Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 694
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(6): 1562-1571.e12, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33306955

RESUMO

Ticks transmit a diverse array of microbes to vertebrate hosts, including human pathogens, which has led to a human-centric focus in this vector system. Far less is known about pathogens of ticks themselves. Here, we discover that a toxin in blacklegged ticks (Ixodes scapularis) horizontally acquired from bacteria-called domesticated amidase effector 2 (dae2)-has evolved to kill mammalian skin microbes with remarkable efficiency. Secreted into the saliva and gut of ticks, Dae2 limits skin-associated staphylococci in ticks while feeding. In contrast, Dae2 has no intrinsic ability to kill Borrelia burgdorferi, the tick-borne Lyme disease bacterial pathogen. These findings suggest ticks resist their own pathogens while tolerating symbionts. Thus, just as tick symbionts can be pathogenic to humans, mammalian commensals can be harmful to ticks. Our study underscores how virulence is context-dependent and bolsters the idea that "pathogen" is a status and not an identity.


Assuntos
Bactérias/metabolismo , Fatores Imunológicos/metabolismo , Ixodes/fisiologia , Pele/microbiologia , Simbiose , Animais , Antibacterianos/farmacologia , Biocatálise , Parede Celular/metabolismo , Comportamento Alimentar , Feminino , Trato Gastrointestinal/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Modelos Moleculares , Peptidoglicano/metabolismo , Filogenia , Saliva/metabolismo , Glândulas Salivares/metabolismo , Staphylococcus epidermidis/fisiologia , Homologia Estrutural de Proteína , Especificidade por Substrato , Regulação para Cima
2.
Proc Natl Acad Sci U S A ; 121(25): e2406788121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865267

RESUMO

Heritable symbionts are common among animals in nature, but the molecular mechanisms underpinning symbiont invasions of host populations have been elusive. In this study, we demonstrate the spread of Rickettsia in an invasive agricultural pest, the whitefly Bemisia tabaci Mediterranean (MED), across northeastern China from 2018 to 2023. Here, we show that the beneficial symbiont Rickettsia spreads by manipulating host hormone signals. Our analyses suggest that Rickettsia have been horizontally acquired by B. tabaci MED from another invasive whitefly B. tabaci Middle East-Asia Minor 1 during periods of coexistence. Rickettsia is transmitted maternally and horizontally from female B. tabaci MED individuals. Rickettsia infection enhances fecundity and results in female bias among whiteflies. Our findings reveal that Rickettsia infection stimulates juvenile hormone (JH) synthesis, in turn enhancing fecundity, copulation events, and the female ratio of the offspring. Consequently, Rickettsia infection results in increased whitefly fecundity and female bias by modulating the JH pathway. More female progeny facilitates the transmission of Rickettsia. This study illustrates that the spread of Rickettsia among invasive whiteflies in northeastern China is propelled by host hormone regulation. Such symbiont invasions lead to rapid physiological and molecular evolution in the host, influencing the biology and ecology of an invasive species.


Assuntos
Fertilidade , Hemípteros , Rickettsia , Razão de Masculinidade , Simbiose , Animais , Rickettsia/fisiologia , Hemípteros/microbiologia , Hemípteros/fisiologia , Feminino , Masculino , Hormônios Juvenis/metabolismo , China
3.
Proc Natl Acad Sci U S A ; 120(40): e2304879120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37769258

RESUMO

Many insects are dependent on microbial mutualists, which are often harbored in specialized symbiotic organs. Upon metamorphosis, insect organs are drastically reorganized. What mechanism regulates the remodeling of the symbiotic organ upon metamorphosis? How does it affect the microbial symbiont therein? Here, we addressed these fundamental issues of symbiosis by experimentally manipulating insect metamorphosis. The stinkbug Plautia stali possesses a midgut symbiotic organ wherein an essential bacterial symbiont resides. By RNAi of master regulator genes for metamorphosis, Kr-h1 over nymphal traits and E93 over adult traits, we generated precocious adults and supernumerary nymphs of P. stali, thereby disentangling the effects of metamorphosis, growth level, developmental stage, and other factors on the symbiotic system. Upon metamorphosis, the symbiotic organ of P. stali was transformed from nymph type to adult type. The supernumerary nymphs and the precocious adults, respectively, developed nymph-type and adult-type symbiotic organs not only morphologically but also transcriptomically, uncovering that metamorphic remodeling of the symbiotic organ is under the control of the MEKRE93 pathway. Transcriptomic, cytological, and biochemical analyses unveiled that the structural and transcriptomic remodeling of the symbiotic organ toward adult emergence underpins its functional extension to food digestion in addition to the original role of symbiont retention for essential nutrient production. Notably, we found that the symbiotic bacteria in the adult-type symbiotic organ up-regulated genes for production of sulfur-containing essential amino acids, methionine and cysteine, that are rich in eggs and sperm, uncovering adult-specific symbiont functioning for host reproduction and highlighting intricate host-symbiont interactions associated with insect metamorphosis.


Assuntos
Heterópteros , Simbiose , Masculino , Animais , Simbiose/fisiologia , Sêmen , Sistema Digestório/microbiologia , Insetos , Heterópteros/fisiologia , Bactérias/genética , Metamorfose Biológica
4.
Proc Natl Acad Sci U S A ; 120(25): e2220922120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307477

RESUMO

Honey bees (Apis mellifera) are critical agricultural pollinators as well as model organisms for research on development, behavior, memory, and learning. The parasite Nosema ceranae, a common cause of honey bee colony collapse, has developed resistance to small-molecule therapeutics. An alternative long-term strategy to combat Nosema infection is therefore urgently needed, with synthetic biology offering a potential solution. Honey bees harbor specialized bacterial gut symbionts that are transmitted within hives. Previously, these have been engineered to inhibit ectoparasitic mites by expressing double-stranded RNA (dsRNA) targeting essential mite genes, via activation of the mite RNA interference (RNAi) pathway. In this study, we engineered a honey bee gut symbiont to express dsRNA targeting essential genes of N. ceranae via the parasite's own RNAi machinery. The engineered symbiont sharply reduced Nosema proliferation and improved bee survival following the parasite challenge. This protection was observed in both newly emerged and older forager bees. Furthermore, engineered symbionts were transmitted among cohoused bees, suggesting that introducing engineered symbionts to hives could result in colony-level protection.


Assuntos
Mel , Parasitos , Urticária , Abelhas , Animais , Agricultura , Genes Essenciais , RNA de Cadeia Dupla
5.
Proc Natl Acad Sci U S A ; 120(46): e2312124120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931114

RESUMO

A female-biased sex ratio is considered advantageous for the cytoplasmic elements that inhabit sexually reproducing organisms. There are numerous examples of bacterial symbionts in the arthropod cytoplasm that bias the host sex ratio toward females through various means, including feminization and male killing. Recently, maternally inherited RNA viruses belonging to the family Partitiviridae were found to cause male killing in moths and flies, but it was unknown whether male-killing viruses were restricted to Partitiviridae or could be found in other taxa. Here, we provide compelling evidence that a maternally inherited RNA virus, Spodoptera litura male-killing virus (SlMKV), selectively kills male embryos of the tobacco caterpillar Spodoptera litura, resulting in all-female broods. SlMKV injected into uninfected S. litura can also be inherited maternally and causes male killing. SlMKV has five genomic segments encoding seven open reading frames, has no homolog of known male-killing genes, and belongs to an unclassified group of arthropod-specific viruses closely related to Tolivirales. When transinfected into larvae, both male and female recipients allow SlMKV to proliferate, but only males die at the pupal stage. The viral RNA levels in embryonic and pupal male killing suggest that the mechanism of male killing involves the constitutive expression of viral products that are specifically lethal to males, rather than the male-specific expression of viral products. Our results, together with recent findings on male-killing partiti-like viruses, suggest that diverse viruses in arthropods tend to acquire male killing independently and that such viruses may be important components of intragenomic conflict in arthropods.


Assuntos
Artrópodes , Mariposas , Vírus , Feminino , Masculino , Animais , Spodoptera/genética , Larva
6.
Mol Biol Evol ; 41(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39238368

RESUMO

Insect herbivores frequently cospeciate with symbionts that enable them to survive on nutritionally unbalanced diets. While ancient symbiont gain and loss events have been pivotal for insect diversification and feeding niche specialization, evidence of recent events is scarce. We examine the recent loss of nutritional symbionts (in as little as 1 MY) in sap-feeding Pariaconus, an endemic Hawaiian insect genus that has undergone adaptive radiation, evolving various galling and free-living ecologies on a single host-plant species, Metrosideros polymorpha within the last ∼5 MY. Using 16S rRNA sequencing, we investigated the bacterial microbiomes of 19 Pariaconus species and identified distinct symbiont profiles associated with specific host-plant ecologies. Phylogenetic analyses and metagenomic reconstructions revealed significant differences in microbial diversity and functions among psyllids with different host-plant ecologies. Within a few millions of years, Pariaconus species convergently evolved the closed-gall habit twice. This shift to enclosed galls coincided with the loss of the Morganella-like symbiont that provides the essential amino acid arginine to free-living and open-gall sister species. After the Pariaconus lineage left Kauai and colonized younger islands, both open- and closed-gall species lost the Dickeya-like symbiont. This symbiont is crucial for synthesizing essential amino acids (phenylalanine, tyrosine, and lysine) as well as B vitamins in free-living species. The recurrent loss of these symbionts in galling species reinforces evidence that galls are nutrient sinks and, combined with the rapidity of the evolutionary timeline, highlights the dynamic role of insect-symbiont relationships during the diversification of feeding ecologies. We propose new Candidatus names for the novel Morganella-like and Dickeya-like symbionts.


Assuntos
Hemípteros , Herbivoria , Simbiose , Animais , Hemípteros/microbiologia , RNA Ribossômico 16S/genética , Havaí , Filogenia , Evolução Biológica , Microbiota
7.
Trends Genet ; 38(7): 708-723, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35314082

RESUMO

Mosquitoes bring global health problems by transmitting parasites and viruses such as malaria and dengue. Unfortunately, current insecticide-based control strategies are only moderately effective because of high cost and resistance. Thus, scalable, sustainable, and cost-effective strategies are needed for mosquito-borne disease control. Symbiont-based and genome engineering-based approaches provide new tools that show promise for meeting these criteria, enabling modification or suppression approaches. Symbiotic bacteria like Wolbachia are maternally inherited and manipulate mosquito host reproduction to enhance their vertical transmission. Genome engineering-based gene drive methods, in which mosquitoes are genetically altered to spread drive alleles throughout wild populations, are also proving to be a potentially powerful approach in the laboratory. Here, we review the latest developments in both symbionts and gene drive-based methods. We describe some notable similarities, as well as distinctions and obstacles, relating to these promising technologies.


Assuntos
Culicidae , Tecnologia de Impulso Genético , Malária , Wolbachia , Animais , Culicidae/genética , Malária/genética , Malária/prevenção & controle , Mosquitos Vetores/genética , Wolbachia/genética
8.
Proc Natl Acad Sci U S A ; 119(14): e2115608119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349333

RESUMO

SignificanceIn marine ecosystems, transmission of microbial symbionts between host generations occurs predominantly through the environment. Yet, it remains largely unknown how host genetics, symbiont competition, environmental conditions, and geography shape the composition of symbionts acquired by individual hosts. To address this question, we applied population genomic approaches to four species of deep-sea hydrothermal vent snails that live in association with chemosynthetic bacteria. Our analyses show that environment is more important to strain-level symbiont composition than host genetics and that symbiont strains show genetic variation indicative of adaptation to the distinct geochemical conditions at each vent site. This corroborates a long-standing hypothesis that hydrothermal vent invertebrates affiliate with locally adapted symbiont strains to cope with the variable conditions characterizing their habitats.


Assuntos
Fontes Hidrotermais , Bactérias/genética , Ecossistema , Fontes Hidrotermais/microbiologia , Metagenômica , Simbiose/genética
9.
Annu Rev Entomol ; 69: 81-98, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270981

RESUMO

Bacteriocytes are host cells specialized to harbor symbionts in certain insect taxa. The adaptation, development, and evolution of bacteriocytes underlie insect symbiosis maintenance. Bacteriocytes carry enriched host genes of insect and bacterial origin whose transcription can be regulated by microRNAs, which are involved in host-symbiont metabolic interactions. Recognition proteins of peptidoglycan, the bacterial cell wall component, and autophagy regulate symbiont abundance in bacteriocytes. Horizontally transferred genes expressed in bacteriocytes influence the metabolism of symbiont peptidoglycan, which may affect the bacteriocyte immune response against symbionts. Bacteriocytes release or transport symbionts into ovaries for symbiont vertical transmission. Bacteriocyte development and death, regulated by transcriptional factors, are variable in different insect species. The evolutionary origin of insect bacteriocytes remains unclear. Future research should elucidate bacteriocyte cell biology, the molecular interplay between bacteriocyte metabolic and immune functions, the genetic basis of bacteriocyte origin, and the coordination between bacteriocyte function and host biology in diverse symbioses.


Assuntos
Hemípteros , Peptidoglicano , Animais , Hemípteros/genética , Hemípteros/microbiologia , Insetos , Bactérias/genética , Simbiose/fisiologia
10.
Antimicrob Agents Chemother ; 68(2): e0068423, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38193705

RESUMO

Due to the spread of resistance to front-line artemisinin derivatives worldwide, there is a need for new antimalarials. Tartrolon E (TrtE), a secondary metabolite of a symbiotic bacterium of marine bivalve mollusks, is a promising antimalarial because it inhibits the growth of sexual and asexual blood stages of Plasmodium falciparum at sub-nanomolar levels. The potency of TrtE warrants further investigation into its mechanism of action, cytotoxicity, and ease with which parasites may evolve resistance to it.


Assuntos
Antimaláricos , Artemisininas , Lactonas , Malária Falciparum , Humanos , Plasmodium falciparum , Artemisininas/farmacologia , Antimaláricos/farmacologia , Malária Falciparum/parasitologia
11.
New Phytol ; 244(2): 364-376, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137959

RESUMO

In the marine environment, seaweeds (i.e. marine macroalgae) provide a wide range of ecological services and economic benefits. Like land plants, seaweeds do not provide these services in isolation, rather they rely on their associated microbial communities, which together with the host form the seaweed holobiont. However, there is a poor understanding of the mechanisms shaping these complex seaweed-microbe interactions, and of the evolutionary processes underlying these interactions. Here, we identify the current research challenges and opportunities in the field of seaweed holobiont biology. We argue that identifying the key microbial partners, knowing how they are recruited, and understanding their specific function and their relevance across all seaweed life history stages are among the knowledge gaps that are particularly important to address, especially in the context of the environmental challenges threatening seaweeds. We further discuss future approaches to study seaweed holobionts, and how we can apply the holobiont concept to natural or engineered seaweed ecosystems.


Assuntos
Alga Marinha , Alga Marinha/fisiologia , Alga Marinha/microbiologia , Simbiose , Pesquisa , Ecossistema , Microbiota
12.
J Theor Biol ; 579: 111688, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38096978

RESUMO

Many coevolutionary processes, including host-parasite and host-symbiont interactions, involve one species or trait which evolves much faster than the other. Whether or not a coevolutionary trajectory converges depends on the relative rates of evolutionary change in the two species, and so current adaptive dynamics approaches generally either determine convergence stability by considering arbitrary (often comparable) rates of evolutionary change or else rely on necessary or sufficient conditions for convergence stability. We propose a method for determining convergence stability in the case where one species is expected to evolve much faster than the other. This requires a second separation of timescales, which assumes that the faster evolving species will reach its evolutionary equilibrium (if one exists) before a new mutation arises in the more slowly evolving species. This method, which is likely to be a reasonable approximation for many coevolving species, both provides straightforward conditions for convergence stability and is less computationally expensive than traditional analysis of coevolution models, as it reduces the trait space from a two-dimensional plane to a one-dimensional manifold. In this paper, we present the theory underlying this new separation of timescales and provide examples of how it could be used to determine coevolutionary outcomes from models.


Assuntos
Evolução Biológica , Parasitos , Animais , Mutação , Fenótipo , Interações Hospedeiro-Parasita/genética
13.
J Phycol ; 60(4): 785-796, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39047050

RESUMO

Seaweeds play a strong ecological and economical role along the world's coastlines, where they support industries (e.g., aquaculture, bioproducts) and essential ecosystem services (e.g., biodiversity, fisheries, carbon capture). Evidence from wild and cultured seaweeds suggests that microorganisms play crucial roles in their health and functioning, prompting the need for considering seaweeds and their microbiome as a coherent entity or "holobiont." Here we show that the number of studies investigating seaweed hosts and their microbiome have increased in the last two decades. This likely reflects the increase in the appreciation of the importance of microbiomes for eukaryotic hosts, improved molecular approaches used to characterize their interactions, and increasing interest in commercial use of seaweeds. However, although increasing, most studies of seaweed holobionts have focused on (i) a few seaweed species of ecological or commercial significance, (ii) interactions involving only bacteria, and (iii) descriptive rather than experimental approaches. The relatively few experimental studies have mostly focused on manipulating abiotic factors to examine responses of seaweeds and their microbiome. Of the few studies that directly manipulated microorganisms to investigate their effects on seaweeds, most were done in laboratory or aquaria. We emphasize the need to move beyond the descriptions of patterns to experimental approaches for understanding causation and mechanisms. We argue that such experimental approaches are necessary for a better understanding of seaweed holobionts, for management actions for wild and cultivated seaweeds, and to better integrate studies of seaweed holobionts with the broader fields of seaweed ecology and biology, which are strongly experimental.


Assuntos
Microbiota , Alga Marinha , Simbiose
14.
Zoolog Sci ; 41(4): 351-362, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39093281

RESUMO

Praesagittifera naikaiensis is an acoel flatworm that inhabits the sandy beaches in the intertidal zone of the Seto Inland Sea. This species carries Tetraselmis sp., a green unicellular chlorophyte, as a symbiont in its body, and depends on algal photosynthetic products to survive. However, the eggs of P. naikaiensis contain no symbiotic algae, and juvenile P. naikaiensis acquire symbionts from the surrounding environment through horizontal transfer after hatching, thereby establishing new symbiotic relationships in each generation. Other acoel species, Symsagittifera spp., also inhabit the Seto Inland Sea shores and acquire symbiotic green algae via horizontal transfers. To characterize their symbionts, these acoels were collected from a wide area of the Seto Inland Sea and partial nucleotide sequences of the chloroplast ribulose diphosphate carboxylase large subunit (rbcL) of the symbiotic algae were determined and used for molecular phylogenetic analysis. Symbionts of both P. naikaiensis and Symsagittifera spp. belonged to the genus Tetraselmis but were phylogenetically distant, and both species established symbiotic relationships with different symbionts even when they were sympatric. To test whether each species selects specific algae in the environment for symbiosis, we established algal strains from P. naikaiensis and Symsagittifera sp. symbionts and conducted uptake experiments on aposymbiotic juveniles of P. naikaiensis. The results suggest that symbiotic algae from Symsagittifera could be taken up by P. naikaiensis juveniles, but were unable to establish a normal symbiotic relationship with the juveniles.


Assuntos
Clorófitas , Simbiose , Animais , Clorófitas/fisiologia , Platelmintos/fisiologia , Platelmintos/genética , Filogenia , Especificidade da Espécie
15.
J Invertebr Pathol ; 207: 108185, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39242021

RESUMO

Nosema ceranae is a main parasite for honeybees (Apis mellifera) which causes colony collapse in spring. Effective management of N. ceranae infections in bees is imperative for beekeepers. RNA interference (RNAi) has been proven a promising method to control bee pathogens, including IAPV, Varroa destructor, and Nosema. Most studies in this field focused on oral inoculation of double-stranded RNA (dsRNA). We developed an easier method with long-term RNAi effects by engineering the bee symbiont, Bacillus subtilis, to deliver single-stranded antisense RNA (asRNA) in the bee guts, targeting N. ceranae genes. We interfered with the expression of a spore wall protein (SWP12) and a polar tube protein (PTP3) of N. ceranae, resulting in a 60.5% increase in bee lifespan and a 72.7% decrease in Nosema spore load. Our research introduced a novel approach to bee parasite control: B. subtilis-mediated asRNA delivery. Our strategy simplifies the procedure of RNAi, presenting a more efficient mechanism with both prophylactic and therapeutic effects on N. ceranae-infected bees.

16.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161284

RESUMO

Microbial symbioses significantly contribute to diverse organisms, where long-lasting associations tend to result in symbiont genome erosion, uncultivability, extinction, and replacement. How such inherently deteriorating symbiosis can be harnessed to stable partnership is of general evolutionary interest. Here, we report the discovery of a host protein essential for sustaining symbiosis. Plataspid stinkbugs obligatorily host an uncultivable and genome-reduced gut symbiont, Ishikawaella Upon oviposition, females deposit "capsules" for symbiont delivery to offspring. Within the capsules, the fragile symbiotic bacteria survive the harsh conditions outside the host until acquired by newborn nymphs to establish vertical transmission. We identified a single protein dominating the capsule content, which is massively secreted by female-specific intestinal organs, embedding the symbiont cells, and packaged into the capsules. Knockdown of the protein resulted in symbiont degeneration, arrested capsule production, symbiont transmission failure, and retarded nymphal growth, unveiling its essential function for ensuring symbiont survival and vertical transmission. The protein originated from a lineage of odorant-binding protein-like multigene family, shedding light on the origin of evolutionary novelty regarding symbiosis. Experimental suppression of capsule production extended the female's lifespan, uncovering a substantial cost for maintaining symbiosis. In addition to the host's guardian protein, the symbiont's molecular chaperone, GroEL, was overproduced in the capsules, highlighting that the symbiont's eroding functionality is compensated for by stabilizer molecules of host and symbiont origins. Our finding provides insight into how intimate host-symbiont associations can be maintained over evolutionary time despite the symbiont's potential vulnerability to degeneration and malfunctioning.


Assuntos
Evolução Molecular , Heterópteros/fisiologia , Proteínas de Insetos/metabolismo , Simbiose , Animais , Feminino , Genoma , Fenótipo
17.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33500354

RESUMO

Recurrent mass bleaching events are pushing coral reefs worldwide to the brink of ecological collapse. While the symptoms and consequences of this breakdown of the coral-algal symbiosis have been extensively characterized, our understanding of the underlying causes remains incomplete. Here, we investigated the nutrient fluxes and the physiological as well as molecular responses of the widespread coral Stylophora pistillata to heat stress prior to the onset of bleaching to identify processes involved in the breakdown of the coral-algal symbiosis. We show that altered nutrient cycling during heat stress is a primary driver of the functional breakdown of the symbiosis. Heat stress increased the metabolic energy demand of the coral host, which was compensated by the catabolic degradation of amino acids. The resulting shift from net uptake to release of ammonium by the coral holobiont subsequently promoted the growth of algal symbionts and retention of photosynthates. Together, these processes form a feedback loop that will gradually lead to the decoupling of carbon translocation from the symbiont to the host. Energy limitation and altered symbiotic nutrient cycling are thus key factors in the early heat stress response, directly contributing to the breakdown of the coral-algal symbiosis. Interpreting the stability of the coral holobiont in light of its metabolic interactions provides a missing link in our understanding of the environmental drivers of bleaching and may ultimately help uncover fundamental processes underpinning the functioning of endosymbioses in general.


Assuntos
Antozoários/fisiologia , Resposta ao Choque Térmico/fisiologia , Nutrientes , Simbiose/fisiologia , Aminoácidos/metabolismo , Compostos de Amônio/metabolismo , Animais , Antozoários/genética , Carbono/metabolismo , Regulação da Expressão Gênica , Modelos Biológicos , Nitrogênio/metabolismo , Estresse Oxidativo , Fotossíntese
18.
J Insect Sci ; 24(5)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39417594

RESUMO

This study aimed to investigate the effects of symbiosis on the life history of host insects and address their implications at the host population level. We evaluated the effects of symbiotic bacteria Caballeronia insecticola on its host Riptortus pedestris (Fabricus) (Hemiptera: Alydidae) from cohorts for nymphal development, adult survivorship, and female reproduction. Then, life table parameters were compared between symbiotic and apo-symbiotic groups, and the effects of symbiosis on the abundance of R. pedestris were simulated for varying proportions of symbiotic individuals in host populations. We found that symbiosis significantly accelerated the nymphal development and reproductive maturation of females. However, symbiosis incurred survival cost on adult females, reducing their longevity by 28.6%. Nonetheless, symbiotic females laid significantly greater numbers of eggs than the apo-symbiotic during early adult ages. This early reproductive investment negated the adverse effect of their reduced longevity, resulting in the mean lifetime fecundity to not significantly differ between the 2 groups. Indeed, total cohort fecundity of the symbiotic group was 1.3-fold greater than that of the apo-symbiotic group. Life table analysis demonstrated shorter generation time and greater population growth rate in the symbiotic population. Finally, the simulation model results indicate that an increase in the proportion of symbiotic R. pedestris favored the population growth, increasing the population size by 1.9 times for every 25% increase in the proportion of symbiotic individuals. Our study demonstrates that symbiont-mediated changes in the life history parameters of host individuals favor the host population growth, despite substantial reduction in the female longevity.


Assuntos
Ninfa , Simbiose , Animais , Feminino , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Ninfa/microbiologia , Características de História de Vida , Crescimento Demográfico , Longevidade , Hemípteros/crescimento & desenvolvimento , Hemípteros/microbiologia , Hemípteros/fisiologia , Heterópteros/crescimento & desenvolvimento , Heterópteros/fisiologia , Heterópteros/microbiologia , Reprodução , Masculino , Fertilidade
19.
Symbiosis ; 92(3): 439-451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666134

RESUMO

Symbiosis can benefit hosts in numerous ways, but less is known about whether interactions with hosts benefit symbionts-the smaller species in the relationship. To determine the fitness impact of host association on symbionts in likely mutualisms, we conducted a meta-analysis across 91 unique host-symbiont pairings under a range of spatial and temporal contexts. Specifically, we assess the consequences to symbiont fitness when in and out of symbiosis, as well as when the symbiosis is under suboptimal or varying environments and biological conditions (e.g., host age). We find that some intracellular symbionts associated with protists tend to have greater fitness when the symbiosis is under stressful conditions. Symbionts of plants and animals did not exhibit this trend, suggesting that symbionts of multicellular hosts are more robust to perturbations. Symbiont fitness also generally increased with host age. Lastly, we show that symbionts able to proliferate in- and outside host cells exhibit greater fitness than those found exclusively inside or outside cells. The ability to grow in multiple locations may thus help symbionts thrive. We discuss these fitness patterns in light of host-driven factors, whereby hosts exert influence over symbionts to suit their own needs. Supplementary Information: The online version contains supplementary material available at 10.1007/s13199-024-00984-6.

20.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34893862

RESUMO

The mutualism between the giant tubeworm Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone has been extensively researched over the past 40 years. However, the lack of the host whole-genome information has impeded the full comprehension of the genotype/phenotype interface in Riftia. Here, we described the high-quality draft genome of Riftia, its complete mitogenome, and tissue-specific transcriptomic data. The Riftia genome presents signs of reductive evolution, with gene family contractions exceeding expansions. Expanded gene families are related to sulfur metabolism, detoxification, antioxidative stress, oxygen transport, immune system, and lysosomal digestion, reflecting evolutionary adaptations to the vent environment and endosymbiosis. Despite the derived body plan, the developmental gene repertoire in the gutless tubeworm is extremely conserved with the presence of a near intact and complete Hox cluster. Gene expression analyses establish that the trophosome is a multifunctional organ marked by intracellular digestion of endosymbionts, storage of excretory products, and hematopoietic functions. Overall, the plume and gonad tissues both in contact to the environment harbor highly expressed genes involved with cell cycle, programed cell death, and immunity indicating a high cell turnover and defense mechanisms against pathogens. We posit that the innate immune system plays a more prominent role into the establishment of the symbiosis during the infection in the larval stage, rather than maintaining the symbiostasis in the trophosome. This genome bridges four decades of physiological research in Riftia, whereas it simultaneously provides new insights into the development, whole organism functions, and evolution in the giant tubeworm.


Assuntos
Gammaproteobacteria , Poliquetos , Aclimatação , Animais , Gammaproteobacteria/genética , Poliquetos/genética , Poliquetos/metabolismo , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA