Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(7): 1109-1124.e4, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921607

RESUMO

The Polycomb-group chromatin modifiers play important roles to repress or switch off gene expression in plants and animals. How the active chromatin state is switched to a Polycomb-repressed state is unclear. In Arabidopsis, prolonged cold induces the switching of the highly active chromatin state at the potent floral repressor FLC to a Polycomb-repressed state, which is epigenetically maintained when temperature rises to confer "cold memory," enabling plants to flower in spring. We report that the cis-acting cold memory element (CME) region at FLC bears bivalent marks of active histone H3K4me3 and repressive H3K27me3 that are read and interpreted by an assembly of bivalent chromatin readers to drive cold-induced switching of the FLC chromatin state. In response to cold, the 47-bp CME and its associated bivalent chromatin feature drive the switching of active chromatin state at a recombinant gene to a Polycomb-repressed domain, conferring cold memory. We reveal a paradigm for environment-induced chromatin-state switching at bivalent loci in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cromatina/genética , Cromatina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Flores/genética , Flores/metabolismo
2.
Genes Dev ; 37(17-18): 801-817, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734835

RESUMO

Polycomb repressive complex 2 (PRC2) mediates epigenetic silencing of target genes in animals and plants. In Arabidopsis, PRC2 is required for the cold-induced epigenetic silencing of the FLC floral repressor locus to align flowering with spring. During this process, PRC2 relies on VEL accessory factors, including the constitutively expressed VRN5 and the cold-induced VIN3. The VEL proteins are physically associated with PRC2, but their individual functions remain unclear. Here, we show an intimate association between recombinant VRN5 and multiple components within a reconstituted PRC2, dependent on a compact conformation of VRN5 central domains. Key residues mediating this compact conformation are conserved among VRN5 orthologs across the plant kingdom. In contrast, VIN3 interacts with VAL1, a transcriptional repressor that binds directly to FLC These associations differentially affect their role in H3K27me deposition: Both proteins are required for H3K27me3, but only VRN5 is necessary for H3K27me2. Although originally defined as vernalization regulators, VIN3 and VRN5 coassociate with many targets in the Arabidopsis genome that are modified with H3K27me3. Our work therefore reveals the distinct accessory roles for VEL proteins in conferring cold-induced silencing on FLC, with broad relevance for PRC2 targets generally.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Flores/genética , Flores/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
3.
Genes Dev ; 35(11-12): 888-898, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33985972

RESUMO

Plants monitor many aspects of their fluctuating environments to help align their development with seasons. Molecular understanding of how noisy temperature cues are registered has emerged from dissection of vernalization in Arabidopsis, which involves a multiphase cold-dependent silencing of the floral repressor locus FLOWERING LOCUS C (FLC). Cold-induced transcriptional silencing precedes a low probability PRC2 epigenetic switching mechanism. The epigenetic switch requires the absence of warm temperatures as well as long-term cold exposure. However, the natural temperature inputs into the earlier transcriptional silencing phase are less well understood. Here, through investigation of Arabidopsis accessions in natural and climatically distinct field sites, we show that the first seasonal frost strongly induces expression of COOLAIR, the antisense transcripts at FLC Chamber experiments delivering a constant mean temperature with different fluctuations showed the freezing induction of COOLAIR correlates with stronger repression of FLC mRNA. Identification of a mutant that ectopically activates COOLAIR revealed how COOLAIR up-regulation can directly reduce FLC expression. Consistent with this, transgenes designed to knockout COOLAIR perturbed the early phase of FLC silencing. However, all transgenes designed to remove COOLAIR resulted in increased production of novel convergent FLC antisense transcripts. Our study reveals how natural temperature fluctuations promote COOLAIR regulation of FLC, with the first autumn frost acting as a key indicator of autumn/winter arrival.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Domínio MADS/genética , Estações do Ano
4.
Genes Dev ; 35(11-12): 785-786, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34074694

RESUMO

FLOWERING LOCUS C (FLC), a MADS-box transcription factor, plays a major role in determining flowering time in Arabidopsis In this issue of Genes & Development, Zhao and colleagues (pp. 888-898) elucidate the role of COOLAIR antisense noncoding RNAs in FLC regulation through field trials and laboratory experiments. COOLAIR-mediated FLC silencing is induced by the first seasonal frost in the field and thus acts as a key molecular indicator during autumn for winter arrival.


Assuntos
Proteínas de Arabidopsis , Proteínas de Domínio MADS , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , RNA Antissenso , Estações do Ano
5.
Genes Dev ; 34(5-6): 446-461, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001513

RESUMO

In Arabidopsis thaliana, the cold-induced epigenetic regulation of FLOWERING LOCUS C (FLC) involves distinct phases of Polycomb repressive complex 2 (PRC2) silencing. During cold, a PHD-PRC2 complex metastably and digitally nucleates H3K27me3 within FLC On return to warm, PHD-PRC2 spreads across the locus delivering H3K27me3 to maintain long-term silencing. Here, we studied natural variation in this process in Arabidopsis accessions, exploring Lov-1, which shows FLC reactivation on return to warm, a feature characteristic of FLC in perennial Brassicaceae This analysis identifies an additional phase in this Polycomb silencing mechanism downstream from H3K27me3 spreading. In this long-term silencing (perpetuated) phase, the PHD proteins are lost from the nucleation region and silencing is likely maintained by the read-write feedbacks associated with H3K27me3. A combination of noncoding SNPs in the nucleation region mediates instability in this long-term silencing phase with the result that Lov-1 FLC frequently digitally reactivates in individual cells, with a probability that diminishes with increasing cold duration. We propose that this decrease in reactivation probability is due to reduced DNA replication after flowering. Overall, this work defines an additional phase in the Polycomb mechanism instrumental in natural variation of silencing, and provides avenues to dissect broader evolutionary changes at FLC.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigênese Genética/genética , Inativação Gênica , Proteínas de Domínio MADS/genética , Proteínas do Grupo Polycomb/genética , Polimorfismo de Nucleotídeo Único/genética , Replicação do DNA , Flores/metabolismo , Instabilidade Genômica/genética , Histonas/metabolismo , Temperatura
6.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762655

RESUMO

Changes in ambient temperature immensely affect developmental programs in many species. Plants adapt to high ambient growth temperature in part by vegetative and reproductive developmental reprogramming, known as thermo-morphogenesis. Thermo-morphogenesis is accompanied by massive changes in the transcriptome upon temperature change. Here, we show that transcriptome changes induced by warm ambient temperature require VERNALIZATION INSENSITIVE 3-LIKE 1 (VIL1), a facultative component of the Polycomb repressive complex PRC2, in Arabidopsis. Warm growth temperature elicits genome-wide accumulation of H3K27me3 and VIL1 is necessary for the warm temperature-mediated accumulation of H3K27me3. Consistent with its role as a mediator of thermo-morphogenesis, loss of function of VIL1 results in hypo-responsiveness to warm ambient temperature. Our results show that VIL1 is a major chromatin regulator in responses to high ambient temperature.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Histonas/metabolismo , Proteínas do Grupo Polycomb , Temperatura
7.
Proc Natl Acad Sci U S A ; 120(46): e2312052120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37934817

RESUMO

The transition to flowering is a major developmental switch in plants. In many temperate grasses, perception of indicators of seasonal change, such as changing day-length and temperature, leads to expression of FLOWERING LOCUS T1 (FT1) and FT-Like (FTL) genes that are essential for promoting the transition to flowering. However, little is known about the upstream regulators of FT1 and FTL genes in temperate grasses. Here, we characterize the monocot-specific gene INDETERMINATE1 (BdID1) in Brachypodium distachyon and demonstrate that BdID1 is a regulator of FT family genes. Mutations in ID1 impact the ability of the short-day (SD) vernalization, cold vernalization, and long-day (LD) photoperiod pathways to induce certain FTL genes. BdID1 is required for upregulation of FTL9 (FT-LIKE9) expression by the SD vernalization pathway, and overexpression of FTL9 in an id1 background can partially restore the delayed flowering phenotype of id1. We show that BdID1 binds in vitro to the promoter region of FTL genes suggesting that ID1 directly activates FTL expression. Transcriptome analysis shows that BdID1 is required for FT1, FT2, FTL12, and FTL13 expression under inductive LD photoperiods, indicating that BdID1 is a regulator of the FT gene family. Moreover, overexpression of FT1 in the id1 background results in rapid flowering similar to overexpressing FT1 in the wild type, demonstrating that BdID1 is upstream of FT family genes. Interestingly, ID1 negatively regulates a previously uncharacterized FTL gene, FTL4, and we show that FTL4 is a repressor of flowering. Thus, BdID1 is critical for proper timing of flowering in temperate grasses.


Assuntos
Brachypodium , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brachypodium/genética , Genes de Plantas , Flores/metabolismo , Fotoperíodo , Regulação da Expressão Gênica de Plantas
8.
Plant Mol Biol ; 114(3): 67, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836995

RESUMO

Sugar beet (Beta vulgaris L.), a biennial sugar crop, contributes about 16% of the world's sugar production. The transition from vegetative growth, during which sugar accumulated in beet, to reproductive growth, during which sugar exhausted in beet, is determined by vernalization and photoperiod. GIGANTEA (GI) is a key photoperiodic flowering gene that is induced by vernalization in sugar beet. To identify the upstream regulatory factors of BvGI, candidate transcription factors (TF) that were co-expressed with BvGI and could bind to the BvGI promoter were screened based on weighted gene co-expression network analysis (WGCNA) and TF binding site prediction. Subsequently, their transcriptional regulatory role on the BvGI was validated through subcellular localization, dual-luciferase assays and yeast transformation tests. A total of 7,586 differentially expressed genes were identified after vernalization and divided into 18 co-expression modules by WGCNA, of which one (MEcyan) and two (MEdarkorange2 and MEmidnightblue) modules were positively and negatively correlated with the expression of BvGI, respectively. TF binding site predictions using PlantTFDB enabled the screening of BvLHY, BvTCP4 and BvCRF4 as candidate TFs that negatively regulated the expression of BvGI by affecting its transcription. Subcellular localization showed that BvLHY, BvTCP4 and BvCRF4 were localized to the nucleus. The results of dual-luciferase assays and yeast transformation tests showed that the relative luciferase activity and expression of HIS3 was reduced in the BvLHY, BvTCP4 and BvCRF4 transformants, which suggested that the three TFs inhibited the BvGI promoter. In addition, real-time quantitative reverse transcription PCR showed that BvLHY and BvTCP4 exhibited rhythmic expression characteristics similar to that of BvGI, while BvCRF4 did not. Our results revealed that vernalization crosstalked with the photoperiod pathway to initiate bolting in sugar beet by inhibiting the transcriptional repressors of BvGI.


Assuntos
Beta vulgaris , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Beta vulgaris/genética , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fotoperíodo , Vernalização
9.
BMC Plant Biol ; 24(1): 722, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075363

RESUMO

BACKGROUND: White lupin (Lupinus albus L.) is a high-protein Old World grain legume with remarkable food and feed production interest. It is sown in autumn or early spring, depending on the local agroclimatic conditions. This study aimed to identify allelic variants associated with vernalization responsiveness, in order to improve our knowledge of legume flowering regulatory pathways and develop molecular selection tools for the desired phenology as required for current breeding and adaptation to the changing climate. RESULTS: Some 120 white lupin accessions originating from a wide range of environments of Europe, Africa, and Asia were phenotyped under field conditions in three environments with different intensities of vernalization, namely, a Mediterranean and a subcontinental climate sites of Italy under autumn sowing, and a suboceanic climate site of France under spring sowing. Two hundred sixty-two individual genotypes extracted from them were phenotyped in a greenhouse under long-day photoperiod without vernalization. Phenology data, and marker data generated by Diversity Arrays Technology sequencing (DArT-seq) and by PCR-based screening targeting published quantitative trait loci (QTLs) from linkage map and newly identified insertion/deletion polymorphisms in the promoter region of the FLOWERING LOCUS T homolog, LalbFTc1 gene (Lalb_Chr14g0364281), were subjected to a genome-wide association study (GWAS). Population structure followed differences in phenology and isolation by distance pattern. The GWAS highlighted numerous loci significantly associated with flowering time, including four LalbFTc1 gene promoter deletions: 2388 bp and 2126 bp deletions at the 5' end, a 264 bp deletion in the middle and a 28 bp deletion at the 3' end of the promoter. Besides LalbFTc1 deletions, this set contained DArT-seq markers that matched previously published major QTLs in chromosomes Lalb_Chr02, Lalb_Chr13 and Lalb_Chr16, and newly discovered QTLs in other chromosomes. CONCLUSIONS: This study highlighted novel QTLs for flowering time and validated those already published, thereby providing novel evidence on the convergence of FTc1 gene functional evolution into the vernalization pathway in Old World lupin species. Moreover, this research provided the set of loci specific for extreme phenotypes (the earliest or the latest) awaiting further implementation in marker-assisted selection for spring- or winter sowing.


Assuntos
Flores , Estudo de Associação Genômica Ampla , Mutação INDEL , Lupinus , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Lupinus/genética , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Proteínas de Plantas/genética , Fenótipo , Genes de Plantas , Genótipo
10.
Plant Biotechnol J ; 22(3): 635-649, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37938892

RESUMO

Wheat needs different durations of vernalization, which accelerates flowering by exposure to cold temperature, to ensure reproductive development at the optimum time, as that is critical for adaptability and high yield. TaVRN1 is the central flowering regulator in the vernalization pathway and encodes a MADS-box transcription factor (TF) that usually works by forming hetero- or homo-dimers. We previously identified that TaVRN1 bound to an MADS-box TF TaSOC1 whose orthologues are flowering activators in other plants. The specific function of TaSOC1 and the biological implication of its interaction with TaVRN1 remained unknown. Here, we demonstrated that TaSOC1 was a flowering repressor in the vernalization and photoperiod pathways by overexpression and knockout assays. We confirmed the physical interaction between TaSOC1 and TaVRN1 in wheat protoplasts and in planta, and further validated their genetic interplay. A Flowering Promoting Factor 1-like gene TaFPF1-2B was identified as a common downstream target of TaSOC1 and TaVRN1 through transcriptome and chromatin immunoprecipitation analyses. TaSOC1 competed with TaVRT2, another MADS-box flowering regulator, to bind to TaVRN1; their coding genes synergistically control TaFPF1-2B expression and flowering initiation in response to photoperiod and low temperature. We identified major haplotypes of TaSOC1 and found that TaSOC1-Hap1 conferred earlier flowering than TaSOC1-Hap2 and had been subjected to positive selection in wheat breeding. We also revealed that wheat SOC1 family members were important domestication loci and expanded by tandem and segmental duplication events. These findings offer new insights into the regulatory mechanism underlying flowering control along with useful genetic resources for wheat improvement.


Assuntos
Flores , Triticum , Triticum/metabolismo , Fotoperíodo , Melhoramento Vegetal , Vernalização , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
11.
New Phytol ; 242(3): 947-959, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509854

RESUMO

Many plant populations exhibit synchronous flowering, which can be advantageous in plant reproduction. However, molecular mechanisms underlying flowering synchrony remain poorly understood. We studied the role of known vernalization-response and flower-promoting pathways in facilitating synchronized flowering in Arabidopsis thaliana. Using the vernalization-responsive Col-FRI genotype, we experimentally varied germination dates and daylength among individuals to test flowering synchrony in field and controlled environments. We assessed the activity of flowering regulation pathways by measuring gene expression across leaves produced at different time points during development and through a mutant analysis. We observed flowering synchrony across germination cohorts in both environments and discovered a previously unknown process where flower-promoting and repressing signals are differentially regulated between leaves that developed under different environmental conditions. We hypothesized this mechanism may underlie synchronization. However, our experiments demonstrated that signals originating from sources other than leaves must also play a pivotal role in synchronizing flowering time, especially in germination cohorts with prolonged growth before vernalization. Our results suggest flowering synchrony is promoted by a plant-wide integration of flowering signals across leaves and among organs. To summarize our findings, we propose a new conceptual model of vernalization-induced flowering synchrony and provide suggestions for future research in this field.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vernalização , Flores/fisiologia , Reprodução , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo
12.
Ann Bot ; 134(1): 117-130, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38482916

RESUMO

BACKGROUND AND AIMS: The timing of flowering onset is often correlated with latitude, indicative of climatic gradients. Flowering onset in temperate species commonly requires exposure to cold temperatures, known as vernalization. Hence, population differentiation of flowering onset with latitude might reflect adaptation to the local climatic conditions experienced by populations. METHODS: Within its western range, seeds from Linum bienne populations (the wild relative of cultivated Linum usitatissimum) were used to describe the latitudinal differentiation of flowering onset to determine its association with the local climate of the population. A vernalization experiment including different crop cultivars was used to determine how vernalization accelerates flowering onset, in addition to the vernalization sensitivity response among populations and cultivars. Additionally, genetic differentiation of L. bienne populations along the latitudinal range was scrutinized using microsatellite markers. KEY RESULTS: Flowering onset varied with latitude of origin, with southern populations flowering earlier than their northern counterparts. Vernalization reduced the number of days to flowering onset, but vernalization sensitivity was greater in northern populations compared with southern ones. Conversely, vernalization delayed flowering onset in the crop, exhibiting less variation in sensitivity. In L. bienne, both flowering onset and vernalization sensitivity were better predicted by the local climate of the population than by latitude itself. Microsatellite data unveiled genetic differentiation of populations, forming two groups geographically partitioned along latitude. CONCLUSIONS: The consistent finding of latitudinal variation across experiments suggests that both flowering onset and vernalization sensitivity in L. bienne populations are under genetic regulation and might depend on climatic cues at the place of origin. The association with climatic gradients along latitude suggests that the climate experienced locally drives population differentiation of the flowering onset and vernalization sensitivity patterns. The genetic population structure suggests that past population history could have influenced the flowering initiation patterns detected, which deserves further work.


Assuntos
Clima , Flores , Flores/fisiologia , Flores/crescimento & desenvolvimento , Flores/genética , Temperatura Baixa , Repetições de Microssatélites/genética , Variação Genética , Geografia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Vernalização
13.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339202

RESUMO

Vernalization plays a crucial role in the flowering and yield of Chinese cabbage, a process intricately influenced by long non-coding RNAs (lncRNAs). Our research focused on lncFLC1, lncFLC2a, and lncFLC2b, which emerged as key players in this process. These lncRNAs exhibited an inverse expression pattern to the flowering repressor genes FLOWERING LOCUS C 1 (BrFLC1) and FLOWERING LOCUS C 2 (BrFLC2) during vernalization, suggesting a complex regulatory mechanism. Notably, their expression in the shoot apex and leaves was confirmed through in fluorescent in situ hybridization (FISH). Furthermore, when these lncRNAs were overexpressed in Arabidopsis, a noticeable acceleration in flowering was observed, unveiling functional similarities to Arabidopsis's COLD ASSISTED INTRONIC NONCODING RNA (COOLAIR). This resemblance suggests a potentially conserved regulatory mechanism across species. This study not only enhances our understanding of lncRNAs in flowering regulation, but also opens up new possibilities for their application in agricultural practices.


Assuntos
Arabidopsis , Brassica , RNA Longo não Codificante , Arabidopsis/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Hibridização in Situ Fluorescente , Flores/metabolismo , Brassica/genética , Regulação da Expressão Gênica de Plantas
14.
J Biol Chem ; 298(11): 102540, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36174674

RESUMO

PHD fingers are modular domains in chromatin-associated proteins that decode the methylation status of histone H3 tails. A PHD finger signature is found in plant vernalization (VEL) proteins, which function as accessory factors of the Polycomb system to control flowering in Arabidopsis through an epigenetic silencing mechanism. It has been proposed that VEL PHD fingers bind to methylated histone H3 tails to facilitate association of the Polycomb silencing machinery with target genes. Here, we use structural analysis by X-ray crystallography to show that the VEL PHD finger forms the central module of a larger compact tripartite superdomain that also contains a zinc finger and a four-helix bundle. This PHD superdomain fold is only found in one other family, the OBERON proteins, which have multiple functions in Arabidopsis meristems to control plant growth. The putative histone-binding surface of OBERON proteins exhibits the characteristic three-pronged pocket of histone-binding PHD fingers and binds to methylated histone H3 tails. However, that of VEL PHD fingers lacks this architecture and exhibits unusually high positive surface charge. This VEL PHD superdomain neither binds to unmodified nor variously modified histone H3 tails, as demonstrated by isothermal calorimetry and NMR spectroscopy. Instead, the VEL PHD superdomain interacts with negatively charged polymers. Our evidence argues for evolution of a divergent function for the PHD superdomain in vernalization that does not involve histone tail decoding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Histonas , Arabidopsis/genética , Arabidopsis/fisiologia , Histonas/metabolismo , Ligação Proteica , Periodicidade , Flores/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia
15.
Plant J ; 112(4): 1029-1050, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36178149

RESUMO

Flowering of the reference legume Medicago truncatula is promoted by winter cold (vernalization) followed by long-day photoperiods (VLD) similar to winter annual Arabidopsis. However, Medicago lacks FLC and CO, key regulators of Arabidopsis VLD flowering. Most plants have two INHIBITOR OF GROWTH (ING) genes (ING1 and ING2), encoding proteins with an ING domain with two anti-parallel alpha-helices and a plant homeodomain (PHD) finger, but their genetic role has not been previously described. In Medicago, Mting1 gene-edited mutants developed and flowered normally, but an Mting2-1 Tnt1 insertion mutant and gene-edited Mting2 mutants had developmental abnormalities including delayed flowering particularly in VLD, compact architecture, abnormal leaves with extra leaflets but no trichomes, and smaller seeds and barrels. Mting2 mutants had reduced expression of activators of flowering, including the FT-like gene MtFTa1, and increased expression of the candidate repressor MtTFL1c, consistent with the delayed flowering of the mutant. MtING2 overexpression complemented Mting2-1, but did not accelerate flowering in wild type. The MtING2 PHD finger bound H3K4me2/3 peptides weakly in vitro, but analysis of gene-edited mutants indicated that it was dispensable to MtING2 function in wild-type plants. RNA sequencing experiments indicated that >7000 genes are mis-expressed in the Mting2-1 mutant, consistent with its strong mutant phenotypes. Interestingly, ChIP-seq analysis identified >5000 novel H3K4me3 locations in the genome of Mting2-1 mutants compared to wild type R108. Overall, our mutant study has uncovered an important physiological role of a plant ING2 gene in development, flowering, and gene expression, which likely involves an epigenetic mechanism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Medicago truncatula , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Plantas/metabolismo , Dedos de Zinco PHD , Flores , Medicago truncatula/genética , Medicago truncatula/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Domínio MADS/genética
16.
Annu Rev Genet ; 49: 1-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26393966

RESUMO

Brachypodium distachyon has emerged as a powerful model system for studying the genetics of flowering plants. Originally chosen for its phylogenetic proximity to the large-genome cereal crops wheat and barley, it is proving to be useful for more than simply providing markers for comparative mapping. Studies in B. distachyon have provided new insight into the structure and physiology of plant cell walls, the development and chemical composition of endosperm, and the genetic basis for cold tolerance. Recent work on auxin transport has uncovered mechanisms that apply to all angiosperms other than Arabidopsis. In addition to the areas in which it is currently used, B. distachyon is uniquely suited for studies of floral development, vein patterning, the controls of the perennial versus annual habit, and genome organization.


Assuntos
Brachypodium/genética , Flores/genética , Genoma de Planta , Brachypodium/fisiologia , Parede Celular/genética , Parede Celular/metabolismo , Clonagem Molecular , Temperatura Baixa , Endosperma/química , Endosperma/genética , Regulação da Expressão Gênica de Plantas , Filogenia
17.
Proc Biol Sci ; 290(2011): 20231401, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37989245

RESUMO

Flowering phenology is important in the adaptation of many plants to their local environment, but its adaptive value has not been extensively studied in herbaceous perennials. We used Arabis alpina as a model system to determine the importance of flowering phenology to fitness of a herbaceous perennial with a wide geographical range. Individual plants representative of local genetic diversity (accessions) were collected across Europe, including in Spain, the Alps and Scandinavia. The flowering behaviour of these accessions was documented in controlled conditions, in common-garden experiments at native sites and in situ in natural populations. Accessions from the Alps and Scandinavia varied in whether they required exposure to cold (vernalization) to induce flowering, and in the timing and duration of flowering. By contrast, all Spanish accessions obligately required vernalization and had a short duration of flowering. Using experimental gardens at native sites, we show that an obligate requirement for vernalization increases survival in Spain. Based on our analyses of genetic diversity and flowering behaviour across Europe, we propose that in the model herbaceous perennial A. alpina, an obligate requirement for vernalization, which is correlated with short duration of flowering, is favoured by selection in Spain where the plants experience a long growing season.


Assuntos
Arabis , Arabis/genética , Flores/genética , Geografia , Países Escandinavos e Nórdicos , Europa (Continente)
18.
Plant Cell Environ ; 46(11): 3175-3193, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37438895

RESUMO

Climate change is causing alterations in annual temperature regimes worldwide. Important aspects of this include the reduction of winter chilling temperatures as well as the occurrence of unpredicted frosts, both significantly affecting plant growth and yields. Recent studies advanced the knowledge of the mechanisms underlying cold responses and tolerance in the model plant Arabidopsis thaliana. However, how these cold-responsive pathways will readjust to ongoing seasonal temperature variation caused by global warming remains an open question. In this review, we highlight the plant developmental programmes that depend on cold temperature. We focus on the molecular mechanisms that plants have evolved to adjust their development and stress responses upon exposure to cold. Covering both genetic and epigenetic aspects, we present the latest insights into how alternative splicing, noncoding RNAs and the formation of biomolecular condensates play key roles in the regulation of cold responses. We conclude by commenting on attractive targets to accelerate the breeding of increased cold tolerance, bringing up biotechnological tools that might assist in overcoming current limitations. Our aim is to guide the reflection on the current agricultural challenges imposed by a changing climate and to provide useful information for improving plant resilience to unpredictable cold regimes.


Assuntos
Arabidopsis , Temperatura Baixa , Estações do Ano , Temperatura , Plantas , Arabidopsis/metabolismo , Mudança Climática , Regulação da Expressão Gênica de Plantas , Aclimatação/fisiologia
19.
Mol Phylogenet Evol ; 179: 107678, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535518

RESUMO

Flowering in response to low temperatures (vernalization) has evolved multiple times independently across angiosperms as an adaptation to match reproductive development with the short growing season of temperate habitats. Despite the context of a generally conserved flowering time network, evidence suggests that the genes underlying vernalization responsiveness are distinct across major plant clades. Whether different or similar mechanisms underlie vernalization-induced flowering at narrower (e.g., family-level) phylogenetic scales is not well understood. To test the hypothesis that vernalization responsiveness has evolved convergently in temperate species of the grass family (Poaceae), we carried out flowering time experiments with and without vernalization in several representative species from different subfamilies. We then determined the likelihood that vernalization responsiveness evolved through parallel mechanisms by quantifying the response of Pooideae vernalization pathway FRUITFULL (FUL)-like genes to extended periods of cold. Our results demonstrate that vernalization-induced flowering has evolved multiple times independently in at least five grass subfamilies, and that different combinations of FUL-like genes have been recruited to this pathway on several occasions.


Assuntos
Poaceae , Fatores de Transcrição , Poaceae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flores/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
20.
Mol Breed ; 43(8): 58, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37484542

RESUMO

Brassica rapa L., which includes Chinese cabbage, turnip, and pak choi, has more complex flowering time regulation than does Arabidopsis thaliana due to the presence of multiple paralogous flowering time genes. FLOWERING LOCUS C (FLC) is one of the key genes regulating the flowering time, and B. rapa has four FLC paralogs. BrFLC5 on the reference genome is deemed a pseudogene because of a mutation (from G to A) in the splice site of the third intron, but there are some accessions with a G nucleotide in the splice site. In this study, we genotyped 310 B. rapa accessions and found that 19 had homozygous and 81 had heterozygous putative functional BrFLC5 alleles. Accessions of turnip showed the highest proportion with a functional BrFLC5 allele. BrFLC5 acts as a floral repressor when overexpressed in A. thaliana. The BrFLC5 expression level varied in pre-vernalized plants, and this transcriptional variation was not associated with the G/A polymorphism in the third intron. Three accessions having a higher BrFLC5 expression in pre-vernalized plants had a 584-bp insertion in the promoter region. Many regions homologous to this 584-bp sequence are present in the B. rapa genome, and this 584-bp inserted region has tandem duplications of an AT-rich sequence in its central region. The possibility that a high expression of a functional BrFLC5 could contribute to producing premature bolting-resistant lines in B. rapa vegetables is discussed. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01405-0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA