Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30690152

RESUMO

The most capricious environmental variable in aquatic habitats, dissolved O2, is fundamental to the fitness and survival of fish. Using swim tunnel respirometry we test how acute exposure to reduced O2 levels, similar to those commonly encountered by fish in crowded streams and on commercial aquaculture farms, affect metabolic rate and swimming performance in Atlantic salmon of three size classes: 0.2, 1.0 and 3.5 kg. Exposure to 45-55% dissolved O2 saturation substantially reduced the aerobic capacity and swimming performance of salmon of all sizes. While hypoxia did not affect standard metabolic rate, it caused a significant decrease in maximum metabolic rate, resulting in reduced absolute and factorial aerobic scope. The most pronounced changes were observed in the smallest fish, where critical swimming speed was reduced from 91 to 70 cm s-1 and absolute aerobic scope dropped by 62% relative to the same measurement in normoxia. In normoxia, absolute critical swimming speed (Ucrit) increased with size, while relative Ucrit, measured in body lengths s-1, was highest in the small fish (3.5) and decreased with larger size (medium = 2.2). Mass specific metabolic rate and cost of transport were inversely related to size, with calculated metabolic scaling exponents of 0.65 for bSMR and 0.78 for bMMR. Metabolic O2 demand increased exponentially with current speed irrespective of fish size (R2 = 0.97-0.99). This work demonstrates that moderate hypoxia reduces the capacity for activity and locomotion in Atlantic salmon, with smaller salmon most vulnerable to hypoxic conditions. As warm and hypoxic conditions become more prevalent in aquatic environments worldwide, understanding local O2 budgets is critical to maximizing the welfare and survival of farmed and wild salmon.


Assuntos
Tamanho Corporal , Hipóxia , Salmo salar/metabolismo , Animais , Aquicultura , Metabolismo Energético , Oxigênio/metabolismo , Salmo salar/fisiologia , Natação/fisiologia
2.
J Fish Biol ; 95(3): 893-902, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31265133

RESUMO

In this study, swim-tunnel respirometry was performed on Atlantic salmon Salmo salar post-smolts in a 90 l respirometer on individuals and compared with groups or individuals of similar sizes tested in a 1905 l respirometer, to determine if differences between set-ups and protocols exist. Standard metabolic rate (SMR) derived from the lowest oxygen uptake rate cycles over a 20 h period was statistically similar to SMR derived from back extrapolating to zero swim speed. However, maximum metabolic rate (MMR) estimates varied significantly between swimming at maximum speed, following an exhaustive chase protocol and during confinement stress. Most notably, the mean (±SE) MMR was 511 ± 15 mg O2 kg-1 h-1 in the swim test which was 52% higher compared with 337 ± 9 mg O2 kg-1 in the chase protocol, showing that the latter approach causes a substantial underestimation. Performing group respirometry in the larger swim tunnel provided statistically similar estimates of SMR and MMR as for individual fish tested in the smaller tunnel. While we hypothesised a larger swim section and swimming in groups would improve swimming performance, Ucrit was statistically similar between both set-ups and statistically similar between swimming alone v. swimming in groups in the larger set-up, suggesting that this species does not benefit hydrodynamically from swimming in a school in these conditions. Different methods and set-ups have their own respective limitations and advantages depending on the questions being addressed, the time available, the number of replicates required and if supplementary samplings such as blood or gill tissues are needed. Hence, method choice should be carefully considered when planning experiments and when comparing previous studies.


Assuntos
Metabolismo Energético/fisiologia , Consumo de Oxigênio/fisiologia , Salmo salar/fisiologia , Natação/fisiologia , Animais
3.
Front Physiol ; 11: 759, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733272

RESUMO

The aim of this study was to investigate swimming performance and oxygen consumption as non-lethal indicator traits of production parameters in Atlantic salmon Salmo salar L. and Gilthead seabream Sparus aurata L. A total of 34 individual fish of each species were subjected to a series of experiments: (1) a critical swimming speed (Ucrit) test in a swim-gutter, followed by (2) two starvation-refeeding periods of 42 days, and (3) swimming performance experiments coupled to respirometry in swim-tunnels. Ucrit was assessed first to test it as a predictor trait. Starvation-refeeding traits included body weight; feed conversion ratio based on dry matter; residual feed intake; average daily weight gain and loss. Swim-tunnel respirometry provided oxygen consumption in rest and while swimming at the different speeds, optimal swim speed and minimal cost of transport (COT). After experiments, fish were dissected and measured for tissue weights and body composition in terms of dry matter, ash, fat, protein and moist, and energy content. The Ucrit test design was able to provide individual Ucrit values in high throughput manner. The residual Ucrit (RUcrit) should be considered in order to remove the size dependency of swimming performance. Most importantly, RUcrit predicted filet yield in both species. The minimal COT, the oxygen consumption when swimming at Uopt, added predictive value to the seabream model for feed intake.

4.
Conserv Physiol ; 8(1): coaa045, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32494362

RESUMO

Extensions of species' geographical distributions, or range extensions, are among the primary ecological responses to climate change in the oceans. Considerable variation across the rates at which species' ranges change with temperature hinders our ability to forecast range extensions based on climate data alone. To better manage the consequences of ongoing and future range extensions for global marine biodiversity, more information is needed on the biological mechanisms that link temperatures to range limits. This is especially important at understudied, low relative temperatures relevant to poleward range extensions, which appear to outpace warm range edge contractions four times over. Here, we capitalized on the ongoing range extension of a teleost predator, the Australasian snapper Chrysophrys auratus, to examine multiple measures of ecologically relevant physiological performance at the population's poleward range extension front. Swim tunnel respirometry was used to determine how mid-range and poleward range edge winter acclimation temperatures affect metabolic rate, aerobic scope, swimming performance and efficiency and recovery from exercise. Relative to 'optimal' mid-range temperature acclimation, subsequent range edge minimum temperature acclimation resulted in absolute aerobic scope decreasing while factorial aerobic scope increased; efficiency of swimming increased while maximum sustainable swimming speed decreased; and recovery from exercise required a longer duration despite lower oxygen payback. Cold-acclimated swimming faster than 0.9 body lengths sec-1 required a greater proportion of aerobic scope despite decreased cost of transport. Reduced aerobic scope did not account for declines in recovery and lower maximum sustainable swimming speed. These results suggest that while performances decline at range edge minimum temperatures, cold-acclimated snapper are optimized for energy savings and range edge limitation may arise from suboptimal temperature exposure throughout the year rather than acute minimum temperature exposure. We propose incorporating performance data with in situ behaviour and environmental data in bioenergetic models to better understand how thermal tolerance determines range limits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA