Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 246: 110013, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39069001

RESUMO

Tea tree oil (TTO) is used in ophthalmology to maintain healthy eyelid skin and to combat parasitic eyelid infections. Keratocytes belong to the structure of the corneal stoma and enable to maintain corneal homeostasis. TTO that reaches the surface of the eye in too high concentration may disturb the functions of these cells. The aim of the study was to test what concentration of TTO is safe for corneal keratocytes in vitro without causing a toxic effect. A normal human keratocytes (HK) cell line was used in the study. Morphology was visualized by light and fluorescence microscopy, cytometric analysis of the cell cycle and cytometric and spectrophotometric viability evaluation were performed. The level of nitric oxide was tested by Griess spectrophotometric method. TTO concentrations exceeding 0.01% significantly reduced cell viability. The IC50 values were on average 0.057%. Increasing TTO concentrations stimulated HK cells to release NOx. The observed values did not exceed 1 µM. The lowest TTO concentration increased the number of HK cells in the G1 phase of the cell cycle. Increasing TTO concentrations (≥0.1%) increased the number of cells in late apoptosis. TTO at concentrations ranging from 0.1% to 0.5% significantly changed cell morphology. Fluorescence analyzes confirmed that TTO at concentrations ≥0.1% induced apoptotic cell death. TTO exerts strong effect on ocular keratocytes depending on applied concentration. Concentrations exceeding 0.1% have a toxic effect on keratocytes, which die mainly by apoptosis. The ocular surface should be protected from excessive exposure to TTO, which may damage corneal stroma cells.


Assuntos
Apoptose , Proliferação de Células , Sobrevivência Celular , Ceratócitos da Córnea , Óleo de Melaleuca , Humanos , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/toxicidade , Ceratócitos da Córnea/efeitos dos fármacos , Ceratócitos da Córnea/citologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Microscopia de Fluorescência , Células Cultivadas , Linhagem Celular , Citometria de Fluxo
2.
Med Mycol ; 62(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38936838

RESUMO

Candida auris is an emerging fungal pathogen responsible for healthcare-associated infections and outbreaks with high mortality around the world. It readily colonizes the skin, nares, respiratory and urinary tract of hospitalized patients, and such colonization may lead to invasive Candida infection in susceptible patients. However, there is no recommended decolonization protocol for C. auris by international health authorities. The aim of this study is to evaluate the susceptibility of C. auris to commonly used synthetic and natural antiseptic products using an in vitro, broth microdilution assay. Synthetic antiseptics including chlorhexidine, povidone-iodine, and nystatin were shown to be fungicidal against C. auris. Among the natural antiseptics tested, tea tree oil and manuka oil were both fungicidal against C. auris at concentrations less than or equal to 1.25% (v/v). Manuka honey inhibited C. auris at 25% (v/v) concentrations. Among the commercial products tested, manuka body wash and mouthwash were fungicidal against C. auris at concentrations less than or equal to 0.39% (w/v) and 6.25% (v/v) of products as supplied for use, respectively, while tea tree body wash and MedihoneyTM wound gel demonstrated fungistatic properties. In conclusion, this study demonstrated good in vitro antifungal efficacy of tea tree oil, manuka oil, manuka honey, and commercially available antiseptic products containing these active ingredients. Future studies are warranted to evaluate the effectiveness of these antiseptic products in clinical settings.


Candida auris is an emerging superbug fungus that poses a serious threat to global public health. The excellent antifungal efficacy of natural antiseptics and their commercial hygiene products provide new insights into the development of an alternative decolonization regimen against C. auris.


Assuntos
Anti-Infecciosos Locais , Antifúngicos , Candida auris , Testes de Sensibilidade Microbiana , Anti-Infecciosos Locais/farmacologia , Antifúngicos/farmacologia , Humanos , Candida auris/efeitos dos fármacos , Óleo de Melaleuca/farmacologia , Mel , Clorexidina/farmacologia , Leptospermum/química
3.
Molecules ; 29(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39064827

RESUMO

The use of chemical pesticides in agriculture contributes to soil, water and air pollution, biodiversity loss, and injury to non-target species. The European Commission has already established a Harmonized Risk Indicator to quantify the progress in reducing the risks linked to pesticides. Therefore, there is an increasing need to promote biopesticides, or so-called low-risk pesticides (LRP). Tea tree oil (TTO) is known for its antiseptic, antimicrobial, antiviral, antifungal, and anti-inflammatory properties. TTO has been extensively studied in pest management as well as in the pharmaceutical and cosmetic industry; there are already products based on its active substances on the market. This review focuses on the overall evaluation of TTO in terms of effectiveness and safety as a biopesticide for the first time. The collected data can be an added value for further evaluation of TTO in terms of the authorization extension as a fungicide in 2026.


Assuntos
Praguicidas , Óleo de Melaleuca , Óleo de Melaleuca/química , Praguicidas/farmacologia , Agentes de Controle Biológico/farmacologia , Humanos
4.
J Sci Food Agric ; 104(6): 3570-3584, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38150568

RESUMO

BACKGROUND: Tea pests pose a significant threat to tea leaf yield and quality, necessitating fast and accurate detection methods to improve pest control efficiency and reduce economic losses for tea farmers. However, in real tea gardens, some tea pests are small in size and easily camouflaged by complex backgrounds, making it challenging for farmers to promptly and accurately identify them. RESULTS: To address this issue, we propose a real-time detection method based on TP-YOLOX for monitoring tea pests in complex backgrounds. Our approach incorporates the CSBLayer module, which combines convolution and multi-head self-attention mechanisms, to capture global contextual information from images and expand the network's perception field. Additionally, we integrate an efficient multi-scale attention module to enhance the model's ability to perceive fine details in small targets. To expedite model convergence and improve the precision of target localization, we employ the SIOU loss function as the bounding box regression function. Experimental results demonstrate that TP-YOLOX achieves a significant performance improvement with a relatively small additional computational cost (0.98 floating-point operations), resulting in a 4.50% increase in mean average precision (mAP) compared to the original YOLOX-s. When compared with existing object detection algorithms, TP-YOLOX outperforms them in terms of mAP performance. Moreover, the proposed method achieves a frame rate of 82.66 frames per second, meeting real-time requirements. CONCLUSION: TP-YOLOX emerges as a proficient solution, capable of accurately and swiftly identifying tea pests amidst the complex backgrounds of tea gardens. This contribution not only offers valuable insights for tea pest monitoring but also serves as a reference for achieving precise pest control. © 2023 Society of Chemical Industry.


Assuntos
Algoritmos , Árvores , Humanos , Fazendeiros , Jardinagem , Chá
5.
Saudi Pharm J ; 32(9): 102152, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39165579

RESUMO

Skin infections considered as one of the predominant disorders that could greatly influence humans. Topical drug delivery is believed to be an effective substitute to systemically delivered medication for skin disorders management. Erythromycin has been proven to retain anti-bacterial activity. Based on that, the aim of existent study is to develop a proper nanocarrier, namely; nanoemulsion using tea tree oil including Erythromycin. Applying quality by design approach, the optimized nanoemulsion was selected based on number of independent variables namely; particle size and in vitro release study. Yet, in order to get appropriate topical application, the optimized nanoemulsion was combined with previously prepared hydrogel base to provide Erythromycin based nanoemulgel. The developed nanoemulgel was assessed for its organoleptic and physical characters to ensure its suitability for topical application. Stability study was implemented over three months after being kept in two distinct environments. Eventually, the antibacterial behavior of the preparation was investigated on MRSA to verify the expected antibacterial improvement and validate the effectiveness of the developed nanocarrier. The formulation showed consistent appearance, with pH (6.11 ± 0.19), viscosity (10400 ± 1275 cP), spreadability (54.03 ± 2.3 mm), extrudability (80.36 ± 3.15 g/cm2) and drug content (99.3 ± 0.46 %) that seemed to be satisfied for topical application. It could provide 48.1 ± 4.2 % releases over 6 h in addition to be stable at room temperature and at refrigerator. Ultimately, the formula showed a significant antibacterial activity against MRSA proving the combination and the nanocarrier effectiveness.

6.
New Phytol ; 240(5): 1944-1960, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37737003

RESUMO

Leaf oil terpenes vary categorically in many plant populations, leading to discrete phenotypes of adaptive and economic significance, but for most species, a genetic explanation for the concerted fluctuation in terpene chemistry remains unresolved. To uncover the genetic architecture underlying multi-component terpene chemotypes in Melaleuca alternifolia (tea tree), a genome-wide association study was undertaken for 148 individuals representing all six recognised chemotypes. A number of single nucleotide polymorphisms in a genomic region of c. 400 kb explained large proportions of the variation in key monoterpenes of tea tree oil. The region contained a cluster of 10 monoterpene synthase genes, including four genes predicted to encode synthases for 1,8-cineole, terpinolene, and the terpinen-4-ol precursor, sabinene hydrate. Chemotype-dependent null alleles at some sites suggested structural variants within this gene cluster, providing a possible basis for linkage disequilibrium in this region. Genotyping in a separate domesticated population revealed that all alleles surrounding this gene cluster were fixed after artificial selection for a single chemotype. These observations indicate that a supergene accounts for chemotypes in M. alternifolia. A genetic model with three haplotypes, encompassing the four characterised monoterpene synthase genes, explained the six terpene chemotypes, and was consistent with available biparental cross-segregation data.


Assuntos
Melaleuca , Melaleuca/genética , Melaleuca/química , Árvores/genética , Estudo de Associação Genômica Ampla , Terpenos/química , Chá
7.
Mol Biol Rep ; 50(2): 1545-1552, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513867

RESUMO

BACKGROUND: Melaleuca alternifolia is a commercially important medicinal tea tree native to Australia. Tea tree oil, the essential oil distilled from its branches and leaves, has broad-spectrum germicidal activity and is highly valued in the pharmaceutical and cosmetic industries. Thus, the study of genome, which can provide reference for the investigation of genes involved in terpinen-4-ol biosynthesis, is quite crucial for improving the productivity of Tea tree oil. METHODS AND RESULTS: In our study, the next-generation sequencing was used to investigate the whole genome of Melaleuca alternifolia. About 114 Gb high quality sequence data were obtained and assembled into 1,838,159 scafolds with an N50 length of 1021 bp. The assembled genome size is about 595 Mb, twice of that predicted by flow cytometer (300 Mb) and k-mer analysis (345 Mb). Benchmarking Universal Single-Copy Orthologs analyses indicated that only 11.3% of the conserved single-copy genes were miss. Repetitive regions cover over 40.43% of the genome. A total of 44,369 protein-coding genes were predicted and annotated against Nr, Swissprot, Refseq, COG, KOG, and KEGG database. Among these genes, 32,909 and 16,241 genes were functionally annotated in Nr and KEGG, respectively. Moreover, 29,411 and 14,435 genes were functionally annotated in COG and KOG. Additionally, 457,661 simple sequence repeats and 1109 transcription factors (TFs) form 67 TF families were identified in the assembled genome. CONCLUSION: Our findings provide a draft genome sequencing of M. alternifolia which can act as a reference for the deep sequencing strategies, and are useful for future functional and comparative genomics analyses.


Assuntos
Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Humanos , Melaleuca/genética , Árvores , Chás Medicinais
8.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401131

RESUMO

AIMS: We determined the synergistic effects of tea tree essential oil nano-emulsion (nanoTTO) and antibiotics against multidrug-resistant (MDR) bacteria in vitro and in vivo. Then, the underlying mechanism of action of nanoTTO was investigated. METHODS AND RESULTS: Minimum inhibitory concentrations and fractional inhibitory concentration index (FICI) were determined. The transepithelial electrical resistance (TEER) and the expression of tight junction (TJ) protein of IPEC-J2 cells were measured to determine the in vitro efficacy of nanoTTO in combination with antibiotics. A mouse intestinal infection model evaluated the in vivo synergistic efficacy. Proteome, adhesion assays, quantitative real-time PCR, and scanning electron microscopy were used to explore the underlying mechanisms. Results showed that nanoTTO was synergistic (FICI ≤ 0.5) or partial synergistic (0.5 < FICI < 1) with antibiotics against MDR Gram-positive and Gram-negative bacteria strains. Moreover, combinations increased the TEER values and the TJ protein expression of IPEC-J2 cells infected with MDR Escherichia coli. The in vivo study showed that the combination of nanoTTO and amoxicillin improved the relative weight gain and maintained the structural integrity of intestinal barriers. Proteome showed that type 1 fimbriae d-mannose specific adhesin of E. coli was downregulated by nanoTTO. Then, nanoTTO reduced bacterial adhesion and invasion and inhibited the mRNA expression of fimC, fimG, and fliC, and disrupted bacterial membranes.


Assuntos
Antibacterianos , Óleo de Melaleuca , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Óleo de Melaleuca/farmacologia , Escherichia coli , Proteoma , Sinergismo Farmacológico , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
9.
Biofouling ; 39(9-10): 962-979, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38009008

RESUMO

The current work aims to develop a shikonin and tea tree oil loaded nanoemulsion system stabilized by a mixture of GRAS grade surfactants (Tween 20 and monoolein) and a cosurfactant (Transcutol P). This system was designed to address the poor aqueous solubility and photostability issues of shikonin. The authenticity of shikonin employed in this study was confirmed using nuclear magnetic resonance (NMR) spectroscopy. The optimized nanoemulsion exhibited highly favorable characteristics in terms of zeta potential (-23.8 mV), polydispersity index (0.216) and particle size (22.97 nm). These findings were corroborated by transmission electron microscopy (TEM) micrographs which confirmed the spherical and uniform nature of the nanoemulsion globules. Moreover, attenuated total reflectance (ATR) and X-ray diffraction analysis (XRD) analysis affirmed improved chemical stability and amorphization, respectively. Photodegradation studies were performed by exposing pure shikonin and the developed nanoemulsion to ultraviolet light for 1 h using a UV lamp, followed by high performance liquid chromatography (HPLC) analysis. The results confirmed that the developed nanoemulsion system imparts photoprotection to pure shikonin in the encapsulated system. Furthermore, the research investigated the effect of the nanoemulsion on biofilms formed by Candida albicans and methicillin resistant Staphylococcus aureus (MRSA). Scanning electron microscopy, florescence microscopy and phase contrast microscopy unveiled a remarkable reduction in biofilm area, accompanied by disruptions in the cell wall and abnormalities on the cell surface of the tested microorganisms. In conclusion, the nanoencapsulation of shikonin with tea tree oil as the lipid phase showcased significantly enhanced antimicrobial and antibiofilm potential compared to pure shikonin against resistant strains of Candida albicans and Staphylococcus aureus.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Naftoquinonas , Óleo de Melaleuca , Candida albicans , Óleo de Melaleuca/farmacologia , Staphylococcus aureus , Biofilmes , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
10.
BMC Ophthalmol ; 23(1): 209, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170186

RESUMO

BACKGROUND: Filamentary keratitis is an ocular condition that is tricky to handle for the difficulty to find the underlying cause. Here we report a case of filamentary keratitis associated with Demodex infestation which highlights the importance of Demodex mites as an easily-overlooked risk factor. CASE PRESENTATION: A 63-year-old woman had recurrent symptoms of foreign body sensation and sometimes painful feelings in her left eye soon after her surgical correction of ptosis in this eye. She was then diagnosed as conjunctivitis and given antibiotic eye drops. After one week, the patient complained of aggravation of symptoms with small corneal filaments in the left eye under slit-lamp examination. Despite the removal of filaments and addition of topical corticosteroids and bandage contact lenses, the patient's condition persisted with enlarged filaments and severe ocular discomfort. 3 days later, eyelashes with cylindrical dandruff were noticed and Demodex infestation was confirmed by microscopic examination of these eyelashes at our clinic this time. She was asked to use tea tree oil lid scrub twice daily. After 3 weeks, her filamentary keratitis was resolved with a dramatic improvement in symptoms and signs. And no recurrence of filamentary keratitis was noticed during the one-year follow-up. CONCLUSIONS: In this case, filamentary keratitis was resolved only with treatment of Demodex infestation while conventional treatment failed. Considering the fact that Demodex infestation is a common but easily overlooked condition, it may be suggestive to take Demodex infestation into account as a risk factor of filamentary keratitis, especially in refractory cases.


Assuntos
Blefarite , Infecções Oculares Parasitárias , Pestanas , Ceratite , Infestações por Ácaros , Óleo de Melaleuca , Humanos , Feminino , Pessoa de Meia-Idade , Infestações por Ácaros/complicações , Infestações por Ácaros/diagnóstico , Infestações por Ácaros/tratamento farmacológico , Ceratite/diagnóstico , Ceratite/tratamento farmacológico , Ceratite/etiologia , Óleo de Melaleuca/uso terapêutico , Infecções Oculares Parasitárias/complicações , Infecções Oculares Parasitárias/diagnóstico , Infecções Oculares Parasitárias/terapia
11.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37989849

RESUMO

Treatment of wounds is challenging due to bacterial infections, including Staphylococcus aureus and Pseudomonas aeruginosa. Using the merits of alternative antimicrobials like tea tree oil (TTO) and nanotechnology, they can be helpful in combatting bacterial infections. Solid lipid nanoparticle (SLN) and chitosan (CS) nanoparticles show great potential as carriers for enhancing the stability and therapeutic benefits of oils. The aim of this study is to compare the influence of nanocarriers in enhancing the antibacterial effects of TTO. The study evaluates the physicochemical and antibacterial properties of TTO-SLN and TTO-CS against P. aeruginosa and S. aureus. The TTO-SLN nanoparticles showed a clear round shape with the average diameter size of 477 nm, while the TTO-CS nanoparticles illustrated very homogeneous morphology with 144 nm size. The encapsulation efficiency for TTO-CS and TTO-SLN was ∼88.3% and 73.5%, respectively. Minimum inhibitory concentration against S. aureus and P. aeruginosa for TTO-CS, TTO-SLN, and pure TTO were 35 and 45 µg ml-1, 130 and 170 µg ml-1, and 380 and 410 µg ml-1, respectively. Since TTO-CS revealed an impressively higher antimicrobial effects in comparison with TTO-SLN and TTO alone, it can be considered as a nanocarrier that produces the same antimicrobial effects with lower required amounts of the active substance.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Quitosana , Melaleuca , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Óleo de Melaleuca , Staphylococcus aureus , Pseudomonas aeruginosa , Melaleuca/química , Quitosana/farmacologia , Árvores , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Nanopartículas/química , Testes de Sensibilidade Microbiana , Chá
12.
Contact Dermatitis ; 89(3): 190-197, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37403438

RESUMO

OBJECTIVE: To analyse the clinical characteristics and sensitivity of an essential oil patch test series (EOS) in patients sensitized to their own essential oils (EOs). METHOD: We analysed the clinical data and patch test results obtained with the European baseline series (BSE) and an EOS, as well as the mode of use of EOs, through a questionnaire included in the patient file. RESULTS: The study included 42 patients (79% women, average age 50 years) with allergic contact dermatitis (ACD), 8 patients required hospitalization. All patients were sensitized to the EO they used, primarily lavender (Lavandula augustifolia, 8000-28-0), tea tree (Melaleuca alternifolia leaf oil, 68647-73-4), ravintsara (Cinnamomum camphora oil, 92201-50-8), and 2 cases were attributed to helichrysum (helichrysum italicum flower absolute, 90045-56-0). 71% had positive patch tests to fragrance mix I or II, 9 only to the EOS and 4 only with their personal EO. Interestingly, 40% of patients did not spontaneously mention the use of EOs, and only 33% received advice on their use at the time of purchase. CONCLUSION: Patch tests with the BSE, limonene and linalool HP, and oxidized tea tree oil is sufficient to detect most EO-sensitized patients. The most important is to test the patient's own used EOs.


Assuntos
Dermatite Alérgica de Contato , Dermatologia , Lavandula , Óleos Voláteis , Óleo de Melaleuca , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Óleos Voláteis/efeitos adversos , Dermatite Alérgica de Contato/diagnóstico , Dermatite Alérgica de Contato/etiologia , Testes do Emplastro , Óleo de Melaleuca/efeitos adversos
13.
Phytother Res ; 37(4): 1309-1318, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36420525

RESUMO

Tea tree (Melaleuca alternifolia) essential oil is widely used as an antiseptic. It mainly consists of monoterpenes with terpinen-4-ol as the major constituent. The aim of this study was to review literature on safety data about tea tree oil and to assess its safety by investigating 159 cases of adverse reactions possibly caused by the oil, reported to the World Health Organization (WHO) from December 1987 until September 2021. To extract these data, VigiBase, the WHO global database of individual case safety reports maintained by the Uppsala Monitoring Centre (UMC), was used. All cases were categorized and analysed and 16 serious cases further assessed. It was concluded that tea tree oil should never be administered orally, as it can lead to central nervous system depression and pneumonitis. Applied topically, skin disorders may occur, especially when the oil had been exposed to light or air. This yields monoterpene oxidation products, being potent skin irritants. Tea tree oil stored under appropriate conditions and not exceeding the expiration date should be considered safe to use by non-vulnerable people for non-serious inflammatory skin conditions, although the occurrence of adverse reactions such as contact allergies is difficult to predict.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Humanos , Monoterpenos
14.
J Wound Care ; 32(Sup3a): xiv-xxi, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36930536

RESUMO

Objective: The effects of topical tea tree oil (TTO) on the healing of pressure ulcers (PUs) in an animal model was evaluated. Method: To induce PUs, ischaemia-reperfusion cycles were performed by the external application of magnetic plates, with an ischaemic period of eight hours and a reperfusion period of 16 hours. Male and female Wistar rats were divided into three equally sized groups (n=20): one group received topical glycerin twice daily, another group received topical 10% (volume/volume (v/v)) TTO in glycerin twice daily; and the remaining group was untreated. The animals were assessed after one, four, seven and 14 cycles of ischaemia-reperfusion by thermal camera imaging, and then euthanised and sampled to investigate the degree of inflammation, collagen synthesis and apoptosis in the PUs. Results: Although topical glycerin alone suppressed local inflammation and apoptosis, this suppressive effect was accentuated at all timepoints by the application of topical TTO + glycerin. Similarly, an increase in collagen synthesis was observed in the glycerin group and this was accentuated by TTO at all timepoints. Parallel to the histological findings, the local temperature had decreased significantly on days 4 and 7 for both treatment groups (glycerin and TTO+glycerin). Conclusion: In this study, treatment with 10% (v/v) TTO in glycerin effectively suppressed skin inflammation and apoptosis, while it increased collagen synthesis during PU formation.


Assuntos
Úlcera por Pressão , Óleo de Melaleuca , Ratos , Animais , Úlcera por Pressão/tratamento farmacológico , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/uso terapêutico , Glicerol , Ratos Wistar , Inflamação/tratamento farmacológico , Colágeno , Supuração
15.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569803

RESUMO

Tea Tree Oil (TTO) is an essential oil obtained from the distillation of Melaleuca alternifolia leaves and branches. Due to its beneficial properties, TTO is widely used as an active ingredient in antimicrobial preparations for topical use or in cosmetic products and contains about 100 different compounds, with terpinen-4-ol, γ-terpinene and 1,8-cineole (or eucalyptol) being the molecules most responsible for its biological activities. In this work, the antimicrobial activity of whole TTO and these three major components was evaluated in vitro against fungi, bacteria and viruses. Molecular dynamics simulations were carried out on a bacterial membrane model and a Coxsackievirus B4 viral capsid, to propose an atomistic explanation of their mechanism of action. The obtained results indicate that the strong antimicrobial activity of TTO is attributable to the induction of an altered membrane functionality, mediated by the incorporation of its components within the lipid bilayer, and to a possible ability of the compounds to bind and alter the structural properties of the viral capsid.

16.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298932

RESUMO

Fusarium wilt of bananas caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4) poses the most serious threat to banana production globally. The disease has been managed using chemical fungicides, yet the control levels are still unsatisfactory. This study investigated the antifungal activities of tea tree (Melaleuca alternifolia) essential oil (TTO) and hydrosol (TTH) against Foc TR4 and their bioactive components. The potential of TTO and TTH in inhibiting the growth of Foc TR4 was evaluated in vitro using agar well diffusion and spore germination assays. Compared to the chemical fungicide, TTO effectively suppressed the mycelial growth of Foc TR4 at 69%. Both the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of TTO and TTH were established at 0.2 µg/µL and 50% v/v, respectively, suggesting the fungicidal nature of the plant extracts. The disease control efficacies were also demonstrated by a (p ≤ 0.05) delayed Fusarium wilt symptom development in the susceptible banana plants with reduced LSI dan RDI scores from 70% to around 20-30%. A GC/MS analysis of TTO identified terpinen-4-ol, eucalyptol, and α-terpineol as the major components. In contrast, an LC/MS analysis of TTH identified different compounds, including dihydro-jasmonic acid and methyl ester. Our findings indicate the potential of tea tree extracts as natural alternatives to chemical fungicides to control Foc TR4.


Assuntos
Fungicidas Industriais , Fusarium , Melaleuca , Musa , Fusarium/genética , Perfilação da Expressão Gênica , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Musa/microbiologia , Chá , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
17.
Molecules ; 28(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570859

RESUMO

Nanoemulsion is a new multi-component drug delivery system; the selection of different oil phases can give it special physiological activity, and play the role of "medicine and pharmaceutical excipients all-in-one". In this paper, we used glycyrrhizic acid as the natural surfactant, and Blumea balsamifera oil (BB) and tea tree oil (TTO) as the mixed oil phase, to obtain a new green functional composite nanoemulsion. Using the average particle size and polydispersion index (PDI) as the evaluation criteria, the effects of the oil ratio, oil content, glycyrrhizic acid concentration, and ultrasonic time on the nanoemulsion were systematically investigated. The stability and physicochemical properties and biological activities of BB-TTO NEs prepared via the optimum formulation were characterized. The optimal prescription was BB: TTO = 1:1, 5% oil phase, 0.7% glycyrrhizic acid, and 5 min ultrasonication time. The mean particle size, PDI, and zeta potential were 160.01 nm, 0.125, and -50.94 mV, respectively. The nanoemulsion showed non-significant changes in stability after centrifugation, dilution, and 120 days storage. These nanoemulsions were found to exhibit potential antibacterial and anti-inflammatory activities. The minimal inhibitory concentration (MIC) of BB-TTO NEs against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa is 2975 µg/mL, 2975 µg/mL, and 5950 µg/mL, respectively. A lower level of inflammatory cell infiltration and proportion of fibrosis were found in the synovial tissue of AIA rats treated with BB-TTO NEs. These findings demonstrate that the BB-TTO NEs produced in this study have significant potential for usage in antibacterial and anti-inflammatory areas.


Assuntos
Óleo de Melaleuca , Ratos , Animais , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Ácido Glicirrízico/farmacologia , Escherichia coli , Sistemas de Liberação de Medicamentos , Antibacterianos/farmacologia , Antibacterianos/química , Emulsões/química
18.
Molecules ; 28(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37175338

RESUMO

Tea tree oil (TTO) is a volatile essential oil obtained by distillation, mainly from the Australian native plant Melaleuca alternifolia (Maiden & Betche) Cheel (Myrtaceae). In this study, a comparative analysis of the chemical constituents of seven tea tree oils (M. alternifolia) and four other Melaleuca spp. oils (M. cajuputi, (MCa), two chemotypes of M. quinquenervia, (MNe and MNi), and M. ericifolia (MRo)) was carried out using gas chromatography-mass spectrometry (GC-MS) and high-performance thin-layer chromatography (HPTLC). Among the seven TTOs, terpinen-4-ol (37.66-44.28%), γ-terpinene (16.42-20.75%), α-terpinene (3.47-12.62%), α-terpineol (3.11-4.66%), and terpinolene (2.75-4.19%) were the most abundant compounds. On the other hand, the most abundant compounds of the other Melaleuca oils varied, such as 1,8-cineole (64.63%) in MCa oil, (E)-nerolidol (48.40%) and linalool (33.30%) in MNe oil, 1,8-cineole (52.20%) in MNi oil, and linalool (38.19%) and 1,8-cineole (27.57%) in MRo oil. HPTLC fingerprinting of Melaleuca oils enabled the discrimination of TTO oils from other Melaleuca spp. oils. Variation was observed in the profile of the Rf values among EOs. The present study shows that HPTLC is one of the best ways to identify and evaluate the quality control in authenticating TTOs, other Melaleuca EOs, or EOs from other species within the Myrtaceae.


Assuntos
Melaleuca , Myrtaceae , Óleos Voláteis , Óleo de Melaleuca , Óleos Voláteis/química , Óleo de Melaleuca/química , Melaleuca/química , Eucaliptol/análise , Cromatografia em Camada Fina , Austrália , Terpenos/química
19.
Fish Shellfish Immunol ; 120: 458-469, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34929307

RESUMO

This study aimed to investigate the effects of dietary tea tree oil (TTO) on the performance, intestinal antioxidant capacity, and non-specific immunity after ammonia nitrogen stress in Macrobrachium rosenbergii. Six experimental diets were formulated with 0, 25, 50, 100, 200, 400 mg/kg TTO, respectively. A total of 900 prawns (average initial weight, 0.39 ± 0.01 g) were randomly assigned to 6 groups in triplicate in 18 tanks. After an 8-week feeding trial, 20 prawns from each tank were changed with 20 mg/L ammonia stress for 24 h. The results showed that 100 mg/kg TTO significantly increased prawns performance and survival rate compared with the control group. Moreover, 100 and 200 mg/kg TTO significantly improved intestinal antioxidant capabilities by increasing SOD enzyme activities and decreasing MDA levels. In addition, the prawns fed with 100 mg/kg TTO diet showed the highest survival rate under ammonia stress. After ammonia stress, the group of 100 mg/kg TTO significantly improved antioxidant capacity by increasing hemolymph respiratory burst activity, as well as intestinal anti-superoxide anion activity and SOD. Coincidentally, 100 mg/kg TTO significantly upregulated the intestinal relative expression of antioxidant-related genes (peroxiredoxin-5). Further, it was found that 100 mg/kg TTO activated the toll-dorsal pathway in prawns, which performed the similar function as the classic NF-κB pathway by upregulating the TNF-α and IL-1. Finally, 100 mg/kg TTO increased the levels of iNOS activities and NO contents after ammonia stress and enhanced non-specific immunity. The results indicated that 100 mg/kg TTO could significantly improve the M. rosenbergii performance, antioxidant capacity and ammonia stress resistance. We suggested that the mechanisms may be attributed to that TTO enhanced the antioxidant capacity and non-specific immunity of M. rosenbergii via the NF-κB signal pathway.


Assuntos
Amônia/toxicidade , Imunidade Inata , Palaemonidae , Óleo de Melaleuca , Animais , Antioxidantes/metabolismo , Dieta/veterinária , NF-kappa B , Palaemonidae/imunologia , Superóxido Dismutase
20.
Biofouling ; 38(1): 100-117, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35012385

RESUMO

Carbapenem-resistant Serratia marcescens (CRE-S. marcescens) has recently emerged as an opportunistic human pathogen that causes various nosocomial and respiratory tract infections. The prognosis for CRE-S. marcescens-related infections is very poor and these infections are difficult to treat. This study investigated the synthesis of tea tree oil nanoemulsion (TTO-NE) and its impact on CRE-S. marcescens both in vitro and in vivo. TTO-NE was characterized by dynamic light scattering (DLS) and effectively eradicated bacterial planktonic and sessile forms, reduced bacterial virulence factors, and generated reactive oxygen species (ROS) in the bacterial cell. Notably, TTO-NE was efficient in reducing the colonization of CRE-S. marcescens in a C. elegans in vivo model. The data suggest that TTO-NE might be an excellent tool to combat infections associated with CRE-S. marcescens.


Assuntos
Serratia marcescens , Óleo de Melaleuca , Animais , Antibacterianos/farmacologia , Biofilmes , Caenorhabditis elegans , Carbapenêmicos/farmacologia , Humanos , Óleo de Melaleuca/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA