variables. The efficiency of the proposed algorithm is demonstrated both with the simulated and measured data.

15.
Entropy (Basel) ; 24(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626465

RESUMO

Increasing the autonomy of multi-agent systems or swarms for exploration missions requires tools for efficient information gathering. This work studies this problem from theoretical and experimental perspectives and evaluates an exploration system for multiple ground robots that cooperatively explore a stationary spatial process. For the distributed model, two conceptually different distribution paradigms are considered. The exploration is based on fusing distributively gathered information using Sparse Bayesian Learning (SBL), which permits representing the spatial process in a compressed manner and thus reduces the model complexity and communication load required for the exploration. An entropy-based exploration criterion is formulated to guide the agents. This criterion uses an estimation of a covariance matrix of the model parameters, which is then quantitatively characterized using a D-optimality criterion. The new sampling locations for the agents are then selected to minimize this criterion. To this end, a distributed optimization of the D-optimality criterion is derived. The proposed entropy-driven exploration is then presented from a system perspective and validated in laboratory experiments with two ground robots. The experiments show that SBL together with the distributed entropy-driven exploration is real-time capable and leads to a better performance with respect to time and accuracy compared with similar state-of-the-art algorithms.

16.
Sensors (Basel) ; 21(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34300499

RESUMO

The compressive sensing (CS)-based sparse channel estimator is recognized as the most effective solution to the excessive pilot overhead in massive MIMO systems. However, due to the complex signal processing in the wireless communication systems, the measurement matrix in the CS-based channel estimation is sometimes "unfriendly" to the channel recovery. To overcome this problem, in this paper, the state-of-the-art sparse Bayesian learning using approximate message passing with unitary transformation (UTAMP-SBL), which is robust to various measurement matrices, is leveraged to address the multi-user uplink channel estimation for hybrid architecture millimeter wave massive MIMO systems. Specifically, the sparsity of channels in the angular domain is exploited to reduce the pilot overhead. Simulation results demonstrate that the UTAMP-SBL is able to achieve effective performance improvement than other competitors with low pilot overhead.

17.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502716

RESUMO

Passive sonar systems are used to detect the acoustic signals that are radiated from marine objects (e.g., surface ships, submarines, etc.), and an accurate estimation of the frequency components is crucial to the target detection. In this paper, we introduce sparse Bayesian learning (SBL) for the frequency analysis after the corresponding linear system is established. Many algorithms, such as fast Fourier transform (FFT), estimate signal parameters via rotational invariance techniques (ESPRIT), and multiple signal classification (RMUSIC) has been proposed for frequency detection. However, these algorithms have limitations of low estimation resolution by insufficient signal length (FFT), required knowledge of the signal frequency component number, and performance degradation at low signal to noise ratio (ESPRIT and RMUSIC). The SBL, which reconstructs a sparse solution from the linear system using the Bayesian framework, has an advantage in frequency detection owing to high resolution from the solution sparsity. Furthermore, in order to improve the robustness of the SBL-based frequency analysis, we exploit multiple measurements over time and space domains that share common frequency components. We compare the estimation results from FFT, ESPRIT, RMUSIC, and SBL using synthetic data, which displays the superior performance of the SBL that has lower estimation errors with a higher recovery ratio. We also apply the SBL to the in-situ data with other schemes and the frequency components from the SBL are revealed as the most effective. In particular, the SBL estimation is remarkably enhanced by the multiple measurements from both space and time domains owing to remaining consistent signal frequency components while diminishing random noise frequency components.

18.
Sensors (Basel) ; 21(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34695949

RESUMO

The novel sensing technology airborne passive bistatic radar (PBR) has the problem of being affecting by multipath components in the reference signal. Due to the movement of the receiving platform, different multipath components contain different Doppler frequencies. When the contaminated reference signal is used for space-time adaptive processing (STAP), the power spectrum of the spatial-temporal clutter is broadened. This can cause a series of problems, such as affecting the performance of clutter estimation and suppression, increasing the blind area of target detection, and causing the phenomenon of target self-cancellation. To solve this problem, the authors of this paper propose a novel algorithm based on sparse Bayesian learning (SBL) for direct clutter estimation and multipath clutter suppression. The specific process is as follows. Firstly, the space-time clutter is expressed in the form of covariance matrix vectors. Secondly, the multipath cost is decorrelated in the covariance matrix vectors. Thirdly, the modeling error is reduced by alternating iteration, resulting in a space-time clutter covariance matrix without multipath components. Simulation results showed that this method can effectively estimate and suppress clutter when the reference signal is contaminated.

19.
Sensors (Basel) ; 22(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009630

RESUMO

In the presence of unknown array errors, sparse recovery based space-time adaptive processing (SR-STAP) methods usually directly use the ideal spatial steering vectors without array errors to construct the space-time dictionary; thus, the steering vector mismatch between the dictionary and clutter data will cause a severe performance degradation of SR-STAP methods. To solve this problem, in this paper, we propose a two-stage SR-STAP method for suppressing nonhomogeneous clutter in the presence of arbitrary array errors. In the first stage, utilizing the spatial-temporal coupling property of the ground clutter, a set of spatial steering vectors with array errors are well estimated by fine Doppler localization. In the second stage, firstly, in order to solve the model mismatch problem caused by array errors, we directly use these spatial steering vectors obtained in the first stage to construct the space-time dictionary, and then, the constructed dictionary and multiple measurement vectors sparse Bayesian learning (MSBL) algorithm are combined for space-time adaptive processing (STAP). The proposed SR-STAP method can exhibit superior clutter suppression performance and target detection performance in the presence of arbitrary array errors. Simulation results validate the effectiveness of the proposed method.

20.
Sensors (Basel) ; 20(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948087

RESUMO

With the rapid development of the Internet of Things (IoT), autonomous vehicles have been receiving more and more attention because they own many advantages compared with traditional vehicles. A robust and accurate vehicle localization system is critical to the safety and the efficiency of autonomous vehicles. The global positioning system (GPS) has been widely applied to the vehicle localization systems. However, the accuracy and the reliability of GPS have suffered in some scenarios. In this paper, we present a robust and accurate vehicle localization system consisting of a bistatic passive radar, in which the performance of localization is solely dependent on the accuracy of the proposed off-grid direction of arrival (DOA) estimation algorithm. Under the framework of sparse Bayesian learning (SBL), the source powers and the noise variance are estimated by a fast evidence maximization method, and the off-grid gap is effectively handled by an advanced grid refining strategy. Simulation results show that the proposed method exhibits better performance than the existing sparse signal representation-based algorithms, and performs well in the vehicle localization system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA