Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Ann Hematol ; 103(1): 241-249, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847380

RESUMO

Refractory or relapsed acute myeloid leukemia (R/R AML) remains the major challenge of AML treatment. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only valid option to achieve cure, but the prognosis is still dismal. We conducted a retrospective analysis for the feasibility of CLAG regimens (cladribine, cytarabine, and granulocyte colony-stimulating factor) combined with total body irradiation (TBI) as new intensive conditioning chemotherapy prior to HSCT in R/R AML. A total of 70 patients, including 21 primary refractory and 49 relapsed AML, were analyzed. Forty-nine (70%) patients had extramedullary diseases, and 54 (77%) patients received haploidentical transplantation. Except for one who died before white blood cell engraftment, all of the 69 evaluable patients achieved measurable residual disease (MRD) negative complete remission. The 3-year overall survival (OS) and relapse-free survival (RFS) rates were 46.0% (95% confidence interval [CI], 33.5-57.7%) and 38.5% (95%CI, 26.8-50.0%). The 1-year cumulative incidences of relapse and non-relapse mortality (NRM) were 38.6% (95%CI, 27.3-49.3%) and 11.6% (95%CI: 5.4-20.3%), respectively. The presence of chronic graft-versus-host disease (cGVHD) showed a trend to be associated with a lower risk of relapse (P = 0.054) and extramedullary diseases with a higher risk of NRM (P = 0.074). Multivariate analyses identified low leukemia burden pre-HSCT (defined as bone marrow blasts ≤ 50%) and cGVHD as independent factors associated with favorable OS and RFS. In conclusion, intensive conditioning with CLAG regimens plus TBI may be an effective and well-tolerated choice for R/R AML patients undergoing allo-HSCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Estudos Retrospectivos , Irradiação Corporal Total/efeitos adversos , Leucemia Mieloide Aguda/tratamento farmacológico , Recidiva , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Condicionamento Pré-Transplante/efeitos adversos , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle
2.
Pediatr Blood Cancer ; 71(11): e31185, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39118225

RESUMO

Historically, total body irradiation (TBI) has been delivered using static, parallel opposed photon beams (2D-TBI). Recently, centers have increasingly used intensity-modulated radiation therapy (IMRT) techniques for TBI. Relative to 2D-TBI, IMRT can reduce doses to critical organs (i.e., lungs and kidneys) while delivering myeloablative doses to the rest of the body, so it may decrease the risk of toxicity while maintaining oncologic outcomes. Despite these potential benefits, delivering TBI using IMRT introduces new challenges in treatment planning and delivery. We describe the extensive experience with IMRT-based TBI at Stanford University and City of Hope Cancer Center. These groups, and others, have reported favorable clinical outcomes and have developed methods to optimize treatment planning and delivery. A critical next step is to evaluate the broader adoption of this approach. Therefore, IMRT-based TBI will be incorporated into a prospective, multi-institutional Children's Oncology Group study with careful procedures and safeguards in place.


Assuntos
Radioterapia de Intensidade Modulada , Irradiação Corporal Total , Humanos , Irradiação Corporal Total/métodos , Radioterapia de Intensidade Modulada/métodos , Criança , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
3.
Pediatr Blood Cancer ; 71(9): e31163, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943233

RESUMO

BACKGROUND: Total body irradiation (TBI) is a pivotal part of conditioning prior to hematopoietic stem cell transplantation (HSCT) for childhood acute lymphoblastic leukemia (ALL), yet evidence is sparse regarding the effect of TBI delivery techniques on acute and late toxicities. DESIGN: In a national cohort of pediatric HSCT-recipients, we compared three TBI schedules; 12 Gray (Gy) delivered as (i) 4 Gy daily fractions from 2008 to 2011 (n = 12); (ii) 2 Gy fractions twice daily with two-dimensional (2D) planning technology from 2012 to 2015 (n = 16); and (iii) 2 Gy twice daily with three-dimensional (3D) planning intensity-modulated radiotherapy (IMRT) from 2016 to 2020 (n = 14). RESULTS: The 5-year event-free survival was 75.0%, 81.3%, and 81.3% in Cohorts 1, 2, and 3, respectively. Acute toxicity assessed as maximum ferritin and C-reactive protein during the first 3 months post HSCT did not differ between cohorts, nor did the time to first hospital discharge (median 28, 32, and 31 days, p = .25). The incidences of acute graft-versus-host disease (GvHD) (66%, 56%, 71%) and chronic GvHD (25%, 31%, 14%) were comparable. Pulmonary function assessed by spirometry did not differ significantly. The 5-year cataract-free survival was 33.3%, 79%, and 100% in Cohorts 1, 2, and 3, respectively. We found a nonsignificant tendency toward more endocrinopathies in Cohort 1 compared to Cohorts 2 and 3. CONCLUSION: The change of modality did not result in more relapses. More fractionation led to improvement with a lower incidence of cataract and a tendency toward fewer endocrinopathies. The effect of 3D-planning-IMRT technology requires further evaluation in larger studies.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Condicionamento Pré-Transplante , Irradiação Corporal Total , Humanos , Irradiação Corporal Total/efeitos adversos , Feminino , Criança , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Pré-Escolar , Adolescente , Condicionamento Pré-Transplante/métodos , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/epidemiologia , Seguimentos , Taxa de Sobrevida , Lactente , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Prognóstico , Estudos Retrospectivos
4.
Pediatr Blood Cancer ; 71(9): e31164, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38953144

RESUMO

BACKGROUND: Organs at risk (OAR) dose reporting for total body irradiation (TBI) patients is limited, and standardly reported only as mean doses to the lungs and kidneys. Consequently, dose received and effects on other OAR remain unexplored. To remedy this gap, this study reports dose data on an extensive list of OAR for patients treated at a single institution using the modulated arc total body irradiation (MATBI) technique. METHOD: An audit was undertaken of all patients treated with MATBI between January 2015 and March 2021 who had completed their course of treatment. OAR were contoured on MATBI patient treatment plans, with 12 Gy in six fraction prescription. OAR dose statistics and dose volume histogram data are reported for the whole body, lungs, kidneys, bones, brain, lens, heart, liver and bowel bag. RESULTS: The OAR dose data for 29 patients are reported. Mean dose results are body 11.77 Gy, lungs 9.86 Gy, kidneys 11.84 Gy, bones 12.03 Gy, brain 12.12 Gy, right lens 12.31 Gy, left lens 12.64 Gy, heart 11.07 Gy, liver 11.81 Gy and bowel bag 12.06 Gy. Dose statistics at 1-Gy intervals of V6-V13 for lungs and V10-V13 for kidneys are also included. CONCLUSION: This is the first time an extensive list of OAR data has been reported for any TBI technique. Due to the paucity of reporting, this information could be used by centres implementing the MATBI technique, in addition to aiding comparison between TBI techniques, with the potential for greater understanding of the relationship between dose volume data and toxicity.


Assuntos
Órgãos em Risco , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Irradiação Corporal Total , Humanos , Órgãos em Risco/efeitos da radiação , Irradiação Corporal Total/métodos , Criança , Masculino , Feminino , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Pré-Escolar , Adolescente , Planejamento da Radioterapia Assistida por Computador/métodos , Lactente , Adulto , Seguimentos , Prognóstico , Adulto Jovem
5.
Vet Pathol ; 61(5): 765-770, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38695516

RESUMO

Alternative therapies that can help achieve complete remission in dogs with lymphoma include total body irradiation and hematopoietic cell transplant, though there are few reports describing successes and pathologic sequelae of these procedures. During a 10-year period, 94 dogs with multicentric lymphoma received a hematopoietic cell transplant following total body irradiation at North Carolina State University College of Veterinary Medicine. Seven of these 94 dogs (7%) died prior to discharge, five (5%) of which presented for postmortem examination. Of these dogs, four received an autologous hematopoietic cell transplant, while one received a haploidentical allogeneic hematopoietic cell transplant. All five dogs had bone marrow depletion with all hematopoietic lines affected. Three had systemic candidiasis, while two had bacterial infections. To the authors' knowledge, this is the first report to document pathologic findings and development of systemic mycoses in dogs post total-body irradiation therapy and hematopoietic cell transplant.


Assuntos
Doenças do Cão , Transplante de Células-Tronco Hematopoéticas , Linfoma de Células B , Irradiação Corporal Total , Animais , Cães , Transplante de Células-Tronco Hematopoéticas/veterinária , Irradiação Corporal Total/veterinária , Doenças do Cão/patologia , Doenças do Cão/radioterapia , Masculino , Feminino , Linfoma de Células B/veterinária , Linfoma de Células B/patologia , Linfoma de Células B/radioterapia
6.
J Appl Clin Med Phys ; 25(2): e14188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37910646

RESUMO

This work presents the dosimetric characteristics of Total Body Irradiation (TBI) delivered using a dedicated Co-60 TBI unit. We demonstrate the ability to deliver a uniform dose to the entire patient without the need for a beam spoiler or patient-specific compensation. Full dose distributions are calculated using an in-house Monte Carlo treatment planning system, and cumulative dose distributions are created by deforming the dose distributions within two different patient orientations. Sample dose distributions and profiles are provided to illustrate the plan characteristics, and dose and DVH statistics are provided for a heterogeneous cohort of patients. The patient cohort includes adult and pediatric patients with a range of 132-198 cm in length and 16.5-37.5 cm in anterior-posterior thickness. With the exception of the lungs, a uniform dose of 12 Gy is delivered to the patient with nearly the entire volume receiving a dose within 10% of the prescription dose. Mean lung doses (MLDs) are maintained below the estimated threshold for radiation pneumonitis, with MLDs ranging from 7.3 to 9.3 Gy (estimated equivalent dose in 2 Gy fractions (EQD2 ) of 6.2-8.5 Gy). Dose uniformity is demonstrated across five anatomical locations within the patient for which mean doses are all within 3.1% of the prescription dose. In-vivo dosimetry demonstrates excellent agreement between measured and calculated doses, with 78% of measurements within ±5% of the calculated dose and 99% within ±10%. These results demonstrate a state-of-the-art TBI planning and delivery system using a dedicated TBI unit and hybrid in-house and commercial planning techniques which provide comprehensive dosimetric data for TBI treatment plans that are accurately verified using in-vivo dosimetry.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Irradiação Corporal Total , Adulto , Humanos , Criança , Irradiação Corporal Total/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioisótopos de Cobalto/uso terapêutico , Radiometria/métodos
7.
J Appl Clin Med Phys ; : e14502, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231180

RESUMO

PURPOSE: This paper describes the implementation of an instantaneous low-dose-rate total body irradiation (TBI) technique using block-filtered 6 MV X-rays with a linear accelerator (LINAC) to reduce pulmonary toxicity. METHODS: In the absence of dedicated TBI-specific meter-set dose rates in LINAC and sufficient treatment room size, a 2-cm-thick transmission block was used together with a 200-cm source-to-surface distance (SSD) to reduce the instantaneous dose rates of 6 MV x-rays down to 10 cGy/min, thus alteration to the beam properties. A TBI-specific dose calculation model was built with data acquired at the treatment planning system (TPS)-permitted maximum 140-cm SSD and was validated in phantoms at a 180-cm SSD. As for planning strategies, we adopted large anterior-to-posterior/posterior-to-anterior (AP/PA) open fields with multi-leaf collimator shielding for lungs to achieve target coverage, lung protection, and efficient dose delivery. A custom-designed sliding couch (Patent No. ZL202123085880.1) was manufactured to support patients during treatment. Measures to control the quality and safety of TBI treatment include machine interlocks, pretreatment checklists, and in-vivo dose monitoring. RESULTS: The instantaneous dose rate of block-filtered 6MV X-ray was reduced to approximately 7.0 cGy/min at 12.5-7.5 cm depth with a 185-200 cm SSD. The dose calculated by TPS differs from the measurements by 0.15%-1.55% in the homogeneous phantom and 1.2%-4.85% in the CIRS thorax phantom. The open-field TBI technique achieved V90% (PTV) ≈ 96.8% and MLD = 6.6 Gy with 1-h planning and 50-min beam delivery in a single fraction. From February 2021 to July 2023, 30 patients received TBI treatments in our center, and in-vivo monitoring results differed from TPS calculations by -1.49%-2.10%. After 6-12 months of follow-ups, all the patients treated in our center showed no pulmonary toxicities of grade 2 or higher. CONCLUSION: A low instantaneous dose rate TBI technique can be implemented in the clinic.

8.
J Appl Clin Med Phys ; : e14430, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952071

RESUMO

PURPOSE: The purpose of this work was to detail our center's experience in transitioning from a Co-60 treatment technique to an intensity modulated radiation therapy (IMRT) based lateral-field extended source-to-axis distance (e-SAD) technique for total body irradiation (TBI). MATERIALS AND METHODS: An existing beam model in RayStation v.10A was validated for the use of e-SAD TBI treatments. Data were acquired with an Elekta Synergy linear accelerator (LINAC) at an extended source-to-surface distance of 365 cm with an 18 MV beam. Beam model validation measurements included percentage depth dose (PDD), profile data, surface dose, build-up region and transmission measurements. End-to-end testing was carried out using an anthropomorphic phantom. Treatments were performed in a supine position in a whole-body Vac-Lok at an e-SAD of 400 cm with a beam spoiler 10 cm from the couch. Planning was achieved using IMRT, where multi-leaf collimators were used to modulate the beam and shield the organs at risk. Beam's eye view projection images were used for in-room patient positioning and in-vivo dosimetry was performed for every treatment. RESULTS: The percent difference between the measured and calculated PDD and profiles was less than 2% at all locations. Surface dose was 83.8% of the maximum dose with the beam spoiler at a 10 cm distance from the phantom. The largest percent difference between the treatment planning system (TPS) and measured data within the anthropomorphic phantom was approximately 2%. In-vivo dosimetry measurements yielded results within the 5% institutional threshold. CONCLUSION: In 2022, 17 patients were successfully treated using the new IMRT-based lateral-field e-SAD TBI technique. The resulting clinical plans respected the institutional standard. The commissioning process, as well as the treatment planning and delivery aspects were described in this work with the intention of supporting other clinics in implementing this treatment method.

9.
J Appl Clin Med Phys ; 25(4): e14213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425126

RESUMO

PURPOSE: To develop a Total Body Irradiation (TBI) technique using IMRT at extended SSD that can be performed in any size Linac room. METHODS: Patients studied were placed on a platform close to the floor, directly under the gantry with cranial-caudal axis parallel to the gantry rotation plane and at SSD ∼200 cm. Two abutting fields with the same external isocenter at gantry angles of ±21˚, collimator angle of 90˚, and field size of 25 × 40 cm2 are employed for both supine and prone positions. An iterative optimization algorithm was developed to generate a uniform dose at the patient mid-plane with adequate shielding to critical organs such as lungs and kidneys. The technique was validated in both phantom and patient CT images for treatment planning, and dose measurement and QA were performed in phantom. RESULTS: A uniform dose distribution in the mid-plane within ±5% of the prescription dose was reached after a few iterations. This was confirmed with ion-chamber measurements in phantom. The mean dose to lungs and kidneys can be adjusted according to clinical requirements and can be as low as ∼25% of the prescription dose. For a typical prescription dose of 200 cGy/fraction, the total MU was ∼2400/1200 for the superior/inferior field. The overall treatment time for both supine/prone positions was ∼54 min to meet the maximum absorbed dose rate criteria of 15 cGy/min. IMRT QA with portal dosimetry shows excellent agreement. CONCLUSIONS: We have developed a promising TBI technique using abutting IMRT fields at extended SSD. The patient is in a comfortable recumbent position with good reproducibility and less motion during treatment. An additional benefit of this technique is that full 3D dose distribution is available from the TPS with a DVH summary for organs of interest. The technique allows precise sparing of lungs and kidneys and can be executed in any linac room.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Irradiação Corporal Total , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Radiometria/métodos , Dosagem Radioterapêutica
10.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273157

RESUMO

In the last decade, geopolitical instability across the globe has increased the risk of a large-scale radiological event, when radiation biomarkers would be needed for an effective triage of an irradiated population. Ionizing radiation elicits a complex response in the proteome, genome, and metabolome and hence can be leveraged as rapid and sensitive indicators of irradiation-induced damage. We analyzed the plasma of total-body irradiated (TBI) leukemia patients (n = 24) and nonhuman primates (NHPs; n = 10) before and 24 h after irradiation, and we performed a global metabolomic study aiming to provide plasma metabolites as candidate radiation biomarkers for biological dosimetry. Peripheral blood samples were collected according to the appropriate ethical approvals, and metabolites were extracted and analyzed by liquid chromatography mass spectrometry. We identified an array of metabolites significantly altered by irradiation, including bilirubin, cholesterol, and 18-hydroxycorticosterone, which were detected in leukemia patients and NHPs. Pathway analysis showed overlapping perturbations in steroidogenesis, porphyrin metabolism, and steroid hormone biosynthesis and metabolism. Additionally, we observed dysregulation in bile acid biosynthesis and tyrosine metabolism in the TBI patient cohort. This investigation is, to our best knowledge, among the first to provide valuable insights into a comparison between human and NHP irradiation models. The findings from this study could be leveraged for translational biological dosimetry.


Assuntos
Metaboloma , Irradiação Corporal Total , Animais , Humanos , Masculino , Feminino , Adulto , Biomarcadores/sangue , Pessoa de Meia-Idade , Leucemia/sangue , Leucemia/metabolismo , Macaca mulatta , Radiação Ionizante , Metabolômica/métodos
11.
Rinsho Ketsueki ; 65(7): 615-621, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-39098010

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-SCT) is a curative treatment option for multiple myeloma (MM), but few patients are eligible due to its high risk of treatment-related toxicity and relapse. Here, we report the feasibility and efficacy of allo-SCT after myeloablative conditioning with 8 Gy of total body irradiation (TBI) for reducing relapse of MM. We retrospectively analyzed data from 30 consecutive patients who received allo-SCT for MM after 8 Gy of TBI at Japanese Red Cross Medical Center between 2012 and 2021. Median age at allo-SCT was 47 (range 31-61) years. Stem-cell sources were peripheral blood from an HLA-matched related donor (MRD, n=5), bone marrow from an HLA-matched unrelated donor (MUD, n=5), bone marrow from an HLA-mismatched unrelated donor (MMUD, n=13), and cord blood (n=7). All patients received conditioning with 8 Gy of TBI combined with Flu/Mel (n=28) or others (n=2). Five-year PFS and 5-year OS were 36.7% and 46.2%, respectively. Sixteen patients died during the observation period (12 of primary disease and 4 of treatment-related toxicity). Patients with VGPR or better before allo-SCT had significantly better PFS (p=0.009) and OS (p=0.01) than others. Patients who received MMUD cells tended to have better PFS than those with other cell sources. Our report showed that allo-SCT for MM after 8 Gy of TBI is feasible, and the better PFS of MMUD suggests graft-versus-myeloma effects.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Condicionamento Pré-Transplante , Transplante Homólogo , Irradiação Corporal Total , Humanos , Mieloma Múltiplo/terapia , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Masculino , Feminino
12.
J Proteome Res ; 22(4): 1116-1126, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36977373

RESUMO

There are currently four radiation medical countermeasures that have been approved by the United States Food and Drug Administration to mitigate hematopoietic acute radiation syndrome, all of which are repurposed radiomitigators. The evaluation of additional candidate drugs that may also be helpful for use during a radiological/nuclear emergency is ongoing. A chlorobenzyl sulfone derivative (organosulfur compound) known as Ex-Rad, or ON01210, is one such candidate medical countermeasure, being a novel, small-molecule kinase inhibitor that has demonstrated efficacy in the murine model. In this study, nonhuman primates exposed to ionizing radiation were subsequently administered Ex-Rad as two treatment schedules (Ex-Rad I administered 24 and 36 h post-irradiation, and Ex-Rad II administered 48 and 60 h post-irradiation) and the proteomic profiles of serum using a global molecular profiling approach were assessed. We observed that administration of Ex-Rad post-irradiation is capable of mitigating radiation-induced perturbations in protein abundance, particularly in restoring protein homeostasis, immune response, and mitigating hematopoietic damage, at least in part after acute exposure. Taken together, restoration of functionally significant pathway perturbations may serve to protect damage to vital organs and provide long-term survival benefits to the afflicted population.


Assuntos
Contramedidas Médicas , Protetores contra Radiação , Estados Unidos , Animais , Camundongos , Proteômica , Protetores contra Radiação/farmacologia , Primatas
13.
BMC Genomics ; 24(1): 274, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217865

RESUMO

The risk of exposure of the general public or military personnel to high levels of ionizing radiation from nuclear weapons or radiological accidents is a dire national security matter. The development of advanced molecular biodosimetry methods, those that measure biological response, such as transcriptomics, to screen large populations of radiation-exposed victims is key to improving survival outcomes during radiological mass casualty scenarios. In this study, nonhuman primates were exposed to either 12.0 Gy cobalt-60 gamma (total-body irradiation, TBI) or X-ray (partial-body irradiation, PBI) 24 h after administration of a potential radiation medical countermeasure, gamma-tocotrienol (GT3). Changes in the jejunal transcriptomic profiles in GT3-treated and irradiated animals were compared to healthy controls to assess the extent of radiation damage. No major effect of GT3 on radiation-induced transcriptome at this radiation dose was identified. About 80% of the pathways with a known activation or repression state were commonly observed between both exposures. Several common pathways activated due to irradiation include FAK signaling, CREB signaling in the neurons, phagosome formation, and G-protein coupled signaling pathway. Sex-specific differences associated with excessive mortality among irradiated females were identified in this study, including Estrogen receptor signaling. Differential pathway activation was also identified across PBI and TBI, pointing towards altered molecular response for different degrees of bone marrow sparing and radiation doses. This study provides insight into radiation-induced changes in jejunal transcriptional profiles, supporting the investigation for the identification of biomarkers for radiation injury and countermeasure efficacy.


Assuntos
Síndrome Aguda da Radiação , Transcriptoma , Masculino , Animais , Feminino , Síndrome Aguda da Radiação/tratamento farmacológico , Jejuno , Radiação Ionizante , Primatas
14.
Cancer Sci ; 114(2): 596-605, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36221800

RESUMO

This prospective phase I trial aimed to determine the recommended dose of 3-day total marrow and lymphoid irradiation (TMLI) for a myeloablative conditioning regimen by increasing the dose per fraction. The primary end-point of this single-institution dose escalation study was the recommended TMLI dose based on the frequency of dose-limiting toxicity (DLT) ≤100 days posthematopoietic stem cell transplantation (HSCT); a 3 + 3 design was used to evaluate the safety of TMLI. Three dose levels of TMLI (14/16/18 Gy in six fractions over 3 days) were set. The treatment protocol began at 14 Gy. Dose-limiting toxicities were defined as grade 3 or 4 nonhematological toxicities. Nine patients, with a median age of 42 years (range, 35-48), eight with acute lymphoblastic leukemia and one with chronic myeloblastic leukemia, received TMLI followed by unrelated bone marrow transplant. The median follow-up period after HSCT was 575 days (range, 253-1037). Three patients were enrolled for each dose level. No patient showed DLT within 100 days of HSCT. The recommended dose of 3-day TMLI was 18 Gy in six fractions. All patients achieved neutrophil engraftment at a median of 19 days (range, 14-25). One-year overall and disease-free survival rates were 83.3% and 57.1%, respectively. Three patients experienced relapse, and no nonrelapse mortality was documented during the observation period. One patient died due to disease relapse 306 days post-HSCT. The recommended dose of 3-day TMLI was 18 Gy in six fractions. The efficacy evaluation of this regimen is currently being planned in a phase II study.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Pessoa de Meia-Idade , Medula Óssea , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Irradiação Linfática/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Estudos Prospectivos , Recidiva , Condicionamento Pré-Transplante/efeitos adversos , Condicionamento Pré-Transplante/métodos
15.
Cytogenet Genome Res ; 163(3-4): 121-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37793357

RESUMO

The cytokinesis-block micronucleus (CBMN) assay is an established method for assessing chromosome damage in human peripheral blood lymphocytes resulting from exposure to genotoxic agents such as ionizing radiation. The objective of this study was to measure cytogenetic DNA damage and hematology parameters in vivo based on MN frequency in peripheral blood lymphocytes (PBLs) from adult and pediatric leukemia patients undergoing hematopoietic stem cell transplantation preceded by total body irradiation (TBI) as part of the conditioning regimen. CBMN assay cultures were prepared from fresh blood samples collected before and at 4 and 24 h after the start of TBI, corresponding to doses of 1.25 Gy and 3.75 Gy, respectively. For both age groups, there was a significant increase in MN yields with increasing dose (p < 0.05) and dose-dependent decrease in the nuclear division index (NDI; p < 0.0001). In the pre-radiotherapy samples, there was a significantly higher NDI measured in the pediatric cohort compared to the adult due to an increase in the percentage of tri- and quadri-nucleated cells scored. Complete blood counts with differential recorded before and after TBI at the 24-h time point showed a rapid increase in neutrophil (p = 0.0001) and decrease in lymphocyte (p = 0.0006) counts, resulting in a highly elevated neutrophil-to-lymphocyte ratio (NLR) of 14.45 ± 1.85 after 3.75 Gy TBI (pre-exposure = 4.62 ± 0.49), indicating a strong systemic inflammatory response. Correlation of the hematological cell subset counts with cytogenetic damage, indicated that only the lymphocyte subset survival fraction (after TBI compared with before TBI) showed a negative correlation with increasing MN frequency from 0 to 1.25 Gy (r = -0.931; p = 0.007). Further, the data presented here indicate that the combination of CBMN assay endpoints (MN frequency and NDI values) and hematology parameters could be used to assess cytogenetic damage and early hematopoietic injury in the peripheral blood of leukemia patients, 24 h after TBI exposure.


Assuntos
Leucemia , Irradiação Corporal Total , Adulto , Humanos , Criança , Irradiação Corporal Total/efeitos adversos , Testes para Micronúcleos/métodos , Citocinese/genética , Citocinese/efeitos da radiação , Linfócitos
16.
Cytogenet Genome Res ; 163(3-4): 187-196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37348469

RESUMO

There is an increased threat of exposure to ionizing radiation; in the event of such exposure, the availability of medical countermeasures will be vital to ensure the protection of the population. Effective countermeasures should be efficacious across a varied population and most importantly amongst both males and females. Radiation research must be conducted in animal models which act as a surrogate for the human response. Here, we identify differences in survival in male and female C57BL/6 in both a total body irradiation (TBI) model using the Armed Forces Radiobiology Research Institute (AFRRI) 60Co source and a partial body irradiation (PBI) model using the AFRRI Linear Accelerator (LINAC) with 4 MV photons and 2.5% bone marrow shielding. In both models, we observed a higher degree of radioresistance in female animals and a corresponding radiosensitivity in males. One striking difference in male and female rodents is body size/weight and we investigated the role of pre-irradiation body weight on survivability for animals irradiated at the same dose of irradiation (8 Gy TBI, 14 Gy PBI). We found that weight does not influence survival in the TBI model and that heavier males but lighter females have increased survival in the PBI model. This incongruence in survival amongst the sexes should be taken into consideration in the course of developing radiation countermeasures for response to a mass casualty incident.


Assuntos
Radiação Ionizante , Humanos , Feminino , Masculino , Animais , Camundongos , Modelos Animais
17.
Strahlenther Onkol ; 199(12): 1242-1254, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36932237

RESUMO

PURPOSE: Effects of X­ray energy levels used for myeloablative lethal total body irradiation (TBI) delivery prior to bone marrow transplantation (BMT) in preclinical mouse models were examined. MATERIALS AND METHODS: In mouse models, single-fraction myeloablative TBI at a lethal dose was delivered using two different X­ray devices, either low (160 kV cabinet irradiator) or high energy (6 MV linear accelerator), before semi-allogeneic hematopoietic stem-cell transplantation (HSCT) to ensure bone marrow (BM) chimerism, graft-versus-host disease (GVHD), and tumor engraftment. Recipient mice were clinically followed for 80 days after bone marrow transplantation (BMT). Flow cytometry was performed to assess donor chimerism and tumor engraftment in recipient mice. RESULTS: Both X­ray irradiation techniques delivered a 10 Gy single fraction of TBI, presented a lethal effect, and could allow near-complete early donor chimerism on day 13. However, low-energy irradiation increased T cells' alloreactivity compared to high-energy irradiation, leading to clinical consequences for GVHD and tumor engraftment outcomes. The alloreactive effect differences might be attributed to the distinction in inflammatory status of irradiated recipients at donor cell infusion (D0). Delaying donor cell administration (D1 after lethal TBI) attenuated T cells' alloreactivity and clinical outcomes in GVHD mouse models. CONCLUSION: Different X­ray irradiation modalities condition T cell alloreactivity in experimental semi-allogeneic BMT. Low-energy X­ray irradiator induces a post-TBI inflammatory burst and exacerbates alloreactive reactions. This technical and biological information should be considered in interpreting GVHD/ graft-versus-leukemia effect results in mice experimental models of BMT.


Assuntos
Doença Enxerto-Hospedeiro , Leucemia , Camundongos , Animais , Medula Óssea/efeitos da radiação , Transplante Homólogo , Raios X , Irradiação Corporal Total , Quimerismo , Transplante de Medula Óssea/métodos , Camundongos Endogâmicos C57BL
18.
Ann Hematol ; 102(8): 2199-2211, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37347269

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment option for selected patients with acute myeloid leukemia. Yet, the influence of total body irradiation (TBI)-based conditioning as compared to non-TBI-based conditioning on long-term mortality is unclear. We retrospectively evaluated outcomes after TBI-based (n = 91) and non-TBI-based conditioning (melphalan-based, n = 248) for 1st allo-HSCT patients transplanted at the University Hospital Regensburg between 1999 and 2020. TBI was performed with an average dose rate of 4 cGy/min. Median follow-up was 8.3 years (interquartile range, 4.8-12.9 years). Cumulative incidence rates of 5-year non-relapse mortality (NRM) were 17% (95% confidence interval, CI, 10-25) and 33% (95% CI, 27-40) after TBI- and non-TBI-based conditioning (P < 0.001). Five-year cumulative incidences of relapse (CIR) were 42% (95% CI, 32-52) and 29% (95% CI, 23-35) after TBI- and non-TBI-based conditioning (P = 0.030). The 5-year OS was 54% (95% CI, 43-64) and 55% (95% CI, 48-62) after TBI- and non-TBI-based conditioning. Both groups had similar 100-day acute graft-versus-host disease (aGVHD, 43% vs. 40%) and 5-year chronic GVHD (34% vs. 36%). The multivariable regression models found no associations of TBI with the outcomes NRM, CIR, PFS, OS, aGVHD, and cGVHD. TBI was no risk factor for NRM, even including mortality caused by secondary malignancies. NRM was influenced by patient age, advanced disease status, and the use of female donors for male recipients. TBI- and non-TBI-based conditioning appear to be equally effective and tolerable for AML patients eligible for 1st allo-HSCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Masculino , Feminino , Melfalan , Estudos Retrospectivos , Irradiação Corporal Total/efeitos adversos , Condicionamento Pré-Transplante/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Recidiva , Doença Enxerto-Hospedeiro/epidemiologia , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle
19.
Eur J Haematol ; 111(1): 146-153, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058419

RESUMO

OBJECTIVES: High-dose total body irradiation (TBI) is considered a cornerstone of myeloablative conditioning for allogeneic stem cell transplantation (allo-SCT). We retrospectively compared the main outcomes of an HLA matched or 1-allele mismatched related or unrelated allo-SCT in adult patients affected by acute leukemia (AL) or myelodysplastic syndromes (MDS). METHODS: Fifty-nine patients received cyclophosphamide (Cy)-TBI (13.5 Gy) and graft-versus-host disease (GVHD) prophylaxis with a calcineurin-inhibitor plus methrotrexate (CyTBI group) and 28 patients received fludarabine-TBI (8.8-13.5 Gy) and GVHD prophylaxis with PTCy and tacrolimus (FluTBI-PTCy group). RESULTS: Median follow-up for survivors was 82 and 22 months. The 12-month probability of overall survival and progression-free survival were similar (p = .18, p = .7). The incidence of Grades 2-4 and 3-4 acute GVHD, and the incidence of moderate-to-severe chronic GVHD were higher in the CyTBI group (p = .02, p < .01and p = .03). Nonrelapse mortality (NRM) at 12 months posttransplant was higher in the CyTBI group (p = 0.05), while the incidence of relapse was similar in both groups (p = 0.7). The number of GVHD-free and relapse-free patients without systemic immunosuppression (GRFS) at 1-year posttransplant was higher in the FluTBI-PTCy group (p = 0.01). CONCLUSIONS: The study confirms the safety and efficacy of a novel FluTBI-PTCy platform with reduced incidence of severe acute and chronic GVHD, and early improvement of NRM.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Adulto , Humanos , Estudos Retrospectivos , Irradiação Corporal Total , Ciclofosfamida/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Leucemia Mieloide Aguda/tratamento farmacológico , Recidiva , Condicionamento Pré-Transplante
20.
Pediatr Blood Cancer ; 70(10): e30589, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37486149

RESUMO

PURPOSE/OBJECTIVES: To evaluate dosimetric differences between auto-planned volumetric modulated arc therapy (VMAT) total body irradiation (TBI) technique and two-dimensional radiotherapy using anterior-posterial/posterio-anterial beams (2D AP/PA) TBI technique. METHODS: Ten pediatric patients treated with VMAT-TBI on Varian c-arm linac were included in this study. VMAT-TBI plans were generated using our in-house developed and publicly shared auto-planning scripts. For each VMAT-TBI plan, a 2D AP/PA plan was created replicating the institution's clinical setup with the patient positioned at extended source to skin distance (SSD) with a compensator to account for differences in patient thickness, 50% transmission daily lung blocks, and electron chest wall boosts prescribed to 50% of the photon prescription. Clinically relevant metrics were analyzed and compared between the VMAT and 2D plans. RESULTS: All VMAT-TBI plans achieved planned target volume (PTV) D90% ≥ 100% of prescription. VMAT-TBI PTV D90% significantly increased (7.1% ± 2.9%, p < .001) compared to the 2D technique, whereas no differences were observed in global Dmax (p < .2) and PTV V110% (p < .4). Compared to the 2D plans, significant decreases in the Dmean to the lungs (-25.6% ± 11.5%, p < .001) and lungs-1 cm (-34.1% ± 10.1%, p < .001) were observed with the VMAT plans. The VMAT technique also enabled decrease of dose to other organs: kidneys Dmean (-32.5% ± 5.0%, p < .001) and lenses Dmax (-5.3% ± 8.1%, p = .03); and in addition, for 2 Gy prescription: testes/ovaries Dmean (-41.5% ± 11.5%, p < .001), brain Dmean (-22.6% ± 5.4%, p = .002), and thyroid Dmean (-18.2% ± 16.0%, p = .03). CONCLUSIONS: Superior lung sparing with improved target coverage and similar global Dmax were observed with the VMAT plans as compared to 2D plans. In addition, VMAT-TBI plans provided greater dose reductions in gonads, kidneys, brain, thyroid, and lenses.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Criança , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Irradiação Corporal Total , Dosagem Radioterapêutica , Órgãos em Risco/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA