Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(12): e1011067, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38109437

RESUMO

Organismal responses to temperature fluctuations include an evolutionarily conserved cytosolic chaperone machinery as well as adaptive alterations in lipid constituents of cellular membranes. Using C. elegans as a model system, we asked whether adaptable lipid homeostasis is required for survival during physiologically relevant heat stress. By systematic analyses of lipid composition in worms during and before heat stress, we found that unsaturated fatty acids are reduced in heat-stressed animals. This is accompanied by the transcriptional downregulation of fatty acid desaturase enzymes encoded by fat-1, fat-3, fat-4, fat-5, fat-6, and fat-7 genes. Conversely, overexpression of the Δ9 desaturase FAT-7, responsible for the synthesis of PUFA precursor oleic acid, and supplementation of oleic acid causes accelerated death of worms during heat stress. Interestingly, heat stress causes permeability defects in the worm's cuticle. We show that fat-7 expression is reduced in the permeability defective collagen (PDC) mutant, dpy-10, known to have enhanced heat stress resistance (HSR). Further, we show that the HSR of dpy-10 animals is dependent on the upregulation of PTR-23, a patched-like receptor in the epidermis, and that PTR-23 downregulates the expression of fat-7. Consequently, abrogation of ptr-23 in wild type animals affects its survival during heat stress. This study provides evidence for the negative regulation of fatty acid desaturase expression in the soma of C. elegans via the non-canonical role of a patched receptor signaling component. Taken together, this constitutes a skin-gut axis for the regulation of lipid desaturation to promote the survival of worms during heat stress.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Estearoil-CoA Dessaturase/genética , Homeostase , Resposta ao Choque Térmico/genética , Ácidos Oleicos
2.
J Biol Chem ; 300(2): 105656, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224948

RESUMO

The fatty acid (FA) elongation cycle produces very-long-chain FAs with ≥C21, which have unique physiological functions. Trans-2-enoyl-CoA reductases (yeast, Tsc13; mammals, TECR) catalyze the reduction reactions in the fourth step of the FA elongation cycle and in the sphingosine degradation pathway. However, their catalytic residues and coordinated action in the FA elongation cycle complex are unknown. To reveal these, we generated and analyzed Ala-substituted mutants of 15 residues of Tsc13. An in vitro FA elongation assay showed that nine of these mutants were less active than WT protein, with E91A and Y256A being the least active. Growth complementation analysis, measurement of ceramide levels, and deuterium-sphingosine labeling revealed that the function of the E91A mutant was substantially impaired in vivo. In addition, we found that the activity of FA elongases, which catalyze the first step of the FA elongation cycle, were reduced in the absence of Tsc13. Similar results were observed in Tsc13 E91A-expressing cells, which is attributable to reduced interaction between the Tsc13 E91A mutant and the FA elongases Elo2/Elo3. Finally, we found that E94A and Y248A mutants of human TECR, which correspond to E91A and Y256A mutants of Tsc13, showed reduced and almost no activity, respectively. Based on these results and the predicted three-dimensional structure of Tsc13, we speculate that Tyr256/Tyr248 of Tsc13/TECR is the catalytic residue that supplies a proton to trans-2-enoyl-CoAs. Our findings provide a clue concerning the catalytic mechanism of Tsc13/TECR and the coordinated action in the FA elongation cycle complex.


Assuntos
Ácidos Graxos Dessaturases , Esfingosina , Humanos , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Esfingosina/metabolismo
3.
J Biol Chem ; 300(5): 107243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556086

RESUMO

Sterols are ubiquitous membrane constituents that persist to a large extent in the environment due to their water insolubility and chemical inertness. Recently, an oxygenase-independent sterol degradation pathway was discovered in a cholesterol-grown denitrifying bacterium Sterolibacterium (S.) denitrificans. It achieves hydroxylation of the unactivated primary C26 of the isoprenoid side chain to an allylic alcohol via a phosphorylated intermediate in a four-step ATP-dependent enzyme cascade. However, this pathway is incompatible with the degradation of widely distributed steroids containing a double bond at C22 in the isoprenoid side chain such as the plant sterol stigmasterol. Here, we have enriched a prototypical delta-24 desaturase from S. denitrificans, which catalyzes the electron acceptor-dependent oxidation of the intermediate stigmast-1,4-diene-3-one to a conjugated (22,24)-diene. We suggest an α4ß4 architecture of the 440 kDa enzyme, with each subunit covalently binding an flavin mononucleotide cofactor to a histidyl residue. As isolated, both flavins are present as red semiquinone radicals, which can be reduced by stigmast-1,4-diene-3-one but cannot be oxidized even with strong oxidizing agents. We propose a mechanism involving an allylic radical intermediate in which two flavin semiquinones each abstract one hydrogen atom from the substrate. The conjugated delta-22,24 moiety formed allows for the subsequent hydroxylation of the terminal C26 with water by a heterologously produced molybdenum-dependent steroid C26 dehydrogenase 2. In conclusion, the pathway elucidated for delta-22 steroids achieves oxygen-independent hydroxylation of the isoprenoid side chain by bypassing the ATP-dependent formation of a phosphorylated intermediate.


Assuntos
Proteínas de Bactérias , Betaproteobacteria , Ácidos Graxos Dessaturases , Estigmasterol , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Molibdênio/química , Estigmasterol/metabolismo , Betaproteobacteria/enzimologia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Hidroxilação/genética , Flavinas/metabolismo
4.
J Biol Chem ; 300(5): 107214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522521

RESUMO

The role of polyunsaturated fatty acid (PUFA) biosynthesis in acute myeloid leukemia (AML) remains largely undefined. A comparative expression analysis of 35 genes encoding fatty acid biosynthesis enzymes showed that fatty acid desaturase 1 (FADS1) was highly expressed across multiple AML subtypes relative to healthy controls and that elevated FADS1 expression correlates with worse overall AML patient survival. Functionally, shRNA-mediated inhibition of FADS1 reduced AML cell growth in vitro and significantly delayed leukemia onset in an AML mouse model. AML cell lines depleted of FADS1 arrested in the G1/S-phase of the cell cycle, acquired characteristics of myeloid maturation and subsequently died. To understand the molecular consequences of FADS1 inhibition, a combination of mass spectrometry-based analysis of complex lipids and gene expression analysis (RNA-seq) was performed. FADS1 inhibition caused AML cells to exhibit significant lipidomic remodeling, including depletion of PUFAs from the phospholipids, phosphatidylserine, and phosphatidylethanolamine. These lipidomic alterations were accompanied by an increase induction of inflammatory and stimulator of interferon genes (STING)-mediated type-1 interferon signaling. Remarkably, genetic deletion of STING largely prevented the AML cell maturation and death phenotypes mediated by FADS1 inhibition. Highlighting the therapeutic implications of these findings, pharmacological blockade of PUFA biosynthesis reduced patient-derived AML cell numbers ex vivo but not that of healthy donor cells. Similarly, STING agonism attenuated patient-derived-AML survival; however, STING activation also reduced healthy granulocyte numbers. Collectively, these data unveil a previously unrecognized importance of PUFA biosynthesis in leukemogenesis and that imbalances in PUFA metabolism can drive STING-mediated AML maturation and death.


Assuntos
Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases , Ácidos Graxos Insaturados , Leucemia Mieloide Aguda , Proteínas de Membrana , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Animais , Humanos , Camundongos , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Morte Celular , Transdução de Sinais
5.
Plant J ; 119(2): 916-926, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762880

RESUMO

Diacylglycerol acyltransferase1 (DGAT1) is the major enzyme that synthesizes triacylglycerols (TAG) during Arabidopsis seed development. Mutant dgat1 seeds possess low oil content in addition to a high polyunsaturated fatty acid (PUFA) composition. Two genes encoding endoplasmic reticulum localized desaturase enzymes, fatty acid desaturase2 (FAD2) and fatty acid desaturase3 (FAD3), were upregulated in both dgat1-1 and dgat1-2 developing seeds. Crosses between both dgat1 mutant alleles and fad2-1 failed to generate plants homozygous for both dgat1 and fad2. Reciprocal crosses with wild-type plants demonstrated that both male and female dgat1 fad2 gametophytes were viable. Siliques from DGAT1/dgat1-1 fad2-1/fad2-1 and dgat1-1/dgat1-1 FAD2/fad2-1 possessed abnormal looking seeds that were arrested in the torpedo growth stage. Approximately 25% of the seeds exhibited this arrested phenotype, genetically consistent with them possessing the double homozygous dgat1 fad2 genotype. In contrast, double homozygous dgat1-1 fad3-2 mutant plants were viable. Seeds from these plants possessed higher levels of 18:2 while their fatty acid content was lower than dgat1 mutant controls. The results are consistent with a model where in the absence of DGAT1 activity, desaturation of fatty acids by FAD2 becomes essential to provide PUFA substrates for phospholipid:diacylglycerol acyltransferase (PDAT) to synthesize TAG. In a dgat1 fad2 mutant, seed development is aborted because TAG is unable to be synthesized by either DGAT1 or PDAT.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Diacilglicerol O-Aciltransferase , Ácidos Graxos Dessaturases , Regulação da Expressão Gênica de Plantas , Mutação , Sementes , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Triglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fenótipo
6.
Plant Physiol ; 195(2): 1521-1535, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38386701

RESUMO

Fatty acid unsaturation levels affect chloroplast function and plant acclimation to environmental cues. However, the regulatory mechanism(s) controlling fatty acid unsaturation in thylakoid lipids is poorly understood. Here, we have investigated the connection between chloroplast redox homeostasis and lipid metabolism by focusing on 2-Cys peroxiredoxins (Prxs), which play a central role in balancing the redox state within the organelle. The chloroplast redox network relies on NADPH-dependent thioredoxin reductase C (NTRC), which controls the redox balance of 2-Cys Prxs to maintain the reductive activity of redox-regulated enzymes. Our results show that Arabidopsis (Arabidopsis thaliana) mutants deficient in 2-Cys Prxs contain decreased levels of trienoic fatty acids, mainly in chloroplast lipids, indicating that these enzymes contribute to thylakoid membrane lipids unsaturation. This function of 2-Cys Prxs is independent of NTRC, the main reductant of these enzymes, hence 2-Cys Prxs operates beyond the classic chloroplast regulatory redox system. Moreover, the effect of 2-Cys Prxs on lipid metabolism is primarily exerted through the prokaryotic pathway of glycerolipid biosynthesis and fatty acid desaturase 8 (FAD8). While 2-Cys Prxs and FAD8 interact in leaf membranes as components of a large protein complex, the levels of FAD8 were markedly decreased when FAD8 is overexpressed in 2-Cys Prxs-deficient mutant backgrounds. These findings reveal a function for 2-Cys Prxs, possibly acting as a scaffold protein, affecting the unsaturation degree of chloroplast membranes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Graxos Dessaturases , Peroxirredoxinas , Tilacoides , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Tilacoides/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Oxirredução , Cloroplastos/metabolismo , Metabolismo dos Lipídeos , Mutação/genética , Regulação da Expressão Gênica de Plantas
7.
J Lipid Res ; 65(6): 100562, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762122

RESUMO

Perinatal exposure to omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) can be characterized through biomarkers in maternal or cord blood or breast milk. Objectives were to describe perinatal PUFA status combining multiple biofluids and to investigate how it was influenced by dietary intake during pregnancy and maternal FADS and ELOVL gene polymorphisms. This study involved 1,901 mother-child pairs from the EDEN cohort, with PUFA levels measured in maternal and cord erythrocytes, and colostrum. Maternal dietary PUFA intake during the last trimester was derived from a food frequency questionnaire. Twelve single-nucleotide polymorphisms in FADS and ELOVL genes were genotyped from maternal DNA. Principal component analysis incorporating PUFA levels from the three biofluids identified patterns of perinatal PUFA status. Spearman's correlations explored associations between patterns and PUFA dietary intake, and linear regression models examined pattern associations with FADS or ELOVL haplotypes. Five patterns were retained: "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs"; "Omega-6 LC-PUFAs"; "Colostrum LC-PUFAs"; "Omega-6 precursor (LA) and DGLA"; "Omega-6 precursor and colostrum ALA". Maternal omega-3 LC-PUFA intakes were correlated with "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs" (r(DHA) = 0.33) and "Omega-6 LC-PUFAs" (r(DHA) = -0.19) patterns. Strong associations were found between FADS haplotypes and PUFA patterns except for "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs". Lack of genetic association with the "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs" pattern, highly correlated with maternal omega-3 LC-PUFA intake, emphasizes the importance of adequate omega-3 LC-PUFA intake during pregnancy and lactation. This study offers a more comprehensive assessment of perinatal PUFA status and its determinants.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos Insaturados , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Gravidez , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Adulto , Ácidos Graxos Insaturados/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Dieta , Colostro/química , Colostro/metabolismo , Sangue Fetal/metabolismo , Sangue Fetal/química , Recém-Nascido
8.
BMC Genomics ; 25(1): 510, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783193

RESUMO

Domesticated safflower (Carthamus tinctorius L.) is a widely cultivated edible oil crop. However, despite its economic importance, the genetic basis underlying key traits such as oil content, resistance to biotic and abiotic stresses, and flowering time remains poorly understood. Here, we present the genome assembly for C. tinctorius variety Jihong01, which was obtained by integrating Oxford Nanopore Technologies (ONT) and BGI-SEQ500 sequencing results. The assembled genome was 1,061.1 Mb, and consisted of 32,379 protein-coding genes, 97.71% of which were functionally annotated. Safflower had a recent whole genome duplication (WGD) event in evolution history and diverged from sunflower approximately 37.3 million years ago. Through comparative genomic analysis at five seed development stages, we unveiled the pivotal roles of fatty acid desaturase 2 (FAD2) and fatty acid desaturase 6 (FAD6) in linoleic acid (LA) biosynthesis. Similarly, the differential gene expression analysis further reinforced the significance of these genes in regulating LA accumulation. Moreover, our investigation of seed fatty acid composition at different seed developmental stages unveiled the crucial roles of FAD2 and FAD6 in LA biosynthesis. These findings offer important insights into enhancing breeding programs for the improvement of quality traits and provide reference resource for further research on the natural properties of safflower.


Assuntos
Carthamus tinctorius , Ácidos Graxos Dessaturases , Ácidos Graxos Insaturados , Genoma de Planta , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Genômica/métodos , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular
9.
Plant Cell Physiol ; 65(6): 975-985, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38147500

RESUMO

DesC1 and DesC2, which are fatty acid desaturases found in cyanobacteria, are responsible for introducing a double bond at the Δ9 position of fatty-acyl chains, which are subsequently esterified to the sn-1 and sn-2 positions of the glycerol moiety, respectively. However, since the discovery of these two desaturases in the Antarctic cyanobacterium Nostoc sp. SO-36, no further research has been reported. This study presents a comprehensive characterization of DesC1 and DesC2 through targeted mutagenesis and transformation using two cyanobacteria strains: Anabaena sp. PCC 7120, comprising both desaturases, and Synechocystis sp. PCC 6803, containing a single Δ9 desaturase (hereafter referred to as DesCs) sharing similarity with DesC1 in amino acid sequence. The results suggested that both DesC1 and DesC2 were essential in Anabaena sp. PCC 7120 and that DesC1, but not DesC2, complemented DesCs in Synechocystis sp. PCC 6803. In addition, DesC2 from Anabaena sp. PCC 7120 desaturated fatty acids esterified to the sn-2 position of the glycerol moiety in Synechocystis sp. PCC 6803.


Assuntos
Anabaena , Proteínas de Bactérias , Ácidos Graxos Dessaturases , Synechocystis , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Synechocystis/enzimologia , Synechocystis/genética , Anabaena/enzimologia , Anabaena/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ácidos Graxos/metabolismo , Cianobactérias/enzimologia , Cianobactérias/genética , Sequência de Aminoácidos
10.
Biochem Biophys Res Commun ; 715: 150005, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678785

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder among women of reproductive age, is characterized by disturbances in hormone levels and ovarian dysfunction. Ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. Emerging evidence indicates that ferroptosis may have a significant role in the pathogenesis of PCOS, highlighting the importance of studying this mechanism to better understand the disorder and potentially develop novel therapeutic interventions. METHODS: To create an in vivo PCOS model, mice were injected with dehydroepiandrosterone (DHEA) and the success of the model was confirmed through further assessments. Ferroptosis levels were evaluated through detecting ferroptosis-related indicators. Ferroptosis-related genes were found through bioinformatic analysis and identified by experiments. An in vitro PCOS model was also established using DHEA treated KGN cells. The molecular binding relationship was confirmed using a chromatin immunoprecipitation (ChIP) assay. RESULTS: In PCOS model, various ferroptosis-related indicators such as MDA, Fe2+, and lipid ROS showed an increase, while GSH, GPX4, and TFR1 exhibited a decrease. These findings indicate an elevated level of ferroptosis in the PCOS model. The ferroptosis-related gene FADS2 was identified and validated. FADS2 and PPAR-α were shown to be highly expressed in ovarian tissue and primary granulosa cells (GCs) of PCOS mice. Furthermore, the overexpression of both FADS2 and PPAR-α in KGN cells effectively suppressed the DHEA-induced increase in ferroptosis-related indicators (MDA, Fe2+, and lipid ROS) and the decrease in GSH, GPX4, and TFR1 levels. The ferroptosis agonist erastin reversed the suppressive effect, suggesting the involvement of ferroptosis in this process. Additionally, the FADS2 inhibitor SC26196 was found to inhibit the effect of PPAR-α on ferroptosis. Moreover, the binding of PPAR-α to the FADS2 promoter region was predicted and confirmed. This indicates the regulatory relationship between PPAR-α and FADS2 in the context of ferroptosis. CONCLUSIONS: Our study indicates that PPAR-α may have an inhibitory effect on DHEA-induced ferroptosis in GCs by enhancing the expression of FADS2. This discovery provides valuable insights into the pathophysiology and potential therapeutic targets for PCOS.


Assuntos
Ácidos Graxos Dessaturases , Ferroptose , Células da Granulosa , PPAR alfa , Síndrome do Ovário Policístico , Regulação para Cima , Animais , Feminino , Camundongos , Desidroepiandrosterona/farmacologia , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Síndrome do Ovário Policístico/genética , PPAR alfa/metabolismo , PPAR alfa/genética , Regulação para Cima/efeitos dos fármacos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo
11.
J Nutr ; 154(5): 1540-1548, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38453026

RESUMO

BACKGROUND: Single-nucleotide polymorphisms (SNPs) in fatty acid desaturase (FADS) genes may modify dietary fatty acid requirements and influence cardiometabolic health (CMH). OBJECTIVES: We evaluated the role of selected variants in maternal and offspring FADS genes on offspring CMH at the age of 11 y and assessed interactions of genotype with diet quality and prenatal docosahexaenoic acid (DHA) supplementation. METHODS: We used data from offspring (n = 203) born to females who participated in a randomized controlled trial of DHA supplementation (400 mg/d) from midgestation to delivery. We generated a metabolic syndrome (MetS) score from body mass index, high-density lipoprotein cholesterol, triglycerides, systolic blood pressure, and fasting glucose and identified 6 distinct haplotypes from 5 offspring FADS SNPs. Dietary n-6 (ω-6):n-3 fatty acid ratios were derived from 24-h recall data (n = 141). We used generalized linear models to test associations of offspring diet and FADS haplotypes with MetS score and interactions of maternal and offspring FADS SNP rs174602 with prenatal treatment group and dietary n-6:n-3 ratio on MetS score. RESULTS: Associations between FADS haplotypes and MetS score were null. Offspring SNP rs174602 did not modify the association of prenatal DHA supplementation with MetS score. Among children with TT or TC genotype for SNP rs174602 (n = 88), those in the highest n-6:n-3 ratio tertile (>8.61) had higher MetS score relative to the lowest tertile [<6.67) (Δ= 0.36; 95% confidence interval (CI): 0.03, 0.69]. Among children with CC genotype (n = 53), those in the highest n-6:n-3 ratio tertile had a lower MetS score relative to the lowest tertile (Δ= -0.23; 95% CI: -0.61, 0.16). CONCLUSIONS: There was evidence of an interaction of offspring FADS SNP rs174602 with current dietary polyunsaturated fatty acid intake, but not with prenatal DHA supplementation, on MetS score. Further studies may help to determine the utility of targeted supplementation strategies and dietary recommendations based on genetic profile.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Dessaturases , Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Gravidez , México , Masculino , Criança , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Dessaturase de Ácido Graxo Delta-5 , Síndrome Metabólica/genética , Síndrome Metabólica/prevenção & controle , Adulto , Dieta , Haplótipos
12.
Photochem Photobiol Sci ; 23(6): 1167-1178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38717721

RESUMO

Temperature up-shift and UV-A radiation effects on growth, lipid damage, fatty acid (FA) composition and expression of desaturase genes desA and desB were investigated in the cyanobacteria Microcystis aeruginosa. Although UV-A damaging effect has been well documented, reports on the interactive effects of UV radiation exposure and warming on cyanobacteria are scarce. Temperature and UV-A doses were selected based on the physiological responses previously obtained by studies with the same M. aeruginosa strain used in this study. Cells pre-grown at 26 °C were incubated at the same temperature or 29 °C and exposed to UV-A + PAR and only PAR for 9 days. Growth rate was significantly affected by UV-A radiation independently of the temperature throughout the experiment. High temperature produced lipid damage significantly higher throughout the experiment, decreasing at day 9 as compared to 26 °C. In addition, the cells grown at 29 °C under UV-A displayed a decrease in polyunsaturated FA (PUFA) levels, with ω3 PUFA being mostly affected at the end of exposure. Previously, we reported that UV-A-induced lipid damage affects differentially ω3 and ω6 PUFAs. We report that UV-A radiation leads to an upregulation of desA, possibly due to lipid damage. In addition, the temperature up-shift upregulates desA and desB regardless of the radiation. The lack of lipid damage for UV-A on ω3 could explain the lack of transcription induction of desB. The significant ω6 decrease at 26 °C in cells exposed to UV-A could be due to the lack of upregulation of desA.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos , Microcystis , Temperatura , Raios Ultravioleta , Microcystis/efeitos da radiação , Ácidos Graxos/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Aclimatação , Estresse Fisiológico
13.
Mar Drugs ; 22(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38393053

RESUMO

The marine red microalga Porphyridium can simultaneously synthesize long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (C20:5, EPA) and arachidonic acid (C20:4, ARA). However, the distribution and synthesis pathways of EPA and ARA in Porphyridium are not clearly understood. In this study, Porphyridium cruentum CCALA 415 was cultured in nitrogen-replete and nitrogen-limited conditions. Fatty acid content determination, transcriptomic, and lipidomic analyses were used to investigate the synthesis of ARA and EPA. The results show that membrane lipids were the main components of lipids, while storage lipids were present in a small proportion in CCALA 415. Nitrogen limitation enhanced the synthesis of storage lipids and ω6 fatty acids while inhibiting the synthesis of membrane lipids and ω3 fatty acids. A total of 217 glycerolipid molecular species were identified, and the most abundant species included monogalactosyldiglyceride (C16:0/C20:5) (MGDG) and phosphatidylcholine (C16:0/C20:4) (PC). ARA was mainly distributed in PC, and EPA was mainly distributed in MGDG. Among all the fatty acid desaturases (FADs), the expressions of Δ5FAD, Δ6FAD, Δ9FAD, and Δ12FAD were up-regulated, whereas those of Δ15FAD and Δ17FAD were down-regulated. Based on these results, only a small proportion of EPA was synthesized through the ω3 pathway, while the majority of EPA was synthesized through the ω6 pathway. ARA synthesized in the ER was likely shuttled into the chloroplast by DAG and was converted into EPA by Δ17FAD.


Assuntos
Microalgas , Porphyridium , Porphyridium/genética , Porphyridium/metabolismo , Microalgas/genética , Microalgas/metabolismo , Lipidômica , Ácidos Graxos/análise , Ácidos Graxos Dessaturases/metabolismo , Ácido Eicosapentaenoico , Lipídeos de Membrana , Perfilação da Expressão Gênica , Nitrogênio/metabolismo
14.
Pestic Biochem Physiol ; 200: 105832, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582595

RESUMO

Moth insects rely on sex pheromones for long distance attraction and searching for sex partners. The biosynthesis of moth sex pheromones involves the catalytic action of multiple enzymes, with desaturases playing a crucial role in the process of carbon chain desaturation. However, the specific desaturases involved in sex pheromone biosynthesis in fall armyworm (FAW), Spodoptera frugiperda, have not been clarified. In this study, a Δ11 desaturase (SfruDES1) gene in FAW was knocked out using the CRISPR/Cas9 genome editing system. A homozygous mutant of SfruDES1 was obtained through genetic crosses. The gas chromatography-mass spectrometry (GC-MS) analysis results showed that the three main sex pheromone components (Z7-12:Ac, Z9-14:Ac, and Z11-16:Ac) and the three minor components (Z9-14:Ald, E11-14:Ac and Z11-14:Ac) of FAW were not detected in homozygous mutant females compared to the wild type. Furthermore, behavioral assay demonstrated that the loss of SfruDES1 resulted in a significant reduction in the attractiveness of females to males, along with disruptions in mating behavior and oviposition. Additionally, in a heterologous expression system, recombinant SfruDES1 could introduce a cis double bond at the Δ11 position in palmitic acid, which resulted in the changes in components of the synthesized products. These findings suggest desaturase plays a key role in the biosynthesis of sex pheromones, and knockout of the SfruDES1 disrupts sex pheromone biosynthesis and mating behavior in FAW. The SfruDES1 could serve as tool to develop a control method for S. frugiperda.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Feminino , Masculino , Spodoptera/genética , Spodoptera/metabolismo , Atrativos Sexuais/metabolismo , Oviposição , Mariposas/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/metabolismo
15.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542213

RESUMO

The microalgae Vischeria sp. IPPAS C-70 produces eicosapentaenoic acid. Several stresses cause the formation of fatty acid peaks that resemble hexadecadienoic acids. We used the integrated technique including TLC, HPLC, and GC-MS to search and determine these fatty acids. Double bond positioning in these fatty acids indicated that they were conjugated dienes and allenes. We identified and described natural nine isomers of C16 polyunsaturated fatty acids, including common methylene-interrupted dienes (Δ6,9-16:2, Δ7,10-16:2, Δ9,12-16:2), and unusual conjugated dienes (Δ6,8-, Δ7,9-, Δ8,10-, Δ9,11-, and Δ10,12-16:2), as well as allenic diene (Δ9,10-16:2). We hypothesize that the formation of conjugated dienes and allenes among fatty acids is the result of oxidative stress caused by H2O2. Hydrogen peroxide also caused an increase in saturated at the expense of unsaturated fatty acids, suggesting inhibition either fatty acid desaturases activities or the corresponding gene expression.


Assuntos
Ácidos Graxos , Peróxido de Hidrogênio , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Estresse Oxidativo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo
16.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791555

RESUMO

Disordered eating behavior differs between the restricting subtype (AN-R) and the binging and purging subtype (AN-BP) of anorexia nervosa (AN). Yet, little is known about how these differences impact fatty acid (FA) dysregulation in AN. To address this question, we analyzed 26 FAs and 7 FA lipogenic enzymes (4 desaturases and 3 elongases) in 96 women: 25 AN-R, 25 AN-BP, and 46 healthy control women. Our goal was to assess subtype-specific patterns. Lauric acid was significantly higher in AN-BP than in AN-R at the fasting timepoint (p = 0.038) and displayed significantly different postprandial changes 2 h after eating. AN-R displayed significantly higher levels of n-3 alpha-linolenic acid, stearidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid, and n-6 linoleic acid and gamma-linolenic acid compared to controls. AN-BP showed elevated EPA and saturated lauric acid compared to controls. Higher EPA was associated with elevated anxiety in AN-R (p = 0.035) but was linked to lower anxiety in AN-BP (p = 0.043). These findings suggest distinct disordered eating behaviors in AN subtypes contribute to lipid dysregulation and eating disorder comorbidities. A personalized dietary intervention may improve lipid dysregulation and enhance treatment effectiveness for AN.


Assuntos
Anorexia Nervosa , Ácidos Graxos , Humanos , Feminino , Anorexia Nervosa/metabolismo , Adulto , Ácidos Graxos/metabolismo , Adulto Jovem , Lipogênese , Ácido Eicosapentaenoico/metabolismo , Ácidos Láuricos/metabolismo , Elongases de Ácidos Graxos/metabolismo , Adolescente , Ácidos Graxos Dessaturases/metabolismo , Estudos de Casos e Controles , Ácidos Graxos Insaturados
17.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732052

RESUMO

Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.


Assuntos
Dessaturase de Ácido Graxo Delta-5 , Dieta Ocidental , Ácidos Graxos Dessaturases , Hepatócitos , Animais , Masculino , Ratos , Dessaturase de Ácido Graxo Delta-5/metabolismo , Dependovirus/genética , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Frutose/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Fenótipo , Ratos Sprague-Dawley , Triglicerídeos/metabolismo
18.
Plant Sci ; 341: 112016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311253

RESUMO

The discovery of co-suppression in plants has greatly boosted the study of gene silencing mechanisms, but its triggering mechanism has remained a mystery. In this study, we explored its possible trigger mechanism by using Fatty acid desaturase 2 (FAD2) and Fatty acid elongase 1 (FAE1) strong co-suppression systems. Analysis of small RNAs in FAD2 co-suppression lines showed that siRNAs distributed throughout the coding region of FAD2 with an accumulated peak. However, mutations of the peak siRNA-matched site and siRNA derived site had not alleviated the co-suppression of its transgenic lines. Synthetic FAD2 (AtFAD2sm), which has synonymous mutations in the entire coding region, failed to trigger any co-suppression. Furthermore, 5' and 3' portions of AtFAD2 and AtFAD2sm were swapped to form two hybrid genes, AtFAD2-3sm and AtFAD2-5sm. 80 % and 92 % of their transgenic lines exhibited co-suppression, respectively. Finally, FAE1s with different degrees of the continuous sequence identity compared with AtFAE1 were tested in their Arabidopsis transgenic lines, and the results showed the co-suppression frequency was reduced as their continuous sequence identity stepped down. This work suggests that contiguous identity between the entire coding regions of transgenic and native genes rather than a special region is essential for a strong co-suppression.


Assuntos
Arabidopsis , Ácidos Graxos Dessaturases , Interferência de RNA , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas/genética , RNA Interferente Pequeno
19.
Psychoneuroendocrinology ; 163: 106985, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38394918

RESUMO

OBJECTIVE: Although antipsychotics constitute the best treatment for patients with schizophrenia, this treatment class carries a high risk of metabolic disarrangements thus developing metabolic syndrome (MetS). Altered fatty acid (FA) composition and desaturase indices have been associated with several metabolic diseases, including MetS. Herein, we determined fatty acid desaturase 1 (FADS1) and FADS2 gene expressions, serum delta-5 desaturase (D5D) and D6D indices in female adults with first-episode schizophrenia after olanzapine medication, as well as their relationship with the incidence of MetS. METHODS: This study prospectively recruited 120 female patients with first-episode schizophrenia who completed 6-month olanzapine medication. Among these female patients, 31 patients developed MetS and 89 patients did not. RESULTS: The mRNA expression levels of FADS1 and FADS2 in patients were analyzed according to the presence of MetS and evaluation times with results of two-way ANOVAs (FADS1: PMetS = 0.0006, Ptime = 0.004, Pinteraction = 0.010; FADS2: PMetS = 0.012, Ptime < 0.0001, Pinteraction = 0.001). The D5D and D6D indices in patients were analyzed according to the presence of MetS and evaluation times with results of two-way ANOVAs (D5D: PMetS = 0.002, Ptime = 0.009, Pinteraction = 0.014; D6D: PMetS = 0.011, Ptime = 0.006, Pinteraction = 0.0001). The SCD-16 and SCD-18 indices in patients were analyzed according to the presence of MetS and evaluation times (SCD-16: PMetS = 0.005, Ptime = 0.009, Pinteraction = 0.016; SCD-18: PMetS = 0.037, Ptime = 0.382, Pinteraction = 0.163). The following multiple comparisons test showed the MetS exhibited reduced FADS1 mRNA expression and D5D index, increased FADS2 mRNA expression and D6D index, concomitant with an enhanced SCD-16 index, compared to the non-MetS did not after 6-month olanzapine medication. CONCLUSION: The study suggests changes of FADS1, FADS2 expressions, and fatty acid desaturase indices including D5D, D6D, and SCD-16 may be associated with the development of MetS in female adults with first-episode schizophrenia after olanzapine medication.


Assuntos
Antipsicóticos , Síndrome Metabólica , Esquizofrenia , Adulto , Humanos , Feminino , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Antipsicóticos/efeitos adversos , Esquizofrenia/tratamento farmacológico , Olanzapina , RNA Mensageiro
20.
Clin Nutr ; 43(6): 1488-1494, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718720

RESUMO

BACKGROUND & AIMS: Leukocyte telomere length (LTL) is a biomarker of aging that may be influenced by dietary factors. Omega-3 fatty acids (n-3 FA) have been suggested to affect LTL. However, research on this effect has been inconclusive. The aim of the study was to test the hypothesis about the positive effect of n-3 FA on LTL. METHODS: Fat-1 transgenic mice, which can convert omega-6 fatty acids (n-6 FA) to n-3 FA and have elevated levels of endogenous n-3 FA in their tissues, were used to study the effects of n-3 FA on LTL at different ages. Blood samples from 10-month-old wild-type (WT) mice (n = 10) and fat-1 mice (n = 10) and 3-month-old WT mice (n = 5) and fat-1 mice (n = 5) were used to measure relative and absolute LTL. The levels of proteins critical for telomere maintenance were examined by Western blot analysis. RESULTS: Fat-1 transgenic mice had longer leukocyte telomeres than their WT siblings, suggesting a slower rate of age-related telomere shortening in fat-1 mice. In animals aged 10 months, the LTL was significantly longer in fat-1 than in WT mice (mean ± SEM; relative LTL: WT = 1.00 ± 0.09 vs. fat-1: 1.25 ± 0.05, P = 0.031; absolute LTL: WT = 64.41 ± 6.50 vs. fat-1: 78.53 ± 3.86, P = 0.048). The difference in LTL observed in three-month-old mice was insignificant, however the mean LTL was still longer in fat-1 mice than in the WT mice. Fat-1 mice also had abundant levels of two shelterin proteins: TRF1 (27%, P = 0.028) and TRF2 (47%, P = 0.040) (telomeric repeat binding factor 1 and 2) compared to WT animals. CONCLUSION: This study, for the first time in a unique animal model free of dietary confounders, has demonstrated that increased levels of n-3 FA in tissues can reduce telomere attrition. The data presented indicate the possibility of using omega-3 fatty acids to reduce accelerated telomere attrition and, consequently, counteract premature aging and reduce the risk of age-related diseases.


Assuntos
Envelhecimento , Ácidos Graxos Ômega-3 , Camundongos Transgênicos , Telômero , Animais , Camundongos , Leucócitos/metabolismo , Masculino , Encurtamento do Telômero , Ácidos Graxos Ômega-6 , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Caderinas , Proteínas de Caenorhabditis elegans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA