Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(33): e2311649, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38552254

RESUMO

X-ray detection and imaging are widely used in medical diagnosis, product inspection, security monitoring, etc. Large-scale polycrystalline perovskite thick films possess high potential for direct X-ray imaging. However, the notorious problems of baseline drift and high detection limit caused by ions migration are still remained. Here, ion migration is reduced by incorporating 2D perovskite into 3D perovskite, thereby increasing the ion activation energy. This approach hinders ion migration within the perovskite film, consequently suppressing baseline drift and reducing the lowest detection limit(LOD) of the device. As a result, the baseline drifting declines by 20 times and the LOD reduces to 21.1 nGy s-1, while the device maintains a satisfactory sensitivity of 5.6 × 103 µC Gy-1 cm-2. This work provides a new strategy to achieve low ion migration in large-scale X-ray detectors and may provide new thoughts for the application of mixed-dimension perovskite.

2.
Sensors (Basel) ; 24(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257690

RESUMO

This paper presents a ceramic stress sensor with the dimension of a coin, able to measure the compressive force (stress) applied to its two round faces. The sensor is designed and engineered to be embedded inside concrete or masonry structures, like bridges or buildings. It provides good accuracy, robustness, and simplicity of use at potentially low cost for large-scale applications in civil structures. Moreover, it can be calibrated temperature compensated, and it is inherently hermetic, ensuring the protection of sensitive elements from the external environment. It is, therefore, suitable for operating in harsh and dirty environments like civil constructions. The sensor directly measures the internal stress of the structure, exploiting the piezo resistivity of thick film ink based on ruthenium oxide. It is insensitive with respect to the stiffness of the embedding material and the variation of the surrounding material properties like concrete hardening, shrinkage, and creep as it decouples the two components of stress.

3.
Sensors (Basel) ; 24(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793853

RESUMO

Accurately acquiring crucial data on tube furnaces and real-time temperature monitoring of different temperature zones is vital for material synthesis technology in production. However, it is difficult to achieve real-time monitoring of the temperature field of tube furnaces with existing technology. Here, we proposed a method to fabricate silver (Ag) resistance temperature detectors (RTDs) based on a blade-coating process directly on the surface of a quartz ring, which enables precise positioning and real-time temperature monitoring of tube furnaces within 100-600 °C range. The Ag RTDs exhibited outstanding electrical properties, featuring a temperature coefficient of resistance (TCR) of 2854 ppm/°C, an accuracy of 1.8% FS (full scale), and a resistance drift rate of 0.05%/h over 6 h at 600 °C. These features ensured accurate and stable temperature measurement at high temperatures. For demonstration purposes, an array comprising four Ag RTDs was installed in a tube furnace. The measured average temperature gradient in the central region of the tube furnace was 5.7 °C/mm. Furthermore, successful real-time monitoring of temperature during the alloy sintering process revealed approximately a 20-fold difference in resistivity for silver-palladium alloys sintered at various positions within the tubular furnace. The proposed strategy offers a promising approach for real-time temperature monitoring of tube furnaces.

4.
Sensors (Basel) ; 24(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38475182

RESUMO

This paper presents an innovative approach to the integration of thermoelectric microgenerators (µTEGs) based on thick-film thermopiles of planar constantan-silver (CuNi-Ag) and calcium cobaltite oxide-silver (Ca3Co4O9-Ag) thick-film thermopiles with radio frequency identification (RFID) technology. The goal was to consider using the TEG for an active or semi-passive RFID tag. The proposed implementation would allow the communication distance to be increased or even operated without changing batteries. This article discusses the principles of planar thermoelectric microgenerators (µTEGs), focusing on their ability to convert the temperature difference into electrical energy. The concept of integration with active or semi-passive tags is presented, as well as the results of energy efficiency tests, considering various environmental conditions. On the basis of the measurements, the parameters of thermopiles consisting of more thermocouples were simulated to provide the required voltage and power for cooperation with RFID tags. The conclusions of the research indicate promising prospects for the integration of planar thermoelectric microgenerators with RFID technology, opening the way to more sustainable and efficient monitoring and identification systems. Our work provides the theoretical basis and practical experimental data for the further development and implementation of this innovative technology.

5.
Small ; 19(9): e2205947, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541728

RESUMO

The Ti3 C2 Tx film with metallic conductivity and high pseudo-capacitance holds profound promise in flexible high-rate supercapacitors. However, the restacking of Ti3 C2 Tx sheets hinders ion access to thick film electrodes. Herein, a mild yet green route has been developed to partially oxidize Ti3 C2 Tx to TiO2 /Ti3 C2 Tx by introducing O2  molecules during refluxing the Ti3 C2 Tx suspension. The subsequent etching away of these TiO2  nanoparticles by HF leaves behind numerous in-plane nanopores on the Ti3 C2 Tx sheets. Electrochemical impedance spectroscopy shows that longer oxidation time of 40 min yields holey Ti3 C2 Tx (H-Ti3 C2 Tx ) with a much shorter relax time constant of 0.85 s at electrode thickness of 25 µm, which is 89 times smaller than that of the pristineTi3 C2 Tx film (75.58 s). Meanwhile, H-Ti3 C2 Tx film with 25 min oxidation exhibits less-dependent capacitive performance in film thickness range of 10-84 µm (1.63-6.41 mg cm-2 ) and maintains around 60% capacitance as the current density increases from 1 to 50 A g-1 . The findings clearly demonstrate that in-plane nanopores not only provide more electrochemically active sites, but also offer numerous pathways for rapid ion impregnation across the thick Ti3 C2 Tx film. The method reported herein would pave way for fabricating porous MXene materials toward high-rate flexible supercapacitor applications.

6.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420779

RESUMO

Due to increasingly stringent limits for NOx emissions, there is now more interest than ever in cost-effective, precise, and durable exhaust gas sensor technology for combustion processes. This study presents a novel multi-gas sensor with resistive sensing principles for the determination of oxygen stoichiometry and NOx concentration in the exhaust gas of a diesel engine (OM 651). A screen-printed porous KMnO4/La-Al2O3 film is used as the NOx sensitive film, while a dense ceramic BFAT (BaFe0.74Ta0.25Al0.01O3-δ) film prepared by the PAD method is used for λ-measurement in real exhaust gas. The latter is also used to correct the O2 cross-sensitivity of the NOx sensitive film. This study presents results under dynamic conditions during an NEDC (new European driving cycle) based on a prior characterization of the sensor films in an isolated sensor chamber with static engine operation. The low-cost sensor is analyzed in a wide operation field and its potential for real exhaust gas applications is evaluated. The results are promising and, all in all, comparable with established, but usually more expensive, exhaust gas sensors.


Assuntos
Oxigênio , Emissões de Veículos , Oxigênio/análise , Gasolina , Óxidos de Nitrogênio/análise
7.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904608

RESUMO

In this study, SnO2-Pd nanoparticles(NPs) were made with an in situ synthesis-loading method. The in situ method is to simultaneously load a catalytic element during the procedure to synthesize SnO2 NPs. SnO2-Pd NPs were synthesized by using the in situ method and were heat-treated at 300 °C. As a result, tetragonal structured SnO2-Pd NPs, having an ultrafine size of less than 10 nm and a uniformly distributed Pd catalyst in the SnO2 lattice, were well made and a gas sensitive thick film with a thickness of c.a. 40 µm was well fabricated by using the NPs. Gas sensing characterization for CH4 gas indicated that the gas sensitivity, R3500/R1000, of the thick film consistent with SnO2-Pd NPs synthesized with the in situ synthesis-loading method, followed by heat-treatment at 500 °C, was enhanced to 0.59. Therefore, the in situ synthesis-loading method is available for synthesis of SnO2-Pd NPs for gas sensitive thick film.

8.
Molecules ; 28(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36838741

RESUMO

Developing highly efficient semiconductor metal oxide (SMOX) sensors capable of accurate and fast responses to environmental humidity is still a challenging task. In addition to a not so pronounced sensitivity to relative humidity change, most of the SMOXs cannot meet the criteria of real-time humidity sensing due to their long response/recovery time. The way to tackle this problem is to control adsorption/desorption processes, i.e., water-vapor molecular dynamics, over the sensor's active layer through the powder and pore morphology design. With this in mind, a KIT-5-mediated synthesis was used to achieve mesoporous tin (IV) oxide replica (SnO2-R) with controlled pore size and ordering through template inversion and compared with a sol-gel synthesized powder (SnO2-SG). Unlike SnO2-SG, SnO2-R possessed a high specific surface area and quite an open pore structure, similar to the KIT-5, as observed by TEM, BET and SWAXS analyses. According to TEM, SnO2-R consisted of fine-grained globular particles and some percent of exaggerated, grown twinned crystals. The distinctive morphology of the SnO2-R-based sensor, with its specific pore structure and an increased number of oxygen-related defects associated with the powder preparation process and detected at the sensor surface by XPS analysis, contributed to excellent humidity sensing performances at room temperature, comprised of a low hysteresis error (3.7%), sensitivity of 406.8 kΩ/RH% and swift response/recovery speed (4 s/6 s).


Assuntos
Óxidos , Umidade , Pós , Óxidos/química
9.
Sensors (Basel) ; 22(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36146128

RESUMO

In gas sensors composed of semiconductor metal oxides and two-dimensional materials, the gas-sensitive material is deposited or coated on a metallic signal electrode and must be selective and responsive at a specific temperature. The microelectromechanical devices hosting this material must keep it at the correct operating temperature using a micro-hotplate robust to high temperatures. In this study, three hotplate designs were investigated: electrodes arranged on both sides of an AlN substrate, a micro-hotplate buried in an alumina ceramic substrate, and a beam structure formed using laser punching. The last two designs use magnetron-sputtered ultra-thin AlN films to separate the upper Au interdigital electrodes and lower Pt heating resistor in a sandwich-like structure. The temperature distribution is simulated by the Joule heat model, and the third design has better energy consumption performance. This design was fabricated, and the effect of the rough surface of the alumina ceramic on the preparation was addressed. The experimental results show that the micro-hotplate can operate at nearly 700 °C. The micro-hotplate heats to nearly 240 °C in 2.4 s using a power of ~340 mW. This design makes ceramic-based micro-hotplates a more practical alternative to silicon-based micro-hotplates in gas sensors.

10.
Sensors (Basel) ; 22(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35590946

RESUMO

A new Pb-free glass containing several oxides (Bi2O3, B2O3, SiO2, Al2O3 and ZnO) with sintering temperature reduced down to 600 °C has been developed for applications in a piezoresistive pressure sensor. Using this low sintering temperature glass, it was possible to fabricate micrographite-based pastes and piezoresistive films without losses of graphitic material during the sintering. Good adherence of the films onto alumina substrates was observed and attributed in part to the reactions of ZnO and Bi2O3 with alumina substrates. Piezoresistive films with uniformly distributed micrographite particles were produced using sodium carboxymethyl cellulose (NaCMC) in aqueous solutions during the preparation of pastes. NaCMC plays a decisive role in interactions between micrographite particles and glassy matrix, providing good wettability of glass powder particles and homogeneous distribution of MG particles in the pastes. Finally, excellent repeatability of the sensor response to the applied deformations was verified in cycling experiments when the sample was submitted to 1000 load/release cycles. These results demonstrated very high stability of the sensor response (within ±1%), and also evidenced high stability of the film under the cyclic strain loads and good film adherence to the substrate.

11.
Sensors (Basel) ; 22(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365899

RESUMO

This paper deals with the design and development of a silver-polyester thick film sensor and associated system for the wear-out detection of single-point cutting tools for low-duty cycle machining operations. Conventional means of wear-out detection use dynamometers, accelerometers, microphones, acoustic emission sensors, thermal infrared cameras, and machine vision systems that detect tool wear during the process. Direct measurements with optical instruments are accurate but affect the machining process. In this study, the use of a thick film sensor to detect wear-out for aa real-time low-duty machining operation was proposed to eliminate the limitations of the current methods. The proposed sensor monitors the tool condition accurately as the wear acts directly on the sensor, which makes the system simple and more reliable. The effect of tool temperature on the sensor during the machining operation was also studied to determine the displacement/deformation of tracing and the polymer substrate at different service temperatures. The proposed tool wear detection system with the silver-polyester thick film sensor mounted directly on the cutting tool tip proved to be highly capable of detecting the tool wear with good reliability.

12.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560169

RESUMO

The atmospheric pressure solvothermal (APS) synthesis of nanocrystalline SnO2 (average size of coherent scattering regions (CSR)-7.5 ± 0.6 nm) using tin acetylacetonate as a precursor was studied. The resulting nanopowder was used as a functional ink component in microextrusion printing of a tin dioxide thick film on the surface of a Pt/Al2O3/Pt chip. Synchronous thermal analysis shows that the resulting semiproduct is transformed completely into tin dioxide nanopowder at 400 °C within 1 h. The SnO2 powder and the resulting film were shown to have a cassiterite-type structure according to X-ray diffraction analysis, and IR spectroscopy was used to establish the set of functional groups in the material composition. The microstructural features of the tin dioxide powder were analyzed using scanning (SEM) and transmission (TEM) electron microscopy: the average size of the oxide powder particles was 8.2 ± 0.7 nm. Various atomic force microscopy (AFM) techniques were employed to investigate the topography of the oxide film and to build maps of surface capacitance and potential distribution. The temperature dependence of the electrical conductivity of the printed SnO2 film was studied using impedance spectroscopy. The chemosensory properties of the formed material when detecting H2, CO, NH3, C6H6, C3H6O and C2H5OH, including at varying humidity, were also examined. It was demonstrated that the obtained SnO2 film has an increased sensitivity (the sensory response value was 1.4-63.5) and selectivity for detection of 4-100 ppm C2H5OH at an operating temperature of 200 °C.

13.
Nanotechnology ; 33(6)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34700301

RESUMO

As the power conversion efficiencies of organic solar cells (OSCs) have been improved continuously in recent years, more attention will be paid to the industrial production and practical application of OSCs. However, there are still many problems to be solved in the process of large-scale production. Among them, reducing the costs of the materials and enhancing the film-thickness tolerance of the active layer are the two key points. Therefore, it is urgent to develop organic semiconductor materials which are easy to synthesize and suitable for the construction of high-efficiency, thick-film OSCs. In this work, we have focused on the (E)-2-[2-(thiophen-2-yl)vinyl]thiophene (TVT) unit because of its unique coplanar structure. And we noticed that TVT was mostly used as an electron-donating unit in the previous reports. However, we have modified TVT into electron-withdrawing unit by the introduction of fluorine atoms/ester groups. And two new donor-acceptor (D-A) copolymers have been obtained by combining the electron-withdrawing TVT unit with benzo[2,1-b:4,5-b']dithiophene (BDT) unit. Among them, the polymer based on the ester modified TVT unit presents excellent photovoltaic performance by virtue of its good solubility and preferable molecular stacking mode, and the corresponding devices also show extraordinarily high-thickness tolerance. The emergence of this new electron-withdrawing TVT unit will undoubtedly further promote the development of low-cost, high-efficiency, thick-film OSCs.

14.
Sensors (Basel) ; 20(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906575

RESUMO

The idea of battery-less flow sensors and their implementation in wireless measurement systems is presented in this research article. The authors take advantage of their latest achievements in the Low Temperature Co-fired Ceramic (LTCC) technology, RadioFrequency Identification (RFID) technique, and increasing availability of low power electronics in order to get rid of the need to use electrochemical cells in a power supply unit of the elaborated device. To reach this assumption, special care has to be put on the energy balance in such an autonomous sensor node. First of all, the new concept of an electromagnetic LTCC turbine transducer with a signal conditioner which only draws a current of around 15 µA, is proposed for measuring a flow rate of fluids. Next, the autonomy of the device is showed; measured data are gathered in a microcontroller memory and sent to a control unit via an RFID interface which enables both information exchange and power transfer. The energy harvested from the electromagnetic field is used to conduct a data transmission, but also its excess can be accumulated, so the proposed sensor operates as a semi-passive transponder. The total autonomy of the device is achieved by implementing a second harvester that continually gathers energy from the environmental electromagnetic field of common active radio systems (e.g., Global System for Mobile Communications (GSM), wireless network Wi-Fi).

15.
Sensors (Basel) ; 20(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599903

RESUMO

There is currently a large demand for aluminum components to measure the mechanical and thermal loads to which they are subjected. With structural health monitoring, components in planes, vehicles, or bridges can monitor critical loads and potentially prevent an impending fatigue failure. Externally attached sensors need a structural model to obtain knowledge of the mechanical load at the point of interest, whereas embedded sensors can be used for direct measurement at the point of interest. To produce an embedded sensor, which is automatically encapsulated against environmental influence, the sensor must be able to withstand the boundary conditions of the host component's manufacturing process. This embedding process is particularly demanding in the case of casting. Previous work showed that silicon-based sensors have a high failure rate when embedded in cast aluminum parts and that using aluminum as a substrate is preferable under these circumstances. In the present paper, we present the fabrication process for the combination of a thick-film insulation and a thin-film strain gauge sensor, on such an aluminum substrate. The sensor is capable of withstanding high temperatures of at least 600 °C for over 20 min and a subsequent embedding in a gravity die casting process.

16.
Sensors (Basel) ; 19(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959766

RESUMO

A novel three-stage process to produce NTCR sensors is presented. In this process, an uncalcined powder mixture of NiO and Mn2O3 was deposited onto an alumina substrate via aerosol co-deposition (AcD). Then, an electrode structure was screen-printed onto the surface and the composite film was sintered in a multifunctional temperature treatment. Thereby, the sintering of the electrode, the formation of the NiMn2O4 spinel and the removal of film strains took place simultaneously. This enabled a significant reduction in energy demand and workload. The manufactured sensors, both as first prototypes, as well as miniaturized chip components, were characterized by a single-phase cubic NiMn2O4 spinel structure, mechanical stability and electrical properties that were similar to those of classical NiMn2O4 bulk ceramics or tempered aerosol deposited (AD) NiMn2O4 films. Particularly noteworthy was the high reproducibility and low variation of the NTCR parameters, such as the specific resistivity at 25 °C ρ25, the electrical resistance at 25 °C R25 and the thermistor constant B. The NTCR parameters were as aging-stable as for NiMn2O4 bulk ceramics or tempered NiMn2O4 AD-films and could even be further improved by thermal post-treatment.

17.
Sensors (Basel) ; 19(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577507

RESUMO

The composition of fine-ground lead zirconate-titanate powder Pb(Zr0.52Ti0.48)O3, suspended in PZT and bismuth titanate (BiT) solutions, is deposited on the curved surface of IN718 and IN738 nickel-based supper alloy substrates up to 100 µm thickness. Photochemical metal organic and infiltration techniques are implemented to produce smooth, semi-dense, and crack-free random orientated thick piezoelectric films as piezo-sensors, free of any dopants or thickening polymers. Every single layer of the deposited films is heated at 200 °C with 10 wt.% excess PbO, irradiated by ultraviolet lamp (365 nm, 6 watt) for 10 min, pyrolyzed at 400 °C, and subsequently annealed at 700 °C for one hour. This process is repeated successively until reaching the desired thickness. Au and Pt thin films are deposited as the bottom and top electrodes using evaporation and sputtering methods, respectively. PZT/PZT and PZT/BiT composite films are then characterized and compared to similar PZT and BiT thick films deposited on the similar substrates. The effect of the composition and deposition process is also investigated on the crystalline phase development and microstructure morphology as well as the dielectric, ferroelectric, and piezoelectric properties of piezo-films. The maximum remnant polarization of Pr = 22.37 ± 0.01, 30.01 ± 0.01 µC/cm², the permittivity of εr = 298 ± 3, 566 ± 5, and piezoelectric charge coefficient of d33 = 126, 148 m/V were measured versus the minimum coercive field of Ec = 50, 20 kV/cm for the PZT/PZT and PZT/BiT thick films, respectively. The thick film piezo-sensors are developed to be potentially used at frequency bandwidth of 1⁻5 MHz for rotary structural health monitoring and also in other industrial or medical applications as a transceiver.

18.
Sensors (Basel) ; 18(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235869

RESUMO

A lead-free 0.94(Na0.5Bi0.5) TiO3-0.06 BaTiO3 (BNT-BT) thick film, with a thickness of 60 µm, has been fabricated using a tape-casting method. The longitudinal piezoelectric constant, clamped dielectric permittivity constant, remnant polarization and coercive field of the BNT-BT thick film were measured to be 150 pC/N, 1928, 13.6 µC/cm², and 33.6 kV/cm, respectively. The electromechanical coupling coefficient kt was calculated to be 0.55 according to the measured electrical impedance spectrum. A high-frequency plane ultrasound transducer was successfully fabricated using a BNT-BT thick film. The performance of the transducer was characterized and evaluated by the pulse-echo testing and wire phantom imaging operations. The BNT-BT thick film transducer exhibits a center frequency of 34 MHz, a -6 dB bandwidth of 26%, an axial resolution of 77 µm and a lateral resolution of 484 µm. The results suggest that lead-free BNT-BT thick film fabricated by tape-casting method is a promising lead-free candidate for high-frequency ultrasonic transducer applications.

19.
Sensors (Basel) ; 16(3): 296, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26927120

RESUMO

This work aims at a broad overview of the results obtained with metal-sulfide materials in the field of chemoresistive gas sensing. Indeed, despite the well-known electrical, optical, structural and morphological features previously described in the literature, metal sulfides present lack of investigation for gas sensing applications, a field in which the metal oxides still maintain a leading role owing to their high sensitivity, low cost, small dimensions and simple integration, in spite of the wide assortment of sensing materials. However, despite their great advantages, metal oxides have shown significant drawbacks, which have led to the search for new materials for gas sensing devices. In this work, Cadmium Sulfide and Tin (IV) Sulfide were investigated as functional materials for thick-film chemoresistive gas-sensors fabrication and they were tested both in thermo- and in photo-activation modes. Furthermore, electrical characterization was carried out in order to verify their gas sensing properties and material stability, by comparing the results obtained with metal sulfides to those obtained by using their metal-oxides counterparts. The results highlighted the possibility to use metal sulfides as a novel class of sensing materials, owing to their selectivity to specific compounds, stability, and the possibility to operate at room temperature.

20.
Sensors (Basel) ; 15(6): 14286-97, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26091394

RESUMO

Highly sensitive H2 gas sensors were prepared using pure and Pt-loaded SnO2 nanoparticles. Thick film sensors (~35 µm) were fabricated that showed a highly porous interconnected structure made of high density small grained nanoparticles. Using Pt as catalyst improved sensor response and reduced the operating temperature for achieving high sensitivity because of the negative temperature coefficient observed in Pt-loaded SnO2. The highest sensor response to 1000 ppm H2 was 10,500 at room temperature with a response time of 20 s. The morphology of the SnO2 nanoparticles, the surface loading concentration and dispersion of the Pt catalyst and the microstructure of the sensing layer all play a key role in the development of an effective gas sensing device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA