Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(21): 11566-11572, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32385161

RESUMO

Large-scale and rapid improvement in wastewater treatment is common practice in developing countries, yet this influence on nutrient regimes in receiving waterbodies is rarely examined at broad spatial and temporal scales. Here, we present a study linking decadal nutrient monitoring data in lakes with the corresponding estimates of five major anthropogenic nutrient discharges in their surrounding watersheds over time. Within a continuous monitoring dataset covering the period 2008 to 2017, we find that due to different rates of change in TN and TP concentrations, 24 of 46 lakes, mostly located in China's populated regions, showed increasing TN/TP mass ratios; only 3 lakes showed a decrease. Quantitative relationships between in-lake nutrient concentrations (and their ratios) and anthropogenic nutrient discharges in the surrounding watersheds indicate that increase of lake TN/TP ratios is associated with the rapid improvement in municipal wastewater treatment. Due to the higher removal efficiency of TP compared with TN, TN/TP mass ratios in total municipal wastewater discharge have continued to increase from a median of 10.7 (95% confidence interval, 7.6 to 15.1) in 2008 to 17.7 (95% confidence interval, 13.2 to 27.2) in 2017. Improving municipal wastewater collection and treatment worldwide is an important target within the 17 sustainable development goals set by the United Nations. Given potential ecological impacts on biodiversity and ecosystem function of altered nutrient ratios in wastewater discharge, our results suggest that long-term strategies for domestic wastewater management should not merely focus on total reductions of nutrient discharges but also consider their stoichiometric balance.


Assuntos
Lagos/química , Nitrogênio/análise , Fósforo/análise , Águas Residuárias/química , Purificação da Água , China , Ecossistema , Monitoramento Ambiental , Purificação da Água/métodos , Purificação da Água/normas , Qualidade da Água/normas
2.
Integr Environ Assess Manag ; 18(1): 245-257, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34028174

RESUMO

A comparison of the presence of additives in airport deicers commonly used in the United States and in airport runoff was conducted with data collected before and after changes in deicer formulations. Three isomers of benzotriazoles (BTs)-4-methyl-1H-benzotriazole (4-MeBT), 5-methyl-1H-benzotriazole (5-MeBT), and 1H-benzotriazole (1H-BT)-are corrosion inhibitors added to some formulations of airport deicers and are reported to be a source of aquatic toxicity in streams receiving airport runoff. Concentrations of BT in aircraft deicers and anti-icing fluids (ADAF) were reduced over time but were not reduced in potassium acetate airfield-pavement deicer material (PDM) that was used throughout the study period. Streams receiving runoff from Milwaukee Mitchell International Airport, Milwaukee, Wisconsin, USA, were monitored from 2004 to 2019 for BTs, with concentrations of 4-MeBT varying from <0.35 to 4600 µg/L, 5-MeBT varying from <0.25 to 6600 µg/L, and 1H-BT varying from <0.25 to 150 µg/L. Median 4-MeBT concentrations at sites downstream from the airport decreased by approximately 74%, 5-MeBT by 69%, and 1H-BT by 82% following reduction in BTs in ADAF formulations, resulting in a reduction in the potential for aquatic toxicity in receiving streams. A change in residuals from regression analysis between freezing point depressants and BTs indicate that the reduction in BT concentrations in airport runoff was a result of BT reduction in ADAF formulations, but PDM may still be a substantial source of BTs in airport runoff. Because BTs are a source of aquatic toxicity in airport deicers, the reductions in BTs in the common deicers observed in this study can be used to demonstrate the potential for a reduction in the effects to aquatic organisms in airport runoff, resulting in greater likelihood of meeting aquatic toxicity requirements in airport stormwater permits, and potentially driving airports, airlines, and permit holders to advocate further reduction or elimination of BTs and other harmful contaminants in airport deicers. Integr Environ Assess Manag 2022;18:245-257. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Aeroportos , Poluentes Químicos da Água , Organismos Aquáticos , Ecotoxicologia , Triazóis , Poluentes Químicos da Água/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-34948886

RESUMO

Managed aquifer recharge (MAR) using urban stormwater facilitates relieving water supply pressure, restoring the ecological environment, and developing sustainable water resources. However, compared to conventional water sources, such as river water and lake water, MAR using urban stormwater is a typically intermittent recharge mode. In order to study the clogging and water quality change effects of Fe, Zn, and Pb, the typical mental pollutants in urban stormwater, a series of intermittent MAR column experiments were performed. The results show that the type of pollutant, the particle size of the medium and the intermittent recharge mode have significant impacts on the pollutant retention and release, which has led to different clogging and water quality change effects. The metals that are easily retained in porous media have greater potential for clogging and less potential for groundwater pollution. The fine medium easily becomes clogged, but it is beneficial in preventing groundwater contamination. There is a higher risk of groundwater contamination for a shallow buried aquifer under intermittent MAR than continuous MAR, mainly because of the de-clogging effect of porous media during the intermittent period.


Assuntos
Poluentes Ambientais , Água Subterrânea , Poluentes Químicos da Água , Metais , Poluentes Químicos da Água/análise , Qualidade da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA