Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.609
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39383864

RESUMO

Tn7-like transposons are characterized by their ability to insert specifically into host chromosomes. Recognition of the attachment (att) site by TnsD recruits the TnsABC proteins to form the transpososome and facilitate transposition. Although this pathway is well established, atomic-level structural insights of this process remain largely elusive. Here, we present the cryo-electron microscopy (cryo-EM) structures of the TnsC-TnsD-att DNA complex and the TnsABCD transpososome from the Tn7-like transposon in Peltigera membranacea cyanobiont 210A, a type I-B CRISPR-associated transposon. Our structures reveal a striking bending of the att DNA, featured by the intercalation of an arginine side chain of TnsD into a CC/GG dinucleotide step. The TnsABCD transpososome structure reveals TnsA-TnsB interactions and demonstrates that TnsC not only recruits TnsAB but also directly participates in the transpososome assembly. These findings provide mechanistic insights into targeted DNA insertion by Tn7-like transposons, with implications for improving the precision and efficiency of their genome-editing applications.

2.
Cell ; 186(19): 4204-4215.e19, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37557170

RESUMO

Tn7-like transposons have co-opted CRISPR-Cas systems to facilitate the movement of their own DNA. These CRISPR-associated transposons (CASTs) are promising tools for programmable gene knockin. A key feature of CASTs is their ability to recruit Tn7-like transposons to nuclease-deficient CRISPR effectors. However, how Tn7-like transposons are recruited by diverse CRISPR effectors remains poorly understood. Here, we present the cryo-EM structure of a recruitment complex comprising the Cascade complex, TniQ, TnsC, and the target DNA in the type I-B CAST from Peltigera membranacea cyanobiont 210A. Target DNA recognition by Cascade induces conformational changes in Cas6 and primes TniQ recruitment through its C-terminal domain. The N-terminal domain of TniQ is bound to the seam region of the TnsC spiral heptamer. Our findings provide insights into the diverse mechanisms for the recruitment of Tn7-like transposons to CRISPR effectors and will aid in the development of CASTs as gene knockin tools.


Assuntos
Ascomicetos , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , Técnicas de Introdução de Genes , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/ultraestrutura , Microscopia Crioeletrônica , Ascomicetos/química , Ascomicetos/metabolismo , Ascomicetos/ultraestrutura
3.
Cell ; 185(26): 4999-5010.e17, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36435179

RESUMO

CRISPR-Cas systems have been co-opted by Tn7-like transposable elements to direct RNA-guided transposition. Type V-K CRISPR-associated transposons rely on the concerted activities of the pseudonuclease Cas12k, the AAA+ ATPase TnsC, the Zn-finger protein TniQ, and the transposase TnsB. Here we present a cryo-electron microscopic structure of a target DNA-bound Cas12k-transposon recruitment complex comprised of RNA-guided Cas12k, TniQ, a polymeric TnsC filament and, unexpectedly, the ribosomal protein S15. Complex assembly, mediated by a network of interactions involving the guide RNA, TniQ, and S15, results in R-loop completion. TniQ contacts two TnsC protomers at the Cas12k-proximal filament end, likely nucleating its polymerization. Transposition activity assays corroborate our structural findings, implying that S15 is a bona fide component of the type V crRNA-guided transposon machinery. Altogether, our work uncovers key mechanistic aspects underpinning RNA-mediated assembly of CRISPR-associated transposons to guide their development as programmable tools for site-specific insertion of large DNA payloads.


Assuntos
Proteínas Associadas a CRISPR , Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Sistemas CRISPR-Cas , Transposases/genética , Proteínas de Ligação a DNA/metabolismo , RNA , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/genética
4.
Cell ; 184(9): 2441-2453.e18, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33770501

RESUMO

Tn7-like transposons have co-opted CRISPR systems, including class 1 type I-F, I-B, and class 2 type V-K. Intriguingly, although these CRISPR-associated transposases (CASTs) undergo robust CRISPR RNA (crRNA)-guided transposition, they are almost never found in sites targeted by the crRNAs encoded by the cognate CRISPR array. To understand this paradox, we investigated CAST V-K and I-B systems and found two distinct modes of transposition: (1) crRNA-guided transposition and (2) CRISPR array-independent homing. We show distinct CAST systems utilize different molecular mechanisms to target their homing site. Type V-K CAST systems use a short, delocalized crRNA for RNA-guided homing, whereas type I-B CAST systems, which contain two distinct target selector proteins, use TniQ for RNA-guided DNA transposition and TnsD for homing to an attachment site. These observations illuminate a key step in the life cycle of CAST systems and highlight the diversity of molecular mechanisms mediating transposon homing.


Assuntos
Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Elementos de DNA Transponíveis/fisiologia , DNA Bacteriano/metabolismo , RNA Guia de Cinetoplastídeos , Transposases/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Bacteriano/genética , Edição de Genes , Recombinação Genética , Transposases/genética
5.
Cell ; 178(4): 964-979.e20, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398345

RESUMO

PIWI-interacting RNAs (piRNAs) guide transposon silencing in animals. The 22-30 nt piRNAs are processed in the cytoplasm from long non-coding RNAs that often lack RNA processing hallmarks of export-competent transcripts. By studying how these transcripts achieve nuclear export, we uncover an RNA export pathway specific for piRNA precursors in the Drosophila germline. This pathway requires Nxf3-Nxt1, a variant of the hetero-dimeric mRNA export receptor Nxf1-Nxt1. Nxf3 interacts with UAP56, a nuclear RNA helicase essential for mRNA export, and CG13741/Bootlegger, which recruits Nxf3-Nxt1 and UAP56 to heterochromatic piRNA source loci. Upon RNA cargo binding, Nxf3 achieves nuclear export via the exportin Crm1 and accumulates together with Bootlegger in peri-nuclear nuage, suggesting that after export, Nxf3-Bootlegger delivers precursor transcripts to the piRNA processing sites. These findings indicate that the piRNA pathway bypasses nuclear RNA surveillance systems to export unprocessed transcripts to the cytoplasm, a strategy also exploited by retroviruses.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Heterocromatina/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Argonautas/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA Helicases DEAD-box/metabolismo , Elementos de DNA Transponíveis , Inativação Gênica , Células Germinativas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcrição Gênica , Proteína Exportina 1
6.
Cell ; 174(5): 1082-1094.e12, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30057117

RESUMO

Although animals have evolved multiple mechanisms to suppress transposons, "leaky" mobilizations that cause mutations and diseases still occur. This suggests that transposons employ specific tactics to accomplish robust propagation. By directly tracking mobilization, we show that, during a short and specific time window of oogenesis, retrotransposons achieve massive amplification via a cell-type-specific targeting strategy. Retrotransposons rarely mobilize in undifferentiated germline stem cells. However, as oogenesis proceeds, they utilize supporting nurse cells-which are highly polyploid and eventually undergo apoptosis-as factories to massively manufacture invading products. Moreover, retrotransposons rarely integrate into nurse cells themselves but, instead, via microtubule-mediated transport, they preferentially target the DNA of the interconnected oocytes. Blocking microtubule-dependent intercellular transport from nurse cells significantly alleviates damage to the oocyte genome. Our data reveal that parasitic genomic elements can efficiently hijack a host developmental process to propagate robustly, thereby driving evolutionary change and causing disease.


Assuntos
Drosophila melanogaster/genética , Elementos Nucleotídeos Longos e Dispersos , Oogênese , RNA Interferente Pequeno , Retroelementos , Retroviridae/genética , Animais , Proteínas de Drosophila , Feminino , Biblioteca Gênica , Inativação Gênica , Células Germinativas , Proteínas de Fluorescência Verde/metabolismo , Hibridização in Situ Fluorescente , Masculino , Oócitos/metabolismo , Células-Tronco/metabolismo
7.
Cell ; 173(1): 208-220.e20, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29551265

RESUMO

Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes.


Assuntos
DNA Bacteriano/metabolismo , Transposases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Clivagem do DNA , Elementos de DNA Transponíveis/genética , DNA Bacteriano/química , Farmacorresistência Bacteriana , Enterococcus faecalis/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Transposases/antagonistas & inibidores , Transposases/química , Transposases/genética
8.
Cell ; 173(1): 248-259.e15, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29526463

RESUMO

The dynamics of the chromatin regulatory landscape during human early embryogenesis remains unknown. Using DNase I hypersensitive site (DHS) sequencing, we report that the chromatin accessibility landscape is gradually established during human early embryogenesis. Interestingly, the DHSs with OCT4 binding motifs are enriched at the timing of zygotic genome activation (ZGA) in humans, but not in mice. Consistently, OCT4 contributes to ZGA in humans, but not in mice. We further find that lower CpG promoters usually establish DHSs at later stages. Similarly, younger genes tend to establish promoter DHSs and are expressed at later embryonic stages, while older genes exhibit these features at earlier stages. Moreover, our data show that human active transposons SVA and HERV-K harbor DHSs and are highly expressed in early embryos, but not in differentiated tissues. In summary, our data provide an evolutionary developmental view for understanding the regulation of gene and transposon expression.


Assuntos
Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Evolução Molecular , Animais , Sítios de Ligação , Ilhas de CpG , Metilação de DNA , Elementos de DNA Transponíveis/genética , Desoxirribonuclease I/metabolismo , Regulação para Baixo , Desenvolvimento Embrionário , Humanos , Camundongos , Fator 3 de Transcrição de Octâmero/antagonistas & inibidores , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Zigoto/metabolismo
9.
Cell ; 170(1): 61-71.e11, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666125

RESUMO

Transposon reactivation is an inherent danger in cells that lose epigenetic silencing during developmental reprogramming. In the mouse, long terminal repeat (LTR)-retrotransposons, or endogenous retroviruses (ERV), account for most novel insertions and are expressed in the absence of histone H3 lysine 9 trimethylation in preimplantation stem cells. We found abundant 18 nt tRNA-derived small RNA (tRF) in these cells and ubiquitously expressed 22 nt tRFs that include the 3' terminal CCA of mature tRNAs and target the tRNA primer binding site (PBS) essential for ERV reverse transcription. We show that the two most active ERV families, IAP and MusD/ETn, are major targets and are strongly inhibited by tRFs in retrotransposition assays. 22 nt tRFs post-transcriptionally silence coding-competent ERVs, while 18 nt tRFs specifically interfere with reverse transcription and retrotransposon mobility. The PBS offers a unique target to specifically inhibit LTR-retrotransposons, and tRF-targeting is a potentially highly conserved mechanism of small RNA-mediated transposon control.


Assuntos
Inativação Gênica , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/metabolismo , Retroviridae/genética , Células-Tronco/virologia , Animais , Células HeLa , Humanos , Camundongos , Sequências Repetidas Terminais
10.
Mol Cell ; 84(6): 1021-1035.e11, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38359823

RESUMO

In the male mouse germ line, PIWI-interacting RNAs (piRNAs), bound by the PIWI protein MIWI2 (PIWIL4), guide DNA methylation of young active transposons through SPOCD1. However, the underlying mechanisms of SPOCD1-mediated piRNA-directed transposon methylation and whether this pathway functions to protect the human germ line remain unknown. We identified loss-of-function variants in human SPOCD1 that cause defective transposon silencing and male infertility. Through the analysis of these pathogenic alleles, we discovered that the uncharacterized protein C19ORF84 interacts with SPOCD1. DNMT3C, the DNA methyltransferase responsible for transposon methylation, associates with SPOCD1 and C19ORF84 in fetal gonocytes. Furthermore, C19ORF84 is essential for piRNA-directed DNA methylation and male mouse fertility. Finally, C19ORF84 mediates the in vivo association of SPOCD1 with the de novo methylation machinery. In summary, we have discovered a conserved role for the human piRNA pathway in transposon silencing and C19ORF84, an uncharacterized protein essential for orchestrating piRNA-directed DNA methylation.


Assuntos
Metilação de DNA , RNA de Interação com Piwi , Masculino , Humanos , Animais , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas/metabolismo , Células Germinativas/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis/genética , Mamíferos/metabolismo
11.
Mol Cell ; 84(12): 2353-2367.e5, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38834066

RESUMO

CRISPR-associated transposons (CASTs) are mobile genetic elements that co-opt CRISPR-Cas systems for RNA-guided DNA transposition. CASTs integrate large DNA cargos into the attachment (att) site independently of homology-directed repair and thus hold promise for eukaryotic genome engineering. However, the functional diversity and complexity of CASTs hinder an understanding of their mechanisms. Here, we present the high-resolution cryoelectron microscopy (cryo-EM) structure of the reconstituted ∼1 MDa post-transposition complex of the type V-K CAST, together with different assembly intermediates and diverse TnsC filament lengths, thus enabling the recapitulation of the integration complex formation. The results of mutagenesis experiments probing the roles of specific residues and TnsB-binding sites show that transposition activity can be enhanced and suggest that the distance between the PAM and att sites is determined by the lengths of the TnsB C terminus and the TnsC filament. This singular model of RNA-guided transposition provides a foundation for repurposing the system for genome-editing applications.


Assuntos
Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Sítios de Ligação , Edição de Genes/métodos , Modelos Moleculares , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Conformação Proteica , Conformação de Ácido Nucleico
12.
Mol Cell ; 84(12): 2368-2381.e6, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38834067

RESUMO

The Tn7 family of transposons is notable for its highly regulated integration mechanisms, including programmable RNA-guided transposition. The targeting pathways rely on dedicated target selection proteins from the TniQ family and the AAA+ adaptor TnsC to recruit and activate the transposase at specific target sites. Here, we report the cryoelectron microscopy (cryo-EM) structures of TnsC bound to the TniQ domain of TnsD from prototypical Tn7 and unveil key regulatory steps stemming from unique behaviors of ATP- versus ADP-bound TnsC. We show that TnsD recruits ADP-bound dimers of TnsC and acts as an exchange factor to release one protomer with exchange to ATP. This loading process explains how TnsC assembles a heptameric ring unidirectionally from the target site. This unique loading process results in functionally distinct TnsC protomers within the ring, providing a checkpoint for target immunity and explaining how insertions at programmed sites precisely occur in a specific orientation across Tn7 elements.


Assuntos
Difosfato de Adenosina , Trifosfato de Adenosina , Microscopia Crioeletrônica , Elementos de DNA Transponíveis , Transposases , Elementos de DNA Transponíveis/genética , Trifosfato de Adenosina/metabolismo , Transposases/metabolismo , Transposases/genética , Transposases/química , Difosfato de Adenosina/metabolismo , Ligação Proteica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Modelos Moleculares , Multimerização Proteica , Sítios de Ligação
13.
Mol Cell ; 83(12): 2122-2136.e10, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37267947

RESUMO

To spread, transposons must integrate into target sites without disruption of essential genes while avoiding host defense systems. Tn7-like transposons employ multiple mechanisms for target-site selection, including protein-guided targeting and, in CRISPR-associated transposons (CASTs), RNA-guided targeting. Combining phylogenomic and structural analyses, we conducted a broad survey of target selectors, revealing diverse mechanisms used by Tn7 to recognize target sites, including previously uncharacterized target-selector proteins found in newly discovered transposable elements (TEs). We experimentally characterized a CAST I-D system and a Tn6022-like transposon that uses TnsF, which contains an inactivated tyrosine recombinase domain, to target the comM gene. Additionally, we identified a non-Tn7 transposon, Tsy, encoding a homolog of TnsF with an active tyrosine recombinase domain, which we show also inserts into comM. Our findings show that Tn7 transposons employ modular architecture and co-opt target selectors from various sources to optimize target selection and drive transposon spread.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos de DNA Transponíveis , Plasmídeos , Elementos de DNA Transponíveis/genética , Recombinases/genética , Tirosina/genética
14.
Mol Cell ; 83(11): 1827-1838.e6, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267904

RESUMO

CRISPR-associated transposons (CASTs) are natural RNA-directed transposition systems. We demonstrate that transposon protein TniQ plays a central role in promoting R-loop formation by RNA-guided DNA-targeting modules. TniQ residues, proximal to CRISPR RNA (crRNA), are required for recognizing different crRNA categories, revealing an unappreciated role of TniQ to direct transposition into different classes of crRNA targets. To investigate adaptations allowing CAST elements to utilize attachment sites inaccessible to CRISPR-Cas surveillance complexes, we compared and contrasted PAM sequence requirements in both I-F3b CAST and I-F1 CRISPR-Cas systems. We identify specific amino acids that enable a wider range of PAM sequences to be accommodated in I-F3b CAST elements compared with I-F1 CRISPR-Cas, enabling CAST elements to access attachment sites as sequences drift and evade host surveillance. Together, this evidence points to the central role of TniQ in facilitating the acquisition of CRISPR effector complexes for RNA-guided DNA transposition.


Assuntos
Proteínas Associadas a CRISPR , RNA , DNA/genética , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/genética
15.
Annu Rev Biochem ; 84: 405-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25747396

RESUMO

PIWI-interacting RNAs (piRNAs) are a class of small RNAs that are 24-31 nucleotides in length. They associate with PIWI proteins, which constitute a germline-specific subclade of the Argonaute family, to form effector complexes known as piRNA-induced silencing complexes, which repress transposons via transcriptional or posttranscriptional mechanisms and maintain germline genome integrity. In addition to having a role in transposon silencing, piRNAs in diverse organisms function in the regulation of cellular genes. In some cases, piRNAs have shown transgenerational inheritance to pass on the memory of "self" and "nonself," suggesting a contribution to various cellular processes over generations. Many piRNA factors have been identified; however, both the molecular mechanisms leading to the production of mature piRNAs and the effector phases of gene silencing are still enigmatic. Here, we summarize the current state of our knowledge on the biogenesis of piRNA, its biological functions, and the underlying mechanisms.


Assuntos
RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis , Inativação Gênica , Humanos
16.
Annu Rev Genet ; 56: 63-87, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449356

RESUMO

Within the life cycle of a living organism, another life cycle exists for the selfish genome inhabitants, which are called transposable elements (TEs). These mobile sequences invade, duplicate, amplify, and diversify within a genome, increasing the genome's size and generating new mutations. Cells act to defend their genome, but rather than permanently destroying TEs, they use chromatin-level repression and epigenetic inheritance to silence TE activity. This level of silencing is ephemeral and reversible, leading to a dynamic equilibrium between TE suppression and reactivation within a host genome. The coexistence of the TE and host genome can also lead to the domestication of the TE to serve in host genome evolution and function. In this review, we describe the life cycle of a TE, with emphasis on how epigenetic regulation is harnessed to control TEs for host genome stability and innovation.


Assuntos
Elementos de DNA Transponíveis , Epigênese Genética , Animais , Elementos de DNA Transponíveis/genética , Epigênese Genética/genética , Genoma de Planta/genética , Estágios do Ciclo de Vida , Domesticação
17.
Mol Cell ; 82(14): 2618-2632.e7, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35654042

RESUMO

Tn7 is a bacterial transposon with relatives containing element-encoded CRISPR-Cas systems mediating RNA-guided transposon insertion. Here, we present the 2.7 Å cryoelectron microscopy structure of prototypic Tn7 transposase TnsB interacting with the transposon end DNA. When TnsB interacts across repeating binding sites, it adopts a beads-on-a-string architecture, where the DNA-binding and catalytic domains are arranged in a tiled and intertwined fashion. The DNA-binding domains form few base-specific contacts leading to a binding preference that requires multiple weakly conserved sites at the appropriate spacing to achieve DNA sequence specificity. TnsB binding imparts differences in the global structure of the protein-bound DNA ends dictated by the spacing or overlap of binding sites explaining functional differences in the left and right ends of the element. We propose a model of the strand-transfer complex in which the terminal TnsB molecule is rearranged so that its catalytic domain is in a position conducive to transposition.


Assuntos
Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Elementos de DNA Transponíveis/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
18.
Mol Cell ; 82(3): 616-628.e5, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051352

RESUMO

Canonical CRISPR-Cas systems utilize RNA-guided nucleases for targeted cleavage of foreign nucleic acids, whereas some nuclease-deficient CRISPR-Cas complexes have been repurposed to direct the insertion of Tn7-like transposons. Here, we established a bioinformatic and experimental pipeline to comprehensively explore the diversity of Type I-F CRISPR-associated transposons. We report DNA integration for 20 systems and identify a highly active subset that exhibits complete orthogonality in transposon DNA mobilization. We reveal the modular nature of CRISPR-associated transposons by exploring the horizontal acquisition of targeting modules and by characterizing a system that encodes both a programmable, RNA-dependent pathway, and a fixed, RNA-independent pathway. Finally, we analyzed transposon-encoded cargo genes and found the striking presence of anti-phage defense systems, suggesting a role in transmitting innate immunity between bacteria. Collectively, this study substantially advances our biological understanding of CRISPR-associated transposon function and expands the suite of RNA-guided transposases for programmable, large-scale genome engineering.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Escherichia coli/genética , Evolução Molecular , Transposases/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/imunologia , Escherichia coli/metabolismo , Edição de Genes , Regulação Bacteriana da Expressão Gênica , Variação Genética , Imunidade Inata , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Transposases/metabolismo
19.
Mol Cell ; 81(21): 4457-4466.e5, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34450043

RESUMO

The type V-K CRISPR-Cas system, featured by Cas12k effector with a naturally inactivated RuvC domain and associated with Tn7-like transposon for RNA-guided DNA transposition, is a promising tool for precise DNA insertion. To reveal the mechanism underlying target DNA recognition, we determined a cryoelectron microscopy (cryo-EM) structure of Cas12k from cyanobacteria Scytonema hofmanni in complex with a single guide RNA (sgRNA) and a double-stranded target DNA. Coupled with mutagenesis and in vitro DNA transposition assay, our results revealed mechanisms for the recognition of the GGTT protospacer adjacent motif (PAM) sequence and the structural elements of Cas12k critical for RNA-guided DNA transposition. These structural and mechanistic insights should aid in the development of type V-K CRISPR-transposon systems as tools for genome editing.


Assuntos
Sistemas CRISPR-Cas , Microscopia Crioeletrônica/métodos , DNA/química , RNA Guia de Cinetoplastídeos , RNA/química , Motivos de Aminoácidos , Cianobactérias , DNA/metabolismo , Edição de Genes , Técnicas Genéticas , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Domínios Proteicos , Recombinação Genética
20.
Mol Cell ; 81(20): 4271-4286.e4, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34403695

RESUMO

Helitrons are widespread eukaryotic DNA transposons that have significantly contributed to genome variability and evolution, in part because of their distinctive, replicative rolling-circle mechanism, which often mobilizes adjacent genes. Although most eukaryotic transposases form oligomers and use RNase H-like domains to break and rejoin double-stranded DNA (dsDNA), Helitron transposases contain a single-stranded DNA (ssDNA)-specific HUH endonuclease domain. Here, we report the cryo-electron microscopy structure of a Helitron transposase bound to the 5'-transposon end, providing insight into its multidomain architecture and function. The monomeric transposase forms a tightly packed assembly that buries the covalently attached cleaved end, protecting it until the second end becomes available. The structure reveals unexpected architectural similarity to TraI, a bacterial relaxase that also catalyzes ssDNA movement. The HUH active site suggests how two juxtaposed tyrosines, a feature of many replication initiators that use HUH nucleases, couple the conformational shift of an α-helix to control strand cleavage and ligation reactions.


Assuntos
Quirópteros/metabolismo , Elementos de DNA Transponíveis , DNA de Cadeia Simples/metabolismo , Transposases/metabolismo , Animais , Domínio Catalítico , Quirópteros/genética , Microscopia Crioeletrônica , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/ultraestrutura , Células HEK293 , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Transposases/genética , Transposases/ultraestrutura , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA