RESUMO
PURPOSE: Vestibular implant electrode positioning close to the afferent nerve fibers is considered to be key for effective and selective electrical stimulation. However, accurate positioning of vestibular implant electrodes inside the semicircular canal ampullae is challenging due to the inability to visualize the target during the surgical procedure. This study investigates the accuracy of a new surgical protocol with real-time fluoroscopy and intraoperative CT imaging, which facilitates electrode positioning during vestibular implant surgery. METHODS: Single-center case-controlled cohort study with a historic control group at a tertiary referral center. Patients were implanted with a vestibulocochlear implant, using a combination of intraoperative fluoroscopy and cone beam CT imaging. The control group consisted of five patients who were previously implanted with the former implant prototype, without the use of intraoperative imaging. Electrode positioning was analyzed postoperatively with a high-resolution CT scan using 3D slicer software. The result was defined as accurate if the electrode position was within 1.5 mm of the center of the ampulla. RESULTS: With the new imaging protocol, all electrodes could be positioned within a 1.5 mm range of the center of the ampulla. The accuracy was significantly higher in the study group with intraoperative imaging (21/21 electrodes) compared to the control group without intraoperative imaging (10/15 electrodes), (p = 0.008). CONCLUSION: The combined use of intraoperative fluoroscopy and CT imaging during vestibular implantation can improve the accuracy of electrode positioning. This might lead to better vestibular implant performance.
Assuntos
Tomografia Computadorizada de Feixe Cônico , Humanos , Fluoroscopia/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Estudos de Casos e Controles , Tomografia Computadorizada de Feixe Cônico/métodos , Eletrodos Implantados , Adulto , Tomografia Computadorizada por Raios X/métodos , Cirurgia Assistida por Computador/métodosRESUMO
The otolith end organs inform the brain about gravitational and linear accelerations, driving the otolith-ocular reflex (OOR) to stabilize the eyes during translational motion (e.g., moving forward without rotating) and head tilt with respect to gravity. We previously characterized OOR responses of normal chinchillas to whole body tilt and translation and to prosthetic electrical stimulation targeting the utricle and saccule via electrodes implanted in otherwise normal ears. Here we extend that work to examine OOR responses to tilt and translation stimuli after unilateral intratympanic gentamicin injection and to natural/mechanical and prosthetic/electrical stimulation delivered separately or in combination to animals with bilateral vestibular hypofunction after right ear intratympanic gentamicin injection followed by surgical disruption of the left labyrinth at the time of electrode implantation. Unilateral intratympanic gentamicin injection decreased natural OOR response magnitude to about half of normal, without markedly changing OOR response direction or symmetry. Subsequent surgical disruption of the contralateral labyrinth at the time of electrode implantation surgery further decreased OOR magnitude during natural stimulation, consistent with bimodal-bilateral otolith end organ hypofunction (ototoxic on the right ear, surgical on the left ear). Delivery of pulse frequency- or pulse amplitude-modulated prosthetic/electrical stimulation targeting the left utricle and saccule in phase with whole body tilt and translation motion stimuli yielded responses closer to normal than the deficient OOR responses of those same animals in response to head tilt and translation alone.NEW & NOTEWORTHY Previous studies to expand the scope of prosthetic stimulation of the otolith end organs showed that selective stimulation of the utricle and saccule is possible. This article further defines those possibilities by characterizing a diseased animal model and subsequently studying its responses to electrical stimulation alone and in combination with mechanical motion. We show that we can partially restore responses to tilt and translation in animals with unilateral gentamicin ototoxic injury and contralateral surgical disruption.
Assuntos
Ototoxicidade , Vestíbulo do Labirinto , Animais , Reflexo Vestíbulo-Ocular/fisiologia , Membrana dos Otólitos/fisiologia , Chinchila , GentamicinasRESUMO
INTRODUCTION: Different eye movement analysis algorithms are used in vestibular implant research to quantify the electrically evoked vestibulo-ocular reflex (eVOR). Often, standard techniques are used as applied for quantification of the natural VOR in healthy subjects and patients with vestibular loss. However, in previous research, it was observed that the morphology of the VOR and eVOR may differ substantially. In this study, it was investigated if the analysis techniques for eVOR need to be adapted to optimize a truthful quantification of the eVOR (VOR gain, orientation of the VOR axis, asymmetry, and phase shift). METHODS: "Natural" VOR responses were obtained in six age-matched healthy subjects, and eVOR responses were obtained in eight bilateral-vestibulopathy patients fitted with a vestibular implant. Three conditions were tested: "nVOR" 1-Hz sinusoidal whole-body rotations of healthy subjects in a rotatory chair, "eVOR" 1-Hz sinusoidal electrical vestibular implant stimulation without whole-body rotations in bilateral-vestibulopathy patients, and "dVOR" 1-Hz sinusoidal whole-body rotations in bilateral-vestibulopathy patients using the chair-mounted gyroscope output to drive the electrical vestibular implant stimulation (therefore also in sync 1 Hz sinusoidal). VOR outcomes were determined from the obtained VOR responses, using three different eye movement analysis paradigms: (1) peak eye velocity detection using the raw eye traces; (2) peak eye velocity detection using full-cycle sine fitting of eye traces; (3) peak eye velocity detection using half-cycle sine fitting of eye traces. RESULTS: The type of eye movement analysis algorithm significantly influenced VOR outcomes, especially regarding the VOR gain and asymmetry of the eVOR in bilateral-vestibulopathy patients fitted with a vestibular implant. Full-cycle fitting lowered VOR gain in the eVOR condition (mean difference: 0.14 ± 0.06 95% CI, p = 0.018). Half-cycle fitting lowered VOR gain in the dVOR condition (mean difference: 0.08 ± 0.04 95% CI, p = 0.009). In the eVOR condition, half-cycle fitting was able to demonstrate the asymmetry between the excitatory and inhibitory phases of stimulation in comparison with the full-cycle fitting (mean difference: 0.19 ± 0.12 95% CI, p = 0.024). The VOR axis and phase shift did not differ significantly between eye movement analysis algorithms. In healthy subjects, no clinically significant effect of eye movement analysis algorithms on VOR outcomes was observed. CONCLUSION: For the analysis of the eVOR, the excitatory and inhibitory phases of stimulation should be analysed separately due to the inherent asymmetry of the eVOR. A half-cycle fitting method can be used as a more accurate alternative for the analysis of the full-cycle traces.
Assuntos
Vestibulopatia Bilateral , Vestíbulo do Labirinto , Humanos , Reflexo Vestíbulo-Ocular/fisiologia , Movimentos Oculares , Próteses e ImplantesRESUMO
INTRODUCTION: Bilateral vestibulopathy is an important cause of imbalance that is misdiagnosed. The clinical management of patients with bilateral vestibular loss remains difficult as there is no clear evidence for an effective treatment. In this paper, we try to analyze the effect of chronic electrical stimulation and adaptation to electrical stimulation of the vestibular system in humans when stimulating the otolith organ with a constant pulse train to mitigate imbalance due to bilateral vestibular dysfunction (BVD). METHODS: We included 2 patients in our study with BVD according to Criteria Consensus of the Classification Committee of the Bárány Society. Both cases were implanted by using a full-band straight electrode to stimulate the otoliths organs and simultaneously for the cochlear stimulation we use a perimodiolar electrode. RESULTS: In both cases Vestibular and clinical test (video head impulse test, videonistagmography cervical vestibular evoked myogenic potentials, cVEMP and oVEMP), subjective visual vertical test, computerized dynamic posturography, dynamic gait index, Time UP and Go test and dizziness handicap index) were performed. Posture and gait metrics reveal important improvement if compare with preoperartive situation. Oscillopsia, unsteadiness, independence and quality of life improved to almost normal situation. DISCUSSION/CONCLUSION: Prosthetic implantation of the otolith organ in humans is technically feasible. Electrical stimulation might have potential effects on balance and this is stable after 1 year follow-up. This research provides new possibilities for the development of vestibular implants to improve gravito-inertial acceleration sensation, in this case by the otoliths stimulation.
Assuntos
Vestibulopatia Bilateral/terapia , Terapia por Estimulação Elétrica , Perda Auditiva Neurossensorial/terapia , Membrana dos Otólitos/fisiopatologia , Adulto , Vestibulopatia Bilateral/fisiopatologia , Marcha/fisiologia , Teste do Impulso da Cabeça , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Equilíbrio Postural/fisiologia , Qualidade de Vida , Estudos de Tempo e Movimento , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Vestíbulo do Labirinto/fisiopatologiaRESUMO
BACKGROUND: In patients with bilateral vestibulopathy, the regular treatment options, such as medication, surgery, and/or vestibular rehabilitation, do not always suffice. Therefore, the focus in this field of vestibular research shifted to electrical vestibular stimulation (EVS) and the development of a system capable of artificially restoring the vestibular function. Key Message: Currently, three approaches are being investigated: vestibular co-stimulation with a cochlear implant (CI), EVS with a vestibular implant (VI), and galvanic vestibular stimulation (GVS). All three applications show promising results but due to conceptual differences and the experimental state, a consensus on which application is the most ideal for which type of patient is still missing. SUMMARY: Vestibular co-stimulation with a CI is based on "spread of excitation," which is a phenomenon that occurs when the currents from the CI spread to the surrounding structures and stimulate them. It has been shown that CI activation can indeed result in stimulation of the vestibular structures. Therefore, the question was raised whether vestibular co-stimulation can be functionally used in patients with bilateral vestibulopathy. A more direct vestibular stimulation method can be accomplished by implantation and activation of a VI. The concept of the VI is based on the technology and principles of the CI. Different VI prototypes are currently being evaluated regarding feasibility and functionality. So far, all of them were capable of activating different types of vestibular reflexes. A third stimulation method is GVS, which requires the use of surface electrodes instead of an implanted electrode array. However, as the currents are sent through the skull from one mastoid to the other, GVS is rather unspecific. It should be mentioned though, that the reported spread of excitation in both CI and VI use also seems to induce a more unspecific stimulation. Although all three applications of EVS were shown to be effective, it has yet to be defined which option is more desirable based on applicability and efficiency. It is possible and even likely that there is a place for all three approaches, given the diversity of the patient population who serves to gain from such technologies.
Assuntos
Terapia por Estimulação Elétrica , Doenças Vestibulares/terapia , Vestíbulo do Labirinto/fisiopatologia , Implante Coclear , Eletrodos Implantados , Humanos , Reflexo Vestíbulo-Ocular/fisiologia , Doenças Vestibulares/fisiopatologiaRESUMO
INTRODUCTION: To determine the impact of a head-referenced cochlear implant (CI) stimulation system, BalanCI, on balance and postural control in children with bilateral cochleovestibular loss (BCVL) who use bilateral CI. METHODS: Prospective, blinded case-control study. Balance and postural control testing occurred in two settings: (1) quiet clinical setting and (2) immersive realistic virtual environment (Challenging Environment Assessment Laboratory [CEAL], Toronto Rehabilitation Institute). Postural control was assessed in 16 and balance in 10 children with BCVL who use bilateral CI, along with 10 typically developing children. Children with neuromotor, cognitive, or visual deficits that would prevent them from performing the tests were excluded. Children wore the BalanCI, which is a head-mounted device that couples with their CIs through the audio port and provides head-referenced spatial information delivered via the intracochlear electrode array. Postural control was measured by center of pressure (COP) and time to fall using the WiiTM (Nintendo, WA, USA) Balance Board for feet and the BalanCI for head, during the administration of the Modified Clinical Test of Sensory Interaction in Balance (CTSIB-M). The COP of the head and feet were assessed for change by deviation, measured as root mean square around the COP (COP-RMS), rate of deviation (COP-RMS/duration), and rate of path length change from center (COP-velocity). Balance was assessed by the Bruininks-Oseretsky Test of Motor Proficiency 2, balance subtest (BOT-2), specifically, BOT-2 score as well as time to fall/fault. RESULTS: In the virtual environment, children demonstrated more stable balance when using BalanCI as measured by an improvement in BOT-2 scores. In a quiet clinical setting, the use of BalanCI led to improved postural control as demonstrated by significant reductions in COP-RMS and COP-velocity. With the use of BalanCI, the number of falls/faults was significantly reduced and time to fall increased. CONCLUSIONS: BalanCI is a simple and effective means of improving postural control and balance in children with BCVL who use bilateral CI. BalanCI could potentially improve the safety of these children, reduce the effort they expend maintaining balance and allow them to take part in more complex balance tasks where sensory information may be limited and/or noisy.
Assuntos
Implante Coclear , Implantes Cocleares , Equilíbrio Postural/fisiologia , Doenças Vestibulares/cirurgia , Adolescente , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Estudos Prospectivos , Resultado do Tratamento , Doenças Vestibulares/fisiopatologiaRESUMO
INTRODUCTION: The vestibular implant could become a clinically useful device in the near future. This study investigated the feasibility of restoring the high-frequency dynamic visual acuity (DVA) with a vestibular implant, using the functional Head Impulse Test (fHIT). METHODS: A 72-year-old female, with bilateral vestibulopathy and fitted with a modified cochlear implant incorporating three vestibular electrodes (MED-EL, Innsbruck, Austria), was available for this study. Electrical stimulation was delivered with the electrode close to the lateral ampullary nerve in the left ear. The high-frequency DVA in the horizontal plane was tested with the fHIT. After training, the patient underwent six trials of fHIT, each with a different setting of the vestibular implant: (1) System OFF before stimulation; (2) System ON, baseline stimulation; (3) System ON, reversed stimulation; (4) System ON, positive stimulation; (5) System OFF, without delay after stimulation offset; and (6) System OFF, 25 min delay after stimulation offset. The percentage of correct fHIT scores for right and left head impulses were compared between trials. RESULTS: Vestibular implant stimulation improved the high-frequency DVA compared to no stimulation. This improvement was significant for "System ON, baseline stimulation" (p = 0.02) and "System ON, positive stimulation" (p < 0.001). fHIT scores changed from 19 to 44% (no stimulation) to maximum 75-94% (System ON, positive stimulation). CONCLUSION: The vestibular implant seems capable of improving the high-frequency DVA. This functional benefit of the vestibular implant illustrates again the feasibility of this device for clinical use in the near future.
Assuntos
Vestibulopatia Bilateral/terapia , Implantes Cocleares , Terapia por Estimulação Elétrica , Vestíbulo do Labirinto/fisiopatologia , Acuidade Visual/fisiologia , Idoso , Áustria , Vestibulopatia Bilateral/fisiopatologia , Feminino , Teste do Impulso da Cabeça , Humanos , Resultado do Tratamento , Nervo Vestibular/fisiopatologiaRESUMO
BACKGROUND: The peripheral vestibular end organ is considered to consist of semi-circular canals (SCC) for detection of angular accelerations and the otoliths for detection of linear accelerations. However, otoliths being phylogenetically the oldest part of the vestibular sensory organs are involved in detection of all motions. SUMMARY: This study elaborates on this property of the otolith organ, as this concept can be of importance for the currently designed vestibular implant devices. Key Message: The analysis of the evolution of the inner ear and examination of clinical examples shows the robustness of the otolith system and inhibition capacity of the SCC. The otolith system must be considered superior to the SCC system as illustrated by evolution, clinical evidence, and physical principles.
Assuntos
Membrana dos Otólitos/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Vestíbulo do Labirinto/fisiologia , Humanos , Sáculo e Utrículo/fisiologia , Canais Semicirculares/fisiologiaRESUMO
Electrical stimulation of vestibular afferent neurons to partially restore semicircular canal sensation of head rotation and the stabilizing reflexes that sensation supports has potential to effectively treat individuals disabled by bilateral vestibular hypofunction. Ideally, a vestibular implant system using this approach would be integrated with a cochlear implant, which would provide clinicians with a means to simultaneously treat loss of both vestibular and auditory sensation. Despite obvious similarities, merging these technologies poses several challenges, including stimulus pulse timing errors that arise when a system must implement a pulse frequency modulation-encoding scheme (as is used in vestibular implants to mimic normal vestibular nerve encoding of head movement) within fixed-rate continuous interleaved sampling (CIS) strategies used in cochlear implants. Pulse timing errors caused by temporal discretization inherent to CIS create stair step discontinuities of the vestibular implant's smooth mapping of head velocity to stimulus pulse frequency. In this study, we assayed electrically evoked vestibuloocular reflex responses in two rhesus macaques using both a smooth pulse frequency modulation map and a discretized map corrupted by temporal errors typical of those arising in a combined cochlear-vestibular implant. Responses were measured using three-dimensional scleral coil oculography for prosthetic electrical stimuli representing sinusoidal head velocity waveforms that varied over 50-400°/s and 0.1-5 Hz. Pulse timing errors produced negligible effects on responses across all canals in both animals, indicating that temporal discretization inherent to implementing a pulse frequency modulation-coding scheme within a cochlear implant's CIS fixed pulse timing framework need not sacrifice performance of the combined system's vestibular implant portion. NEW & NOTEWORTHY Merging a vestibular implant system with existing cochlear implant technology can provide clinicians with a means to restore both vestibular and auditory sensation. Pulse timing errors inherent to integration of pulse frequency modulation vestibular stimulation with fixed-rate, continuous interleaved sampling cochlear implant stimulation would discretize the smooth head velocity encoding of a combined device. In this study, we show these pulse timing errors produce negligible effects on electrically evoked vestibulo-ocular reflex responses in two rhesus macaques.
Assuntos
Próteses Neurais/normas , Tempo de Reação , Reflexo Vestíbulo-Ocular , Animais , Movimentos Oculares , Feminino , Movimentos da Cabeça , Macaca mulatta , Neurônios Aferentes/fisiologia , Auxiliares Sensoriais/normas , Potenciais Evocados Miogênicos VestibularesRESUMO
Galvanic vestibular stimulation (GVS) plays an important role in the quest to understand sensory signal processing in the vestibular system under normal and pathological conditions. It has become a highly relevant tool to probe neuronal computations and to assist in the differentiation and treatment of vestibular syndromes. Following its accidental discovery, GVS became a diagnostic tool that generates eye movements in the absence of head/body motion. With the possibility to record extracellular and intracellular spikes, GVS became an indispensable method to activate or block the discharge in vestibular nerve fibers by cathodal and anodal currents, respectively. Bernie Cohen, in his attempt to decipher vestibular signal processing, has used this method in a number of hallmark studies that have added to our present knowledge, such as the link between selective electrical stimulation of semicircular canal nerves and the generation of directionally corresponding eye movements. His achievements paved the way for other major milestones including the differential recruitment order of vestibular fibers for cathodal and anodal currents, pronounced discharge adaptation of irregularly firing afferents, potential activation of hair cells, and fiber type-specific activation of central circuits. Previous disputes about the structural substrate for GVS are resolved by integrating knowledge of ion channel-related response dynamics of afferents, fiber type-specific innervation patterns, and central convergence and integration of semicircular canal and otolith signals. On the basis of solid knowledge of the methodology, specific waveforms of GVS are currently used in clinical diagnosis and patient treatment, such as vestibular implants and noisy galvanic stimulation.
Assuntos
Estimulação Elétrica/métodos , Movimentos Oculares/fisiologia , Próteses Neurais , Reflexo Vestíbulo-Ocular/fisiologia , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Nervo Vestibular/fisiologia , Vestíbulo do Labirinto/fisiologia , Animais , Humanos , Xenopus laevisRESUMO
We propose a new approach to optimization of electrical stimulation of the vestibular nerve and improving the transfer function of vestibular implant. A mathematical model of the vestibular organ is developed based on its anatomy, the model premises, 3D-analysis of MRI and CT images, and mathematical description of physical processes underlying propagation of alternating electric current across the tissues of vestibular labyrinth. This approach was tested in vitro on the rat vestibular apparatus and had been examined anatomically prior to the development of its mathematical model and equivalent electrical circuit. The experimental and theoretical values of changes of the gain-phase characteristics of vestibular tissues in relation to location of the reference electrode obtained in this study can be used to optimize the electrical stimulation of vestibular nerve.
Assuntos
Modelos Anatômicos , Transmissão Sináptica/fisiologia , Nervo Vestibular/fisiologia , Vestíbulo do Labirinto/fisiologia , Animais , Simulação por Computador , Condutividade Elétrica , Estimulação Elétrica , Eletrodos , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Wistar , Técnicas de Cultura de Tecidos , Tomografia Computadorizada por Raios X , Nervo Vestibular/anatomia & histologia , Nervo Vestibular/diagnóstico por imagem , Vestíbulo do Labirinto/anatomia & histologia , Vestíbulo do Labirinto/diagnóstico por imagem , Vestíbulo do Labirinto/inervaçãoRESUMO
OBJECTIVES: Possible beneficial "crosstalk" during cochlear implant stimulation on otolith end organs has been hypothesized. The aim of this case-control study is to analyze the effect of electrical cochlear stimulation on the vestibule (otolith end-organ), when using a cochleo-vestibular implant, comparing vestibular stimulation (VI) and cochlear stimulation (CI). METHODS: Four patients with bilateral vestibulopathy were included. A double electrode array research implant was implanted in all cases. Dynamic Gait Index (DGI), VOR gain measured by using vestibular head impulse test (vHIT), acoustic cervical myogenic responses (cVEMP) recordings, and electrical cVEMP were used in all cases. Trans-impedance Matrix (TIM) analysis was used to evaluate the current flow from the cochlea to the vestibule. RESULTS: While patients did not have any clinical vestibular improvement with the CI stimulation alone, gait metrics of the patients revealed improvement when the vestibular electrode was stimulated. The average improvement in the DGI was 38% when the vestibular implant was activated, returning to the normal range in all cases. Our findings suggest that any current flow from the cochlear space to the otolith organs was insufficient for effective cross-stimulation. The functional results correlated with the data obtained in TIM analysis, confirming that there is no current flow from the cochlea to the vestibule. CONCLUSION: The only way to produce effective electrical otolith end-organ stimulation, demonstrated with this research implant, is by direct electrical stimulation of the otolith end organs. No effective cross-stimulation was found from cochlear electrode stimulation. LEVEL OF EVIDENCE: 4 Laryngoscope, 134:2349-2355, 2024.
Assuntos
Implante Coclear , Implantes Cocleares , Potenciais Evocados Miogênicos Vestibulares , Vestíbulo do Labirinto , Humanos , Estudos de Casos e Controles , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Cóclea , Estimulação ElétricaRESUMO
Maintaining balance comes naturally to healthy people. In subjects with vestibulopathy, even when compensated, and especially if it is bilateral, maintaining balance requires cognitive effort. Pupillometry is an established method of quantifying cognitive effort. Background/Objectives: We hypothesized that pupillometry would be able to capture the increased effort required to maintain posture in subjects with bilateral vestibulopathy in increasingly difficult conditions. Additionally, we hypothesized that the cognitive workload during balance tasks, indexed by pupil size, would decrease with the activation of the BionicVEST cochleo-vestibular implants. Methods: Subjects with a cochleo-vestibular implant as of March 2023 were recruited, excluding those with ophthalmological issues that precluded pupillometry. Pupillometry was performed using a validated modified videonystagmography system. Computed dynamic posturography and a Modified Clinical Test of Sensory Integration on Balance were performed while the pupil was recorded. Tests were first performed after 24 h of deactivating the vestibular component of the implant. Thereafter, it was reactivated, and after 1 h of rest, the tests were repeated. The pupil recording was processed using custom software and the mean relative pupil diameter (MRPD) was calculated. Results: There was an average of 10.7% to 24.2% reduction in MRPD when the vestibular implant was active, with a greater effect seen in tasks of moderate difficulty, and lesser effect when the task was easy or of great difficulty. Conclusions: Despite technical challenges, pupillometry appears to be a promising method of quantifying the cognitive effort required for maintaining posture in subjects with bilateral vestibulopathy before and after vestibular implantation.
RESUMO
Patients with bilateral vestibulopathy suffer from a variety of complaints, leading to a high individual and social burden. Available treatments aim to alleviate the impact of this loss and improve compensatory strategies. Early experiments with electrical stimulation of the vestibular nerve in combination with knowledge gained by cochlear implant research, have inspired the development of a vestibular neuroprosthesis that can provide the missing vestibular input. The feasibility of this concept was first demonstrated in animals and later in humans. Currently, several research groups around the world are investigating prototype vestibular implants, in the form of vestibular implants as well as combined cochlear and vestibular implants. The aim of this review is to convey the presentations and discussions from the identically named symposium that was held during the 2021 MidWinter Meeting of the Association for Research in Otolaryngology, with researchers involved in the development of vestibular implants targeting the ampullary nerves. Substantial advancements in the development have been made. Yet, research and development processes face several challenges to improve this neuroprosthesis. These include, but are not limited to, optimization of the electrical stimulation profile, refining the surgical implantation procedure, preserving residual labyrinthine functions including hearing, as well as gaining regulatory approval and establishing a clinical care infrastructure similar to what exists for cochlear implants. It is believed by the authors that overcoming these challenges will accelerate the development and increase the impact of a clinically applicable vestibular implant.
Assuntos
Vestibulopatia Bilateral , Implante Coclear , Implantes Cocleares , Vestíbulo do Labirinto , Animais , Humanos , Implante Coclear/métodos , Vestíbulo do Labirinto/cirurgia , Vestíbulo do Labirinto/fisiologia , CócleaRESUMO
Bilateral vestibulopathyï¼BVPï¼ is one of the common diseases in the vestibular nervous system, with an incidence rate of about 4%-7% in the population, which can lead to a variety of body dysfunctions. At present, there are two main treatment methods for BVP. One is vestibular rehabilitation. However, only part of BVP patients can finally benefit from vestibular rehabilitation, and most patients will remain with permanent vestibular dysfunction. Benefiting from the maturity of cochlear implant technology, European and American countries took the lead in the development of vestibular prosthesisï¼VPï¼ technology to restore the vestibular function in patients with BVP. This review will focus on the development history, principles, future applications and the related research progress of VP in China.
Assuntos
Vestibulopatia Bilateral , Implante Coclear , Implantes Cocleares , Vestíbulo do Labirinto , Humanos , Vestibulopatia Bilateral/terapia , ChinaRESUMO
Vestibular implants (VI) modulate the rate and amplitude of charge-balanced current pulses to encode head angular velocity or acceleration. When the battery of a VI becomes depleted, stimulation interruptions can cause vertigo. To avoid this, VIs can use alert signals such as vibration and beeping to remind the user to replace the battery. However, in distracting and noisy environments typical of activities of daily life, some patients may fail to hear or feel those alerts, so a physiological signal can be used as an alternate channel for signaling battery depletion. Pauses in the stimulation waveform can be delivered for this purpose, with the length of the pause long enough to be detected reliably by the patient but not so long as to induce dizziness or a vertigo attack. As a guide for the design of a physiologic battery depletion alert system, this study reports the ability of nine long-term, continuous VI users to detect stimulation pauses of various durations. We also show the effect of distraction on patients' detection thresholds and response latencies for detected events.
RESUMO
Balance disorders are highly prevalent worldwide, causing substantial disability with high personal and socioeconomic impact. The prognosis in many of these patients is poor, and rehabilitation programs provide little help in many cases. This medical problem can be addressed using microelectronics by combining the highly successful cochlear implant experience to produce a vestibular prosthesis, using the technical advances in micro gyroscopes and micro accelerometers, which are the electronic equivalents of the semicircular canals (SCC) and the otolithic organs. Reaching this technological milestone fostered the possibility of using these electronic devices to substitute the vestibular function, mainly for visual stability and posture, in case of damage to the vestibular endorgans. The development of implantable and non-implantable devices showed diverse outcomes when considering the integrity of the vestibular pathways, the device parameters (current intensity, impedance, and waveform), and the targeted physiological function (balance and gaze). In this review, we will examine the development and testing of various prototypes of the vestibular implant (VI). The insight raised by examining the state-of-the-art vestibular prosthesis will facilitate the development of new device-development strategies and discuss the feasibility of complex combinations of implantable devices for disorders that directly affect balance and motor performance.
RESUMO
OBJECTIVES: The aim of this study was to explore expectations of patients with bilateral vestibulopathy regarding vestibular implant treatment. This could advance the definition of recommendations for future core outcome sets of vestibular implantation and help to determine on which characteristics of bilateral vestibulopathy future vestibular implant research should focus. METHODS: Semi-structured interviews were conducted with 50 patients diagnosed with bilateral vestibulopathy at Maastricht UMC + . Interviews followed a semi-structured interview guide and were recorded and transcribed. Transcripts were analyzed thematically by two independent researchers. A consensus meeting took place to produce a joint interpretation for greater dimensionality and to confirm key themes. RESULTS: Overall, patient expectations centralized around three key themes: (physical) symptom reduction, functions and activities, and quality of life. These themes appeared to be interrelated. Patient expectations focused on the activity walking (in a straight line), reducing the symptom oscillopsia and being able to live the life they had before bilateral vestibulopathy developed. In general, patients indicated to be satisfied with small improvements. CONCLUSION: This study demonstrated that patient expectations regarding a vestibular implant focus on three key themes: symptom reduction, functions and activities, and quality of life. These themes closely match the functional improvements shown in recent vestibular implantation research. The results of this study provide a clear guideline from the patient perspective on which characteristics of bilateral vestibulopathy, future vestibular implant research should focus. TRIAL REGISTRATION: NL52768.068.15/METC.
Assuntos
Vestibulopatia Bilateral , Vestíbulo do Labirinto , Humanos , Qualidade de Vida , Transtornos da VisãoRESUMO
BACKGROUND: Certain cases of superior semicircular canal dehiscence or benign paroxysmal positional vertigo can be treated by plugging of the affected semicircular canal. However, the extent of the impact on vestibular function and hearing during postoperative follow-up is not known. OBJECTIVE: To evaluate the evolution of vestibular function and hearing after plugging of a semicircular canal. METHODS: Six patients underwent testing before and 1 week, 2 months, and 6 months after plugging of the superior or posterior semicircular canal. Testing included caloric irrigation test, video Head Impulse Test (vHIT), cervical and ocular Vestibular Evoked Myogenic Potentials (VEMPs) and audiometry. RESULTS: Initially, ipsilateral caloric response decreased in all patients and vHIT vestibulo-ocular reflex (VOR) gain of each ipsilateral semicircular canal decreased in 4/6 patients. In 4/6 patients, postoperative caloric response recovered to > 60% of the preoperative value. In 5/6 patients, vHIT VOR gain was restored to > 85% of the preoperative value for both ipsilateral non-plugged semicircular canals. In the plugged semicircular canal, this gain decreased in 4/5 patients and recovered to > 50% of the preoperative value. Four patients preserved cervical and ocular VEMP responses. Bone conduction hearing deteriorated in 3/6 patients, but recovered within 6 months postoperatively, although one patient had a persistent loss of 15 dB at 8 kHz. CONCLUSION: Plugging of a semicircular canal can affect both vestibular function and hearing. After initial deterioration, most patients show recovery during follow-up. However, a vestibular function loss or high-frequency hearing loss can persist. This stresses the importance of adequate counseling of patients considering plugging of a semicircular canal.
Assuntos
Canais Semicirculares , Potenciais Evocados Miogênicos Vestibulares , Audiometria , Teste do Impulso da Cabeça , Humanos , Reflexo Vestíbulo-Ocular/fisiologia , Canais Semicirculares/fisiologiaRESUMO
An ongoing EU Horizon 2020 Project called BionicVEST is investigating the effect of constant electrical stimulation (ES) of the inferior vestibular nerve in patients with bilateral vestibular dysfunction (BVD). The evidence is that constant ES results in improved postural stability and gait performance, and so the question of central importance concerns how constant ES of mainly saccular afferents in these BVD patients could cause this improved performance. We suggest that the constant ES substitutes for the absent saccular neural input to the vestibular nuclei and the cerebellum in these BVD patients and indirectly via these structures to other structures, which have been of great recent interest in motor control. One target area, the anterior midline cerebellum (the uvula), has recently been targeted as a location for deep-brain stimulation in human patients to improve postural stability and gait. There are projections from midline cerebellum to basal ganglia, including the striatum, which are structures involved in the initiation of gait. It may be that the effect of this activation of peripheral saccular afferent neurons is analogous to the effect of deep-brain stimulation (DBS) by electrodes in basal ganglia acting to help alleviate the symptoms of patients with Parkinson's disease.