Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194.686
Filtrar
Mais filtros

Coleção CLAP
Intervalo de ano de publicação
1.
Cell ; 185(19): 3463-3466, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113425

RESUMO

Integrin receptors are established drug targets, but many of the drugs that have been developed act as partial agonists, inducing the receptor into a high-affinity, ligand-binding state. Lin et al. discovered a general mechanism to circumvent this problem-stabilizing a key water molecule that prevents receptor activation. Their findings are likely to impact future therapeutic development.


Assuntos
Integrinas , Água , Integrinas/química , Ligantes
2.
Cell ; 185(19): 3533-3550.e27, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113427

RESUMO

Integrins are validated drug targets with six approved therapeutics. However, small-molecule inhibitors to three integrins failed in late-stage clinical trials for chronic indications. Such unfavorable outcomes may in part be caused by partial agonism, i.e., the stabilization of the high-affinity, extended-open integrin conformation. Here, we show that the failed, small-molecule inhibitors of integrins αIIbß3 and α4ß1 stabilize the high-affinity conformation. Furthermore, we discovered a simple chemical feature present in multiple αIIbß3 antagonists that stabilizes integrins in their bent-closed conformation. Closing inhibitors contain a polar nitrogen atom that stabilizes, via hydrogen bonds, a water molecule that intervenes between a serine residue and the metal in the metal-ion-dependent adhesion site (MIDAS). Expulsion of this water is a requisite for transition to the open conformation. This change in metal coordination is general to integrins, suggesting broad applicability of the drug-design principle to the integrin family, as validated with a distantly related integrin, α4ß1.


Assuntos
Desenho de Fármacos , Integrina alfa4beta1 , Conformação Proteica , Serina , Água
3.
Annu Rev Biochem ; 90: 451-474, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33556280

RESUMO

The preparation of extremely thin samples, which are required for high-resolution electron microscopy, poses extreme risk of damaging biological macromolecules due to interactions with the air-water interface. Although the rapid increase in the number of published structures initially gave little indication that this was a problem, the search for methods that substantially mitigate this hazard is now intensifying. The two main approaches under investigation are (a) immobilizing particles onto structure-friendly support films and (b) reducing the length of time during which such interactions may occur. While there is little possibility of outrunning diffusion to the interface, intentional passivation of the interface may slow the process of adsorption and denaturation. In addition, growing attention is being given to gaining more effective control of the thickness of the sample prior to vitrification.


Assuntos
Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Complexos Multiproteicos/química , Ar , Carbono/química , Difusão , Grafite/química , Lipídeos/química , Complexos Multiproteicos/isolamento & purificação , Desnaturação Proteica , Manejo de Espécimes/métodos , Estreptavidina/química , Água
4.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34233164

RESUMO

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Germinação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Príons/metabolismo , Sementes/crescimento & desenvolvimento , Água/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestrutura , Desidratação , Imageamento Tridimensional , Peptídeos e Proteínas de Sinalização Intercelular/química , Mutação/genética , Dormência de Plantas , Plantas Geneticamente Modificadas , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Sementes/ultraestrutura
5.
Cell ; 184(15): 3884-3898.e11, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34143954

RESUMO

Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon ß (IFNß) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.


Assuntos
Bifidobacterium/fisiologia , Sistema Imunitário/crescimento & desenvolvimento , Sistema Imunitário/microbiologia , Antibacterianos/farmacologia , Biomarcadores/metabolismo , Aleitamento Materno , Linfócitos T CD4-Positivos/imunologia , Polaridade Celular , Proliferação de Células , Citocinas/metabolismo , Fezes/química , Fezes/microbiologia , Galectina 1/metabolismo , Microbioma Gastrointestinal , Humanos , Indóis/metabolismo , Recém-Nascido , Inflamação/sangue , Inflamação/genética , Mucosa Intestinal/imunologia , Metaboloma , Leite Humano/química , Oligossacarídeos/metabolismo , Células Th17/imunologia , Células Th2/imunologia , Água
6.
Cell ; 184(20): 5151-5162.e11, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34520724

RESUMO

The heartbeat is initiated by voltage-gated sodium channel NaV1.5, which opens rapidly and triggers the cardiac action potential; however, the structural basis for pore opening remains unknown. Here, we blocked fast inactivation with a mutation and captured the elusive open-state structure. The fast inactivation gate moves away from its receptor, allowing asymmetric opening of pore-lining S6 segments, which bend and rotate at their intracellular ends to dilate the activation gate to ∼10 Å diameter. Molecular dynamics analyses predict physiological rates of Na+ conductance. The open-state pore blocker propafenone binds in a high-affinity pose, and drug-access pathways are revealed through the open activation gate and fenestrations. Comparison with mutagenesis results provides a structural map of arrhythmia mutations that target the activation and fast inactivation gates. These results give atomic-level insights into molecular events that underlie generation of the action potential, open-state drug block, and fast inactivation of cardiac sodium channels, which initiate the heartbeat.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Arritmias Cardíacas/genética , Microscopia Crioeletrônica , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação/genética , Miocárdio , Canal de Sódio Disparado por Voltagem NAV1.5/isolamento & purificação , Canal de Sódio Disparado por Voltagem NAV1.5/ultraestrutura , Propafenona/farmacologia , Conformação Proteica , Ratos , Sódio/metabolismo , Fatores de Tempo , Água/química
7.
Annu Rev Biochem ; 89: 795-820, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208765

RESUMO

The investigation of water oxidation in photosynthesis has remained a central topic in biochemical research for the last few decades due to the importance of this catalytic process for technological applications. Significant progress has been made following the 2011 report of a high-resolution X-ray crystallographic structure resolving the site of catalysis, a protein-bound Mn4CaOx complex, which passes through ≥5 intermediate states in the water-splitting cycle. Spectroscopic techniques complemented by quantum chemical calculations aided in understanding the electronic structure of the cofactor in all (detectable) states of the enzymatic process. Together with isotope labeling, these techniques also revealed the binding of the two substrate water molecules to the cluster. These results are described in the context of recent progress using X-ray crystallography with free-electron lasers on these intermediates. The data are instrumental for developing a model for the biological water oxidation cycle.


Assuntos
Coenzimas/química , Manganês/química , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Água/química , Coenzimas/metabolismo , Cristalografia por Raios X , Expressão Gênica , Lasers , Manganês/metabolismo , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Teoria Quântica , Termodinâmica , Thermosynechococcus/química , Thermosynechococcus/enzimologia , Água/metabolismo
8.
Annu Rev Cell Dev Biol ; 35: 239-257, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31382759

RESUMO

Roots provide the primary mechanism that plants use to absorb water and nutrients from their environment. These functions are dependent on developmental mechanisms that direct root growth and branching into regions of soil where these resources are relatively abundant. Water is the most limiting factor for plant growth, and its availability is determined by the weather, soil structure, and salinity. In this review, we define the developmental pathways that regulate the direction of growth and branching pattern of the root system, which together determine the expanse of soil from which a plant can access water. The ability of plants to regulate development in response to the spatial distribution of water is a focus of many recent studies and provides a model for understanding how biological systems utilize positional cues to affect signaling and morphogenesis. A better understanding of these processes will inform approaches to improve crop water use efficiency to more sustainably feed a growing population.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Secas , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plantas , Salinidade , Solo , Água
9.
Annu Rev Biochem ; 86: 585-608, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28125290

RESUMO

Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.


Assuntos
Caseínas/química , Glicoproteínas/química , Proteínas de Membrana/química , Proteínas de Neoplasias/química , Fosfoproteínas/química , Surfactantes Pulmonares/química , Tensoativos/química , Animais , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Caseínas/genética , Caseínas/metabolismo , Fungos/química , Fungos/genética , Fungos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mamíferos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Conformação Proteica , Surfactantes Pulmonares/metabolismo , Propriedades de Superfície , Tensoativos/metabolismo , Água/química , Água/metabolismo
10.
Nat Immunol ; 20(11): 1506-1516, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31611698

RESUMO

Fibroblastic reticular cells (FRCs) and their specialized collagen fibers termed 'conduits' form fundamental structural units supporting lymphoid tissues. In lymph nodes, conduits are known to transport interstitial fluid and small molecules from afferent lymphatics into the nodal parenchyma. However, the immunological contributions of conduit function have remained elusive. Here, we report that intestinal Peyer's patches (PPs) contain a specialized conduit system that directs the flow of water absorbed across the intestinal epithelium. Notably, PP FRCs responded to conduit fluid flow via the mechanosensitive ion channel Piezo1. Disruption of fluid flow or genetic deficiency of Piezo1 on CCL19-expressing stroma led to profound structural alterations in perivascular FRCs and associated high endothelial venules. This in turn impaired lymphocyte entry into PPs and initiation of mucosal antibody responses. These results identify a critical role for conduit-mediated fluid flow in the maintenance of PP homeostasis and mucosal immunity.


Assuntos
Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Mecanotransdução Celular/imunologia , Nódulos Linfáticos Agregados/imunologia , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Movimento Celular/imunologia , Quimiocina CCL19/metabolismo , Feminino , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Ativação Linfocitária , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Nódulos Linfáticos Agregados/metabolismo , Água/metabolismo
11.
Cell ; 167(1): 87-98.e14, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641502

RESUMO

Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Potássio/metabolismo , Água/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase Quinases/genética , Permeabilidade , Fatores de Transcrição/genética
12.
Nature ; 627(8005): 905-914, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448589

RESUMO

A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.


Assuntos
Bacteriófagos , Capsídeo , DNA Viral , Genoma Viral , Vírion , Montagem de Vírus , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Difusão , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Íons/análise , Íons/química , Íons/metabolismo , Eletricidade Estática , Vírion/química , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética , Água/análise , Água/química , Água/metabolismo
13.
Nature ; 630(8016): 368-374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867128

RESUMO

Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties1. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure2. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability3. However, engineering a glassy material without compromising its properties is challenging4-6. Here we report the discovery of a supramolecular amorphous glass formed by the spontaneous self-organization of the short aromatic tripeptide YYY initiated by non-covalent cross-linking with structural water7,8. This system uniquely combines often contradictory sets of properties; it is highly rigid yet can undergo complete self-healing at room temperature. Moreover, the supramolecular glass is an extremely strong adhesive yet it is transparent in a wide spectral range from visible to mid-infrared. This exceptional set of characteristics is observed in a simple bioorganic peptide glass composed of natural amino acids, presenting a multi-functional material that could be highly advantageous for various applications in science and engineering.


Assuntos
Adesivos , Vidro , Oligopeptídeos , Adesivos/química , Vidro/química , Temperatura , Vitrificação , Água/química , Oligopeptídeos/química , Tirosina/química , Luz , Raios Infravermelhos
14.
Nature ; 626(7999): 670-677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297122

RESUMO

Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i = 0-4) at the Mn4CaO5 cluster1-3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4-7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O-O bond formation.


Assuntos
Oxigênio , Complexo de Proteína do Fotossistema II , Biocatálise/efeitos da radiação , Cálcio/metabolismo , Cristalografia , Transporte de Elétrons/efeitos da radiação , Elétrons , Manganês/metabolismo , Oxirredução/efeitos da radiação , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Prótons , Fatores de Tempo , Tirosina/metabolismo , Água/química , Água/metabolismo
15.
Nature ; 629(8014): 1118-1125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778102

RESUMO

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Assuntos
Arabidopsis , Sinalização do Cálcio , Cálcio , Germinação , Concentração Osmolar , Pólen , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Germinação/genética , Mutação , Pólen/genética , Pólen/metabolismo , Água/metabolismo , Células HEK293 , Humanos , Desidratação
16.
Cell ; 157(3): 611-23, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24726433

RESUMO

Cell migration is a critical process for diverse (patho)physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach ("Osmotic Engine Model") and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation.


Assuntos
Movimento Celular , Modelos Biológicos , Água , Actinas/metabolismo , Animais , Aquaporina 5/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Tamanho Celular , Humanos , Camundongos , Trocadores de Sódio-Hidrogênio/metabolismo
17.
Nature ; 618(7966): 755-760, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258674

RESUMO

Terrestrial ecosystems have taken up about 32% of the total anthropogenic CO2 emissions in the past six decades1. Large uncertainties in terrestrial carbon-climate feedbacks, however, make it difficult to predict how the land carbon sink will respond to future climate change2. Interannual variations in the atmospheric CO2 growth rate (CGR) are dominated by land-atmosphere carbon fluxes in the tropics, providing an opportunity to explore land carbon-climate interactions3-6. It is thought that variations in CGR are largely controlled by temperature7-10 but there is also evidence for a tight coupling between water availability and CGR11. Here, we use a record of global atmospheric CO2, terrestrial water storage and precipitation data to investigate changes in the interannual relationship between tropical land climate conditions and CGR under a changing climate. We find that the interannual relationship between tropical water availability and CGR became increasingly negative during 1989-2018 compared to 1960-1989. This could be related to spatiotemporal changes in tropical water availability anomalies driven by shifts in El Niño/Southern Oscillation teleconnections, including declining spatial compensatory water effects9. We also demonstrate that most state-of-the-art coupled Earth System and Land Surface models do not reproduce the intensifying water-carbon coupling. Our results indicate that tropical water availability is increasingly controlling the interannual variability of the terrestrial carbon cycle and modulating tropical terrestrial carbon-climate feedbacks.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Mudança Climática , Ecossistema , Análise Espaço-Temporal , Clima Tropical , Água , Atmosfera/química , Carbono/análise , Carbono/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Água/análise , Água/química , Sequestro de Carbono , Chuva , El Niño Oscilação Sul , Retroalimentação
18.
Nature ; 624(7992): 579-585, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38057667

RESUMO

The transfer of photosynthetically produced organic carbon from surface to mesopelagic waters draws carbon dioxide from the atmosphere1. However, current observation-based estimates disagree on the strength of this biological carbon pump (BCP)2. Earth system models (ESMs) also exhibit a large spread of BCP estimates, indicating limited representations of the known carbon export pathways3. Here we use several decades of hydrographic observations to produce a top-down estimate of the strength of the BCP with an inverse biogeochemical model that implicitly accounts for all known export pathways. Our estimate of total organic carbon (TOC) export at 73.4 m (model euphotic zone depth) is 15.00 ± 1.12 Pg C year-1, with only two-thirds reaching 100 m depth owing to rapid remineralization of organic matter in the upper water column. Partitioned by sequestration time below the euphotic zone, τ, the globally integrated organic carbon production rate with τ > 3 months is 11.09 ± 1.02 Pg C year-1, dropping to 8.25 ± 0.30 Pg C year-1 for τ > 1 year, with 81% contributed by the non-advective-diffusive vertical flux owing to sinking particles and vertically migrating zooplankton. Nevertheless, export of organic carbon by mixing and other fluid transport of dissolved matter and suspended particles remains regionally important for meeting the respiratory carbon demand. Furthermore, the temperature dependence of the sequestration efficiency inferred from our inversion suggests that future global warming may intensify the recycling of organic matter in the upper ocean, potentially weakening the BCP.


Assuntos
Dióxido de Carbono , Água do Mar , Água , Animais , Dióxido de Carbono/metabolismo , Fotossíntese , Água do Mar/química , Água/química , Água/metabolismo , Zooplâncton/metabolismo , Aquecimento Global , Oceanos e Mares
19.
Nature ; 619(7971): 749-754, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380782

RESUMO

Proton transfer is one of the most fundamental events in aqueous-phase chemistry and an emblematic case of coupled ultrafast electronic and structural dynamics1,2. Disentangling electronic and nuclear dynamics on the femtosecond timescales remains a formidable challenge, especially in the liquid phase, the natural environment of biochemical processes. Here we exploit the unique features of table-top water-window X-ray absorption spectroscopy3-6 to reveal femtosecond proton-transfer dynamics in ionized urea dimers in aqueous solution. Harnessing the element specificity and the site selectivity of X-ray absorption spectroscopy with the aid of ab initio quantum-mechanical and molecular-mechanics calculations, we show how, in addition to the proton transfer, the subsequent rearrangement of the urea dimer and the associated change of the electronic structure can be identified with site selectivity. These results establish the considerable potential of flat-jet, table-top X-ray absorption spectroscopy7,8 in elucidating solution-phase ultrafast dynamics in biomolecular systems.


Assuntos
Prótons , Ureia , Ureia/química , Soluções/química , Água/química , Espectroscopia por Absorção de Raios X , Teoria Quântica , Fatores de Tempo
20.
Nature ; 620(7973): 299-302, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558847

RESUMO

The presence of perennially wet surface environments on early Mars is well documented1,2, but little is known about short-term episodicity in the early hydroclimate3. Post-depositional processes driven by such short-term fluctuations may produce distinct structures, yet these are rarely preserved in the sedimentary record4. Incomplete geological constraints have led global models of the early Mars water cycle and climate to produce diverging results5,6. Here we report observations by the Curiosity rover at Gale Crater indicating that high-frequency wet-dry cycling occurred in early Martian surface environments. We observe exhumed centimetric polygonal ridges with sulfate enrichments, joined at Y-junctions, that record cracks formed in fresh mud owing to repeated wet-dry cycles of regular intensity. Instead of sporadic hydrological activity induced by impacts or volcanoes5, our findings point to a sustained, cyclic, possibly seasonal, climate on early Mars. Furthermore, as wet-dry cycling can promote prebiotic polymerization7,8, the Gale evaporitic basin may have been particularly conducive to these processes. The observed polygonal patterns are physically and temporally associated with the transition from smectite clays to sulfate-bearing strata, a globally distributed mineral transition1. This indicates that the Noachian-Hesperian transition (3.8-3.6 billion years ago) may have sustained an Earth-like climate regime and surface environments favourable to prebiotic evolution.


Assuntos
Meio Ambiente Extraterreno , Marte , Ciclo Hidrológico , Água , Argila/química , Meio Ambiente Extraterreno/química , Minerais/análise , Minerais/química , Sulfatos/análise , Sulfatos/química , Umidade , Água/análise , Origem da Vida , Exobiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA