Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.329
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 84(9): 1783-1801.e7, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38614097

RESUMO

Liquid-liquid phase separation (LLPS) of putative assembly scaffolds has been proposed to drive the biogenesis of membraneless compartments. LLPS scaffolds are usually identified through in vitro LLPS assays with single macromolecules (homotypic), but the predictive value of these assays remains poorly characterized. Here, we apply a strategy to evaluate the robustness of homotypic LLPS assays. When applied to the chromosomal passenger complex (CPC), which undergoes LLPS in vitro and localizes to centromeres to promote chromosome biorientation, LLPS propensity in vitro emerged as an unreliable predictor of subcellular localization. In vitro CPC LLPS in aqueous buffers was enhanced by commonly used crowding agents. Conversely, diluted cytomimetic media dissolved condensates of the CPC and of several other proteins. We also show that centromeres do not seem to nucleate LLPS, nor do they promote local, spatially restrained LLPS of the CPC. Our strategy can be adapted to purported LLPS scaffolds of other membraneless compartments.


Assuntos
Centrômero , Centrômero/metabolismo , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Humanos , Separação de Fases
2.
Genes Dev ; 35(7-8): 528-541, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33737385

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers worldwide and evolves often to lung metastasis. P53R175H (homologous to Trp53R172H in mice) is a common hot spot mutation. How metastasis is regulated by p53R175H in ESCC remains to be investigated. To investigate p53R175H-mediated molecular mechanisms, we used a carcinogen-induced approach in Trp53R172H/- mice to model ESCC. In the primary Trp53R172H/- tumor cell lines, we depleted Trp53R172H (shTrp53) and observed a marked reduction in cell invasion in vitro and lung metastasis burden in a tail-vein injection model in comparing isogenic cells (shCtrl). Furthermore, we performed bulk RNA-seq to compare gene expression profiles of metastatic and primary shCtrl and shTrp53 cells. We identified the YAP-BIRC5 axis as a potential mediator of Trp53R172H -mediated metastasis. We demonstrate that expression of Survivin, an antiapoptotic protein encoded by BIRC5, increases in the presence of Trp53R172H Furthermore, depletion of Survivin specifically decreases Trp53R172H-driven lung metastasis. Mechanistically, Trp53R172H but not wild-type Trp53, binds with YAP in ESCC cells, suggesting their cooperation to induce Survivin expression. Furthermore, Survivin high expression level is associated with increased metastasis in several GI cancers. Taken together, this study unravels new insights into how mutant p53 mediates metastasis.


Assuntos
Neoplasias Pulmonares/fisiopatologia , Survivina/genética , Survivina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , Camundongos , Mutação , Metástase Neoplásica , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo
3.
Immunity ; 48(6): 1183-1194.e5, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29802019

RESUMO

HIV-1 infection of CD4+ T cells leads to cytopathic effects and cell demise, which is counter to the observation that certain HIV-1-infected cells possess a remarkable long-term stability and can persist lifelong in infected individuals treated with suppressive antiretroviral therapy (ART). Using quantitative mass spectrometry-based proteomics, we showed that HIV-1 infection activated cellular survival programs that were governed by BIRC5, a molecular inhibitor of cell apoptosis that is frequently overexpressed in malignant cells. BIRC5 and its upstream regulator OX40 were upregulated in productively and latently infected CD4+ T cells and were functionally involved in maintaining their viability. Moreover, OX40-expressing CD4+ T cells from ART-treated patients were enriched for clonally expanded HIV-1 sequences, and pharmacological inhibition of BIRC5 resulted in a selective decrease of HIV-1-infected cells in vitro. Together, these findings suggest that BIRC5 supports long-term survival of HIV-1-infected cells and may lead to clinical strategies to reduce persisting viral reservoirs.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Survivina/metabolismo , Latência Viral/fisiologia , Adulto , Idoso , Apoptose , Sobrevivência Celular/fisiologia , Feminino , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1 , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Mol Ther ; 32(6): 1934-1955, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38582961

RESUMO

Second mitochondrial-derived activator of caspase (SMAC), also known as direct inhibitor of apoptosis-binding proteins with low pI (Diablo), is known as a pro-apoptotic mitochondrial protein released into the cytosol in response to apoptotic signals. We recently reported SMAC overexpression in cancers as essential for cell proliferation and tumor growth due to non-apoptotic functions, including phospholipid synthesis regulation. These functions may be associated with its interactions with partner proteins. Using a peptide array with 768 peptides derived from 11 selected SMAC-interacting proteins, we identified SMAC-interacting sequences. These SMAC-binding sequences were produced as cell-penetrating peptides targeted to the cytosol, mitochondria, or nucleus, inhibiting cell proliferation and inducing apoptosis in several cell lines. For in vivo study, a survivin/baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5)-derived peptide was selected, due to its overexpression in many cancers and its involvement in mitosis, apoptosis, autophagy, cell proliferation, inflammation, and immune responses, as a target for cancer therapy. Specifically, a SMAC-targeting survivin/BIRC5-derived peptide, given intratumorally or intravenously, strongly inhibited lung tumor growth, cell proliferation, angiogenesis, and inflammation, induced apoptosis, and remodeled the tumor microenvironment. The peptide promoted tumor infiltration of CD-8+ cells and increased cell-intrinsic programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, resulting in cancer cell self-destruction and increased tumor cell death, preserving immune cells. Thus, targeting the interaction between the multifunctional proteins SMAC and survivin represents an innovative therapeutic cancer paradigm.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Proliferação de Células , Proteínas Mitocondriais , Survivina , Humanos , Survivina/metabolismo , Survivina/genética , Animais , Camundongos , Proteínas Mitocondriais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Inflamação/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Ligação Proteica , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/genética , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos/farmacologia , Peptídeos/química , Terapia de Imunossupressão
5.
Drug Resist Updat ; 73: 101065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367548

RESUMO

AIMS: To investigate the collateral sensitivity (CS) of ABCB1-positive multidrug resistant (MDR) colorectal cancer cells to the survivin inhibitor MX106-4C and the mechanism. METHODS: Biochemical assays (MTT, ATPase, drug accumulation/efflux, Western blot, RT-qPCR, immunofluorescence, flow cytometry) and bioinformatic analyses (mRNA-sequencing, reversed-phase protein array) were performed to investigate the hypersensitivity of ABCB1 overexpressing colorectal cancer cells to MX106-4C and the mechanisms. Synergism assay, long-term selection, and 3D tumor spheroid test were used to evaluate the anti-cancer efficacy of MX106-4C. RESULTS: MX106-4C selectively killed ABCB1-positive colorectal cancer cells, which could be reversed by an ABCB1 inhibitor, knockout of ABCB1, or loss-of-function ABCB1 mutation, indicating an ABCB1 expression and function-dependent mechanism. MX106-4C's selective toxicity was associated with cell cycle arrest and apoptosis through ABCB1-dependent survivin inhibition and activation on caspases-3/7 as well as modulation on p21-CDK4/6-pRb pathway. MX106-4C had good selectivity against ABCB1-positive colorectal cancer cells and retained this in multicellular tumor spheroids. In addition, MX106-4C could exert a synergistic anti-cancer effect with doxorubicin or re-sensitize ABCB1-positive cancer cells to doxorubicin by reducing ABCB1 expression in the cell population via long-term exposure. CONCLUSIONS: MX106-4C selectively kills ABCB1-positive MDR colorectal cancer cells via a novel ABCB1-dependent survivin inhibition mechanism, providing a clue for designing CS compound as an alternative strategy to overcome ABCB1-mediated colorectal cancer MDR.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Survivina/genética , Survivina/metabolismo , Survivina/farmacologia , Resistência a Múltiplos Medicamentos/genética , Sensibilidade Colateral a Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Antineoplásicos/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia
6.
Genes Dev ; 31(12): 1177-1179, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28765159

RESUMO

Converging evidence from numerous laboratories has revealed that malignant brain cancers are complex ecological systems composed of distinct cellular and acellular elements that collectively dictate glioblastoma biology. Our understanding of the individual contributions of each of these components is vital to the design of effective therapies against these cancers. In this issue of Genes & Development, Zanca and colleagues (pp. 1212-1227) demonstrate that one subpopulation of glioblastoma cells expressing a mutant epidermal growth factor receptor (EGFRvIII) is responsible for the survival of non-EGFRvIII-expressing tumor cells as well as for evading molecularly targeted therapy.


Assuntos
Neoplasias Encefálicas/genética , Receptores ErbB/genética , Glioblastoma/genética , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/terapia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/fisiopatologia , Glioblastoma/terapia , Humanos , Terapia de Alvo Molecular , Mutação
7.
Genes Dev ; 31(12): 1212-1227, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28724615

RESUMO

In glioblastoma (GBM), heterogeneous expression of amplified and mutated epidermal growth factor receptor (EGFR) presents a substantial challenge for the effective use of EGFR-directed therapeutics. Here we demonstrate that heterogeneous expression of the wild-type receptor and its constitutively active mutant form, EGFRvIII, limits sensitivity to these therapies through an interclonal communication mechanism mediated by interleukin-6 (IL-6) cytokine secreted from EGFRvIII-positive tumor cells. IL-6 activates a NF-κB signaling axis in a paracrine and autocrine manner, leading to bromodomain protein 4 (BRD4)-dependent expression of the prosurvival protein survivin (BIRC5) and attenuation of sensitivity to EGFR tyrosine kinase inhibitors (TKIs). NF-κB and survivin are coordinately up-regulated in GBM patient tumors, and functional inhibition of either protein or BRD4 in in vitro and in vivo models restores sensitivity to EGFR TKIs. These results provide a rationale for improving anti-EGFR therapeutic efficacy through pharmacological uncoupling of a convergence point of NF-κB-mediated survival that is leveraged by an interclonal circuitry mechanism established by intratumoral mutational heterogeneity.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/fisiopatologia , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais/genética , Animais , Comunicação Celular , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Nus , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Cell Mol Med ; 28(7): e18150, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38494866

RESUMO

The anti-apoptotic proteins, Bcl-2 and Survivin, are consistently overexpressed in numerous human malignancies, notably in colorectal cancer. 2,4-Di-tert-butylphenol (2,4-DTBP) is a naturally occurring phenolic compound known for its diverse biological activities, including anti-cancer properties. The mechanism behind 2,4-DTBP-induced inhibition of cell proliferation and apoptosis in human colorectal cancer cells, specifically regarding Bcl-2 and Survivin, remains to be elucidated. In this study, we employed both in silico and in vitro methodologies to underpin this interaction at the molecular level. Molecular docking demonstrated a substantial binding affinity of 2,4-DTBP towards Bcl-2 (ΔG = -9.8 kcal/mol) and Survivin (ΔG = -5.6 kcal/mol), suggesting a potential inhibitory effect. Further, molecular dynamic simulations complemented by MM-GBSA calculations confirmed the significant binding of 2,4-DTBP with Bcl-2 (dGbind = -54.85 ± 6.79 kcal/mol) and Survivin (dGbind = -32.36 ± 1.29 kcal/mol). In vitro assays using HCT116 colorectal cancer cells revealed that 2,4-DTBP inhibited proliferation and promoted apoptosis in both a dose- and time-dependent manner. Fluorescence imaging and scanning electron microscopy illustrated the classical features associated with apoptosis upon 2,4-DTBP exposure. Cell cycle analysis through flow cytometry highlighted a G1 phase arrest and apoptosis assay demonstrated increased apoptotic cell population. Notably, western blotting results indicated a decreased expression of Bcl-2 and Survivin post-treatment. Considering the cytoprotective roles of Bcl-2 and Survivin through the inhibition of mitochondrial dysfunction, our findings of disrupted mitochondrial bioenergetics, characterized by reduced ATP production and oxygen consumption, further accentuate the functional impairment of these proteins. Overall, the integration of in silico and in vitro data suggests that 2,4-DTBP holds promise as a therapeutic agent targeting Bcl-2 and Survivin in colorectal cancer.


Assuntos
Neoplasias Colorretais , Fenóis , Humanos , Survivina , Simulação de Acoplamento Molecular , Proliferação de Células
9.
J Biol Chem ; 299(2): 102842, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581205

RESUMO

The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-myc , Proteínas Proto-Oncogênicas p21(ras) , Survivina , Humanos , Linhagem Celular Tumoral , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Fosfatase 2/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Survivina/genética , Survivina/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Pancreáticas
10.
Apoptosis ; 29(3-4): 503-520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38066391

RESUMO

The hypomethylation agent decitabine (DAC), in combination with other apoptosis inducers, is considered a potential modality for cancer treatment. We investigated the mechanism underlying the combined cytotoxicity of DAC and YM155 in acute myeloid leukemia (AML) cells because of increasing evidence that YM155 induces apoptosis in cancer cells. Co-administration of DAC and YM155 resulted in synergistic cytotoxicity in AML U937 cells, which was characterized by the induction of apoptosis, NOXA-dependent degradation of MCL1 and survivin, and depolarization of mitochondria. Restoration of MCL1 or survivin expression attenuated DAC/YM155-induced U937 cell death. DAC initiated AKT and p38 MAPK phosphorylation in a Ca2+/ROS-dependent manner, thereby promoting autophagy-mediated degradation of ß-TrCP mRNA, leading to increased Sp1 expression. DAC-induced Sp1 expression associated with Ten-eleven-translocation (TET) dioxygenases and p300 was used to upregulate the expression of SLC35F2. Simultaneously, the activation of p38 MAPK induced by DAC, promoted CREB-mediated NOXA expression, resulting in survivin and MCL1 degradation. The synergistic cytotoxicity of DAC and YM155 in U937 cells was dependent on elevated SLC35F2 expression. Additionally, YM155 facilitated DAC-induced degradation of MCL1 and survivin. A similar mechanism explained DAC/YM155-mediated cytotoxicity in AML HL-60 cells. Our data demonstrated that the synergistic cytotoxicity of DAC and YM155 in AML cell lines U937 and HL-60 is dependent on AKT- and p38 MAPK-mediated upregulation of SLC35F2 and p38 MAPK-mediated degradation of survivin and MCL1. This indicates that a treatment regimen that amalgamates YM155 and DAC may be beneficial for AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Membrana Transportadoras , Naftoquinonas , Humanos , Survivina/genética , Survivina/metabolismo , Apoptose , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Decitabina/farmacologia , Células U937 , Regulação para Cima , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Naftoquinonas/farmacologia , Linhagem Celular Tumoral
11.
Biochem Biophys Res Commun ; 706: 149741, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38471204

RESUMO

The chromosome passenger complex (CPC) is a kinase complex formed by Aurora B, borealin, survivin and inner centromere protein (INCENP). The CPC is active during mitosis and contributes to proper chromosome segregation via the phosphorylation of various substrates. Overexpression of each CPC component has been reported in most cancers. However, its significance remains unclear, as only survivin is known to confer chemoresistance. This study showed that the overexpression of borealin, a CPC component, stabilized survivin protein depending on its interaction with survivin. Unexpectedly, the accumulation of survivin by borealin overexpression did not affect the well-characterized functions of survivin, such as chemoresistance and cell proliferation. Interestingly, the overexpression of borealin promoted lactate production but not the overexpression of the deletion mutant that lacks the ability to bind to survivin. Consistent with these findings, the expression levels of glycolysis-related genes were enhanced in borealin-overexpressing cancer cells. Meanwhile, the overexpression of survivin alone did not promote lactate production. Overall, the accumulation of the borealin-survivin complex promoted glycolysis in squamous cell carcinoma cells. This mechanism may contribute to cancer progression via excessive lactate production.


Assuntos
Carcinoma de Células Escamosas , Centrômero , Humanos , Survivina/genética , Survivina/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Fosforilação , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Carcinoma de Células Escamosas/genética , Lactatos
12.
J Biochem Mol Toxicol ; 38(1): e23635, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229313

RESUMO

Arsenic is a toxic metalloid found in the environment in different organic and inorganic forms. Molecular mechanisms implicated in arsenic hepatotoxicity are complex but include oxidative stress, apoptosis, and autophagy. The current study focused on the potential protective capacity of melatonin against arsenic-induced hepatotoxicity. Thirty-six male Wistar rats were allocated into control, arsenic (15 mg/kg; orally), arsenic (15 mg/kg) plus melatonin (10, 20, and 30 mg/kg; intraperitoneally), and melatonin alone (30 mg/kg) groups for 28 days. After the treatment period, the serum sample was separated to measure liver enzymes (AST and ALT). The liver tissue was removed and then histological alterations, oxidative stress markers, antioxidant capacity, the levels of Nrf2 and HO-1, apoptosis (Bcl-2, survivin, Mcl1, Bax, and caspase-3), and autophagy (Sirt1, Beclin-1, and LC3 II/I ratio) proteins, as well as the expression level of miR-34a, were evaluated on this tissue. Arsenic exposure resulted in the enhancement of serum AST, ALT, and substantial histological damage in the liver. Increased levels of malondialdehyde, a lipid peroxidation marker, and decreased levels of physiological antioxidants including glutathione, superoxide dismutase, and catalase were indicators of arsenic-induced oxidative damage. The levels of Nrf2, HO-1, and antiapoptotic proteins diminished, while proapoptotic and autophagy proteins were elevated in the arsenic group concomitant with a low level of hepatic miR-34a. The co-treatment of melatonin and arsenic reversed the changes caused by arsenic. These findings showed that melatonin reduced the hepatic damage induced by arsenic due to its antioxidant and antiapoptotic properties as well as its regulatory effect on the miR-34a/Sirt1/autophagy pathway.


Assuntos
Arsênio , Doença Hepática Induzida por Substâncias e Drogas , Melatonina , MicroRNAs , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Melatonina/farmacologia , Arsênio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Ratos Wistar , Fígado/metabolismo , Estresse Oxidativo , Apoptose , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Autofagia
13.
Mol Divers ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689175

RESUMO

The understanding of the molecular basis of complex diseases like hepatocellular carcinoma (HCC) needs large datasets of multiple genes and proteins involved in different phenomenon of its development. This study focuses on the molecular basis of HCC and the development of therapeutic strategies. We analyzed a dataset of 5475 genes (Homo sapiens) involved in HCC hallmarks, involving comprehensive data on multiple genes and frequently mutated genes. As HCC is characterized by metastasis, angiogenesis, and oxidative stress, exploration of genes associated with them has been targeted. Through gene ontology, functional characterization, and pathway enrichment analysis, we identified target proteins such as Lysyl oxidase, Survivin, Cofilin, and Cathepsin B. A library of curcumin analogs was used to target these proteins. Tetrahrydrocurcumin showed promising binding affinities for all four proteins, suggesting its potential as an inhibitor against these proteins for HCC therapy.

14.
Vet Pathol ; : 3009858241246981, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727195

RESUMO

High survivin expression has been correlated with poor outcomes in several canine tumors but not in soft tissue tumors (STTs). Survivin is a target gene of the Wnt/ß-catenin pathway, which is involved in human STT oncogenesis. Immunohistochemistry for survivin, ß-catenin, and Ki-67 was performed on 41 canine perivascular wall tumors (cPWTs), and statistical associations of protein expression and histopathologic and clinical variables with clinical outcomes were investigated. Immunohistochemically, there was nuclear positivity (0.9%-12.2% of tumor cells) for survivin in 41/41 (100%), cytoplasmic positivity (0 to > 75% of tumor cells) for survivin in 31/41 (76%), nuclear positivity (2.9%-67.2% of tumor cells) for ß-catenin in 24/41 (59%), and cytoplasmic positivity (0% to > 75% of tumor cells) for ß-catenin in 23/41 (56%) of cPWTs. All tumors expressed nuclear Ki-67 (2.2%-23.5%). In univariate analysis and multivariate analysis (UA and MA, respectively), every 1% increase of nuclear survivin was associated with an increase of the instantaneous death risk by a factor of 1.15 [hazard ratio (HR) = 1.15; P = .007]. Higher nuclear survivin was associated with grade II/III neoplasms (P = .043). Expression of cytoplasmic survivin, nuclear and cytoplasmic ß-catenin, and nuclear Ki-67 were not significantly associated with prognosis in UA nor MA. Tumor size was a significant prognostic factor for local recurrence in UA [subdistribution HR (SDHR) = 1.19; P = .02] and for reduced overall survival time in MA. According to UA and MA, a unitary increase of mitotic count was associated with an increase of the instantaneous death risk by a factor of 1.05 (HR = 1.05; P = .014). Nuclear survivin, mitotic count, and tumor size seem to be potential prognostic factors for cPWTs. In addition, survivin and ß-catenin may represent promising therapeutic targets for cPWTs.

15.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836600

RESUMO

The telomerase reverse transcriptase (TERT) has long been pursued as a direct therapeutic target in human cancer, which is currently hindered by the lack of effective specific inhibitors of TERT. The FOS/GABPB/(mutant) TERT cascade plays a critical role in the regulation of mutant TERT, in which FOS acts as a transcriptional factor for GABPB to up-regulate the expression of GABPB, which in turn activates mutant but not wild-type TERT promoter, driving TERT-promoted oncogenesis. In the present study, we demonstrated that inhibiting this cascade by targeting FOS using FOS inhibitor T-5224 suppressed mutant TERT cancer cells and tumors by inducing robust cell apoptosis; these did not occur in wild-type TERT cells and tumors. Mechanistically, among 35 apoptotic cascade-related proteins tested, the apoptosis induced in this process specifically involved the transcriptional activation of tumor necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) and inactivation of survivin, two key players in the apoptotic cascade, which normally initiate and suppress the apoptotic cascade, respectively. These findings with suppression of FOS were reproduced by direct knockdown of TERT and prevented by prior knockdown of TRAIL-R2. Further experiments demonstrated that TERT acted as a direct transcriptional factor of survivin, up-regulating its expression. Thus, this study identifies a therapeutic strategy for TERT promoter mutation-driven cancers by targeting FOS in the FOS/GABPB/(mutant) TERT cascade, circumventing the current challenge in pharmacologically directly targeting TERT itself. This study also uncovers a mechanism through which TERT controls cell apoptosis by transcriptionally regulating two key players in the apoptotic cascade.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias/genética , Proteínas Proto-Oncogênicas c-fos/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Survivina/genética , Telomerase/genética , Benzofenonas/farmacologia , Benzofenonas/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Fator de Transcrição de Proteínas de Ligação GA/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos , Survivina/metabolismo , Telomerase/metabolismo
16.
Mol Cancer ; 22(1): 88, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37246217

RESUMO

BACKGROUND: Neuroblastoma is the most common solid tumor in infants accounting for approximately 15% of all cancer-related deaths. Over 50% of high-risk neuroblastoma relapse, emphasizing the need of novel drug targets and therapeutic strategies. In neuroblastoma, chromosomal gains at chromosome 17q, including IGF2BP1, and MYCN amplification at chromosome 2p are associated with adverse outcome. Recent, pre-clinical evidence indicates the feasibility of direct and indirect targeting of IGF2BP1 and MYCN in cancer treatment. METHODS: Candidate oncogenes on 17q were identified by profiling the transcriptomic/genomic landscape of 100 human neuroblastoma samples and public gene essentiality data. Molecular mechanisms and gene expression profiles underlying the oncogenic and therapeutic target potential of the 17q oncogene IGF2BP1 and its cross-talk with MYCN were characterized and validated in human neuroblastoma cells, xenografts and PDX as well as novel IGF2BP1/MYCN transgene mouse models. RESULTS: We reveal a novel, druggable feedforward loop of IGF2BP1 (17q) and MYCN (2p) in high-risk neuroblastoma. This promotes 2p/17q chromosomal gains and unleashes an oncogene storm resulting in fostered expression of 17q oncogenes like BIRC5 (survivin). Conditional, sympatho-adrenal transgene expression of IGF2BP1 induces neuroblastoma at a 100% incidence. IGF2BP1-driven malignancies are reminiscent to human high-risk neuroblastoma, including 2p/17q-syntenic chromosomal gains and upregulation of Mycn, Birc5, as well as key neuroblastoma circuit factors like Phox2b. Co-expression of IGF2BP1/MYCN reduces disease latency and survival probability by fostering oncogene expression. Combined inhibition of IGF2BP1 by BTYNB, MYCN by BRD inhibitors or BIRC5 by YM-155 is beneficial in vitro and, for BTYNB, also. CONCLUSION: We reveal a novel, druggable neuroblastoma oncogene circuit settling on strong, transcriptional/post-transcriptional synergy of MYCN and IGF2BP1. MYCN/IGF2BP1 feedforward regulation promotes an oncogene storm harboring high therapeutic potential for combined, targeted inhibition of IGF2BP1, MYCN expression and MYCN/IGF2BP1-effectors like BIRC5.


Assuntos
Neuroblastoma , Animais , Humanos , Lactente , Camundongos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes myc , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Recidiva Local de Neoplasia/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo
17.
Biochem Biophys Res Commun ; 682: 141-147, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37806253

RESUMO

Baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) is also known as survivin. BIRC5, a member of the apoptosis inhibitor (IAP) family, negatively regulates apoptosis or programmed cell death by inhibiting caspase activation. Due to these properties, overexpression of BIRC5 enables specific survival and division associated with cancer malignancies. In addition, BIRC5 is highly expressed in stem cells, but not present at all in terminally differentiated cells. On this basis, there is speculation that BIRC5 may be involved in the regulation of cancer stem cells (CSCs), but few study results have been reported. In addition, the molecular mechanisms of BIRC5 regulation are not yet well understood. Through the present study, it was confirmed that BIRC5 is a key factor regulating CSCs and epithelial to mesenchymal transition (EMT). BIRC5 was simultaneously overexpressed in lung cancer stem cells (LCSCs) and glioma stem cells (GSCs), and when the expression was suppressed, the characteristics of CSCs disappeared. In addition, plasminogen activator inhibitor-1 (PAI-1), a secreted factor regulated by BIRC5, is involved in signaling mechanisms that regulate cancer stem cells and EMT, and PAI-1 forms an autocrine chain. Based on these results, BIRC5 is proposed as a novel therapeutic target protein for LCSCs and GSCs.


Assuntos
Neoplasias Pulmonares , Inibidor 1 de Ativador de Plasminogênio , Humanos , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/genética , Células-Tronco Neoplásicas , Pulmão , Survivina/genética
18.
BMC Cancer ; 23(1): 1148, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007466

RESUMO

BACKGROUND: Neuroblastoma (NB), the most common extracranial solid malignancy in children, carries a poor prognosis in high-risk disease, thus requiring novel therapeutic approaches. Survivin is overexpressed in NB, has pro-mitotic and anti-apoptotic functions, and impacts on oxidative phosphorylation (OXPHOS) and aerobic glycolysis. The subcellular localization and hence function of survivin is directed by the GTPase Ran. AIM: To determine efficacy and modes of action of the survivin-Ran inhibitor LLP-3 as a potential novel therapy of NB. METHODS: Survivin and Ran mRNA expression in NB tumors was correlated to patient survival. Response to LLP-3 in NB cell lines was determined by assays for viability, proliferation, apoptosis, clonogenicity and anchorage-independent growth. Interaction of survivin and Ran was assessed by proximity-linked ligation assay and their subcellular distribution by confocal immunofluorescence microscopy. Expression of survivin, Ran and proteins important for OXPHOS and glycolysis was determined by Western blot, hexokinase activity by enzymatic assay, interaction of survivin with HIF-1α by co-IP, and OXPHOS and glycolysis by extracellular flux analyzer. RESULTS: High mRNA expression of survivin and Ran is correlated with poor patient survival. LLP-3 decreases viability, induces apoptosis, and inhibits clonogenic and anchorage-independent growth in NB cell lines, including those with MYCN amplification, and mutations of p53 and ALK. LLP-3 inhibits interaction of survivin with Ran, decreasing their concentration both in the cytoplasm and the nucleus. LLP-3 impairs flexibility of energy metabolism by inhibiting both OXPHOS and glycolysis. Metabolic inhibition is associated with mitochondrial dysfunction and attenuated hexokinase activity but is independent of HIF-1α. CONCLUSION: LLP-3 attenuates interaction and concentration of survivin and Ran in NB cells. It controls NB cells with diverse genetic alterations, associated with inhibition of OXPHOS, aerobic glycolysis, mitochondrial function and HK activity. Thus, LLP-3 warrants further studies as a novel drug against NB.


Assuntos
Neuroblastoma , Fosforilação Oxidativa , Criança , Humanos , Survivina/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Linhagem Celular Tumoral , Apoptose/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Glicólise , RNA Mensageiro/metabolismo , Proliferação de Células
19.
BMC Cancer ; 23(1): 806, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644431

RESUMO

BACKGROUND: HeberFERON is a co-formulation of α2b and γ interferons, based on their synergism, which has shown its clinical superiority over individual interferons in basal cell carcinomas. In glioblastoma (GBM), HeberFERON has displayed promising preclinical and clinical results. This led us to design a microarray experiment aimed at identifying the molecular mechanisms involved in the distinctive effect of HeberFERON compared to the individual interferons in U-87MG model. METHODS: Transcriptional expression profiling including a control (untreated) and three groups receiving α2b-interferon, γ-interferon and HeberFERON was performed using an Illumina HT-12 microarray platform. Unsupervised methods for gene and sample grouping, identification of differentially expressed genes, functional enrichment and network analysis computational biology methods were applied to identify distinctive transcription patterns of HeberFERON. Validation of most representative genes was performed by qPCR. For the cell cycle analysis of cells treated with HeberFERON for 24 h, 48 and 72 h we used flow cytometry. RESULTS: The three treatments show different behavior based on the gene expression profiles. The enrichment analysis identified several mitotic cell cycle related events, in particular from prometaphase to anaphase, which are exclusively targeted by HeberFERON. The FOXM1 transcription factor network that is involved in several cell cycle phases and is highly expressed in GBMs, is significantly down regulated. Flow cytometry experiments corroborated the action of HeberFERON on the cell cycle in a dose and time dependent manner with a clear cellular arrest as of 24 h post-treatment. Despite the fact that p53 was not down-regulated, several genes involved in its regulatory activity were functionally enriched. Network analysis also revealed a strong relationship of p53 with genes targeted by HeberFERON. We propose a mechanistic model to explain this distinctive action, based on the simultaneous activation of PKR and ATF3, p53 phosphorylation changes, as well as its reduced MDM2 mediated ubiquitination and export from the nucleus to the cytoplasm. PLK1, AURKB, BIRC5 and CCNB1 genes, all regulated by FOXM1, also play central roles in this model. These and other interactions could explain a G2/M arrest and the effect of HeberFERON on the proliferation of U-87MG. CONCLUSIONS: We proposed molecular mechanisms underlying the distinctive behavior of HeberFERON compared to the treatments with the individual interferons in U-87MG model, where cell cycle related events were highly relevant.


Assuntos
Glioblastoma , Neoplasias Cutâneas , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Interferon-alfa/farmacologia , Anáfase , Interferon gama/farmacologia
20.
Fish Shellfish Immunol ; 136: 108736, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37054764

RESUMO

This study aimed to elucidate the mechanisms of yellow mealworm (Tenebrio Molitor, YM) in intestinal immunity and health. Largemouth bass, as an enteritis modeling animal, were fed 3 diets containing YM at 0% (YM0), 24% (YM24) and 48% (YM48). The YM24 group had reduced levels of proinflammatory cytokines, while the YM48 group experienced a negative impact on intestinal health. Next, the Edwardsiella tarda (E. tarda) challenge test consisted of 4 YM diets, 0% (EYM0), 12% (EYM12), 24% (EYM24), and 36% (EYM36). The EYM0 and EYM12 groups exhibited intestinal damage and immunosuppression by the pathogenic bacteria. However, the above adverse phenotypes were attenuated in the EYM24 and EYM36 groups. Mechanistically, the EYM24 and EYM36 groups enhanced intestinal immunity in largemouth bass via activating NFκBp65 and further upregulating survivin expression to inhibit apoptosis. The results identify a protective mechanism of YM as a novel food or feed source by improving intestinal health.


Assuntos
Bass , Tenebrio , Animais , Bass/genética , Survivina , Dieta/veterinária , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA