Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 88: 515-549, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30901262

RESUMO

F1Fo ATP synthases produce most of the ATP in the cell. F-type ATP synthases have been investigated for more than 50 years, but a full understanding of their molecular mechanisms has become possible only with the recent structures of complete, functionally competent complexes determined by electron cryo-microscopy (cryo-EM). High-resolution cryo-EM structures offer a wealth of unexpected new insights. The catalytic F1 head rotates with the central γ-subunit for the first part of each ATP-generating power stroke. Joint rotation is enabled by subunit δ/OSCP acting as a flexible hinge between F1 and the peripheral stalk. Subunit a conducts protons to and from the c-ring rotor through two conserved aqueous channels. The channels are separated by ∼6 Šin the hydrophobic core of Fo, resulting in a strong local field that generates torque to drive rotary catalysis in F1. The structure of the chloroplast F1Fo complex explains how ATPase activity is turned off at night by a redox switch. Structures of mitochondrial ATP synthase dimers indicate how they shape the inner membrane cristae. The new cryo-EM structures complete our picture of the ATP synthases and reveal the unique mechanism by which they transform an electrochemical membrane potential into biologically useful chemical energy.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Bactérias/enzimologia , Bactérias/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/química , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/ultraestrutura , Cloroplastos/enzimologia , Microscopia Crioeletrônica , Eucariotos/enzimologia , Eucariotos/metabolismo , Humanos , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Conformação Proteica , Subunidades Proteicas , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/ultraestrutura
2.
Nature ; 631(8020): 409-414, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961288

RESUMO

Bedaquiline (BDQ), a first-in-class diarylquinoline anti-tuberculosis drug, and its analogue, TBAJ-587, prevent the growth and proliferation of Mycobacterium tuberculosis by inhibiting ATP synthase1,2. However, BDQ also inhibits human ATP synthase3. At present, how these compounds interact with either M. tuberculosis ATP synthase or human ATP synthase is unclear. Here we present cryogenic electron microscopy structures of M. tuberculosis ATP synthase with and without BDQ and TBAJ-587 bound, and human ATP synthase bound to BDQ. The two inhibitors interact with subunit a and the c-ring at the leading site, c-only sites and lagging site in M. tuberculosis ATP synthase, showing that BDQ and TBAJ-587 have similar modes of action. The quinolinyl and dimethylamino units of the compounds make extensive contacts with the protein. The structure of human ATP synthase in complex with BDQ reveals that the BDQ-binding site is similar to that observed for the leading site in M. tuberculosis ATP synthase, and that the quinolinyl unit also interacts extensively with the human enzyme. This study will improve researchers' understanding of the similarities and differences between human ATP synthase and M. tuberculosis ATP synthase in terms of the mode of BDQ binding, and will allow the rational design of novel diarylquinolines as anti-tuberculosis drugs.


Assuntos
Antituberculosos , Diarilquinolinas , Imidazóis , ATPases Mitocondriais Próton-Translocadoras , Mycobacterium tuberculosis , Piperidinas , Piridinas , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Sítios de Ligação , Microscopia Crioeletrônica , Diarilquinolinas/química , Diarilquinolinas/farmacologia , Imidazóis/química , Imidazóis/farmacologia , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Piperidinas/química , Piperidinas/farmacologia , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia
3.
Med Res Rev ; 44(3): 1183-1188, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38167815

RESUMO

Inborn errors of metabolism are related to mitochondrial disorders caused by dysfunction of the oxidative phosphorylation (OXPHOS) system. Congenital hypermetabolism in the infant is a rare disease belonging to Luft syndrome, nonthyroidal hypermetabolism, arising from a singular example of a defect in OXPHOS. The mitochondria lose coupling of mitochondrial substrates oxidation from the ADP phosphorylation. Since Luft syndrome is due to uncoupled cell respiration responsible for deficient in ATP production that originates in the respiratory complexes, a de novo heterozygous variant in the catalytic subunit of mitochondrial F1FO-ATPase arises as the main cause of an autosomal dominant syndrome of hypermetabolism associated with dysfunction in ATP production, which does not involve the respiratory complexes. The F1FO-ATPase works as an embedded molecular machine with a rotary action using two different motor engines. The FO, which is an integral domain in the membrane, dissipates the chemical potential difference for H+, a proton motive force (Δp), across the inner membrane to generate a torsion. The F1 domain-the hydrophilic portion responsible for ATP turnover-is powered by the molecular rotary action to synthesize ATP. The structural and functional coupling of F1 and FO domains support the energy transduction for ATP synthesis. The dissipation of Δp by means of an H+ slip correlated to rotor free-wheeling of the F1FO-ATPase has been discovered to cause enzyme dysfunction in primary mitochondrial disorders. In this insight, we try to offer commentary and analysis of the molecular mechanism in these impaired mitochondria.


Assuntos
Adenosina Trifosfatases , Doenças Mitocondriais , Humanos , Adenosina Trifosfatases/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338543

RESUMO

The passage of protons across membranes through F1Fo-ATP synthases spins their rotors and drives the synthesis of ATP. While the principle of torque generation by proton transfer is known, the mechanisms and routes of proton access and release and their evolution are not fully understood. Here, we show that the entry site and path of protons in the lumenal half channel of mitochondrial ATP synthases are largely defined by a short N-terminal α-helix of subunit-a. In Trypanosoma brucei and other Euglenozoa, the α-helix is part of another polypeptide chain that is a product of subunit-a gene fragmentation. This α-helix and other elements forming the proton pathway are widely conserved across eukaryotes and in Alphaproteobacteria, the closest extant relatives of mitochondria, but not in other bacteria. The α-helix blocks one of two proton routes found in Escherichia coli, resulting in a single proton entry site in mitochondrial and alphaproteobacterial ATP synthases. Thus, the shape of the access half channel predates eukaryotes and originated in the lineage from which mitochondria evolved by endosymbiosis.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , ATPases Translocadoras de Prótons , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Prótons , Eucariotos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo
5.
Nat Chem Biol ; 18(4): 360-367, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34857958

RESUMO

Cancer cells have long been recognized to exhibit unique bioenergetic requirements. The apoptolidin family of glycomacrolides are distinguished by their selective cytotoxicity towards oncogene-transformed cells, yet their molecular mechanism remains uncertain. We used photoaffinity analogs of the apoptolidins to identify the F1 subcomplex of mitochondrial ATP synthase as the target of apoptolidin A. Cryogenic electron microscopy (cryo-EM) of apoptolidin and ammocidin-ATP synthase complexes revealed a novel shared mode of inhibition that was confirmed by deep mutational scanning of the binding interface to reveal resistance mutations which were confirmed using CRISPR-Cas9. Ammocidin A was found to suppress leukemia progression in vivo at doses that were tolerated with minimal toxicity. The combination of cellular, structural, mutagenesis, and in vivo evidence defines the mechanism of action of apoptolidin family glycomacrolides and establishes a path to address oxidative phosphorylation-dependent cancers.


Assuntos
Leucemia , Neoplasias , Trifosfato de Adenosina , Humanos , Leucemia/tratamento farmacológico , Macrolídeos , ATPases Mitocondriais Próton-Translocadoras/química , Neoplasias/tratamento farmacológico
6.
Mol Cell ; 63(3): 445-56, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27373333

RESUMO

We determined the structure of a complete, dimeric F1Fo-ATP synthase from yeast Yarrowia lipolytica mitochondria by a combination of cryo-EM and X-ray crystallography. The final structure resolves 58 of the 60 dimer subunits. Horizontal helices of subunit a in Fo wrap around the c-ring rotor, and a total of six vertical helices assigned to subunits a, b, f, i, and 8 span the membrane. Subunit 8 (A6L in human) is an evolutionary derivative of the bacterial b subunit. On the lumenal membrane surface, subunit f establishes direct contact between the two monomers. Comparison with a cryo-EM map of the F1Fo monomer identifies subunits e and g at the lateral dimer interface. They do not form dimer contacts but enable dimer formation by inducing a strong membrane curvature of ∼100°. Our structure explains the structural basis of cristae formation in mitochondria, a landmark signature of eukaryotic cell morphology.


Assuntos
Proteínas Fúngicas/química , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , Yarrowia/enzimologia , Trifosfato de Adenosina/metabolismo , Catálise , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Subunidades Proteicas , Relação Estrutura-Atividade , Yarrowia/ultraestrutura
7.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33542155

RESUMO

The ATP synthase complexes in mitochondria make the ATP required to sustain life by a rotary mechanism. Their membrane domains are embedded in the inner membranes of the organelle, and they dimerize via interactions between their membrane domains. The dimers form extensive chains along the tips of the cristae with the two rows of monomeric catalytic domains extending into the mitochondrial matrix at an angle to each other. Disruption of the interface between dimers by mutation affects the morphology of the cristae severely. By analysis of particles of purified dimeric bovine ATP synthase by cryo-electron microscopy, we have shown that the angle between the central rotatory axes of the monomeric complexes varies between ca. 76 and 95°. These particles represent active dimeric ATP synthase. Some angular variations arise directly from the catalytic mechanism of the enzyme, and others are independent of catalysis. The monomer-monomer interaction is mediated mainly by j subunits attached to the surface of wedge-shaped protein-lipid structures in the membrane domain of the complex, and the angular variation arises from rotational and translational changes in this interaction, and combinations of both. The structures also suggest how the dimeric ATP synthases might be interacting with each other to form the characteristic rows along the tips of the cristae via other interwedge contacts, molding themselves to the range of oligomeric arrangements observed by tomography of mitochondrial membranes, and at the same time allowing the ATP synthase to operate under the range of physiological conditions that influence the structure of the cristae.


Assuntos
Trifosfato de Adenosina/metabolismo , Mitocôndrias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Multimerização Proteica , Animais , Catálise , Bovinos , Microscopia Crioeletrônica , Mitocôndrias/metabolismo , Modelos Moleculares , Conformação Proteica
8.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753518

RESUMO

Human mitochondrial ATP synthase is a molecular machine with a rotary action bound in the inner organellar membranes. Turning of the rotor, driven by a proton motive force, provides energy to make ATP from ADP and phosphate. Among the 29 component proteins of 18 kinds, ATP6 and ATP8 are mitochondrial gene products, and the rest are nuclear gene products that are imported into the organelle. The ATP synthase is assembled from them via intermediate modules representing the main structural elements of the enzyme. One such module is the c8-ring, which provides the membrane sector of the enzyme's rotor, and its assembly is influenced by another transmembrane (TMEM) protein, TMEM70. We have shown that subunit c interacts with TMEM70 and another hitherto unidentified mitochondrial transmembrane protein, TMEM242. Deletion of TMEM242, similar to deletion of TMEM70, affects but does not completely eliminate the assembly of ATP synthase, and to a lesser degree the assembly of respiratory enzyme complexes I, III, and IV. Deletion of TMEM70 and TMEM242 together prevents assembly of ATP synthase and the impact on complex I is enhanced. Removal of TMEM242, but not of TMEM70, also affects the introduction of subunits ATP6, ATP8, j, and k into the enzyme. TMEM70 and TMEM242 interact with the mitochondrial complex I assembly (the MCIA) complex that supports assembly of the membrane arm of complex I. The interactions of TMEM70 and TMEM242 with MCIA could be part of either the assembly of ATP synthase and complex I or the regulation of their levels.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Domínio Catalítico , Complexo I de Transporte de Elétrons/química , Deleção de Genes , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/química , Força Próton-Motriz , Rotação
9.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782468

RESUMO

The structure has been determined by electron cryomicroscopy of the adenosine triphosphate (ATP) synthase from Mycobacterium smegmatis This analysis confirms features in a prior description of the structure of the enzyme, but it also describes other highly significant attributes not recognized before that are crucial for understanding the mechanism and regulation of the mycobacterial enzyme. First, we resolved not only the three main states in the catalytic cycle described before but also eight substates that portray structural and mechanistic changes occurring during a 360° catalytic cycle. Second, a mechanism of auto-inhibition of ATP hydrolysis involves not only the engagement of the C-terminal region of an α-subunit in a loop in the γ-subunit, as proposed before, but also a "fail-safe" mechanism involving the b'-subunit in the peripheral stalk that enhances engagement. A third unreported characteristic is that the fused bδ-subunit contains a duplicated domain in its N-terminal region where the two copies of the domain participate in similar modes of attachment of the two of three N-terminal regions of the α-subunits. The auto-inhibitory plus the associated "fail-safe" mechanisms and the modes of attachment of the α-subunits provide targets for development of innovative antitubercular drugs. The structure also provides support for an observation made in the bovine ATP synthase that the transmembrane proton-motive force that provides the energy to drive the rotary mechanism is delivered directly and tangentially to the rotor via a Grotthuss water chain in a polar L-shaped tunnel.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias , Bovinos , Microscopia Crioeletrônica , Hidrólise , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Proteínas/química , Força Próton-Motriz , Tuberculose/microbiologia , Proteína Inibidora de ATPase
10.
Bioorg Med Chem ; 95: 117504, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37871508

RESUMO

Mycobacterial ATP synthase is a validated therapeutic target for combating drug-resistant tuberculosis. Inhibition of this enzyme has been featured as an efficient strategy for the development of new antimycobacterial agents against drug-resistant pathogens. In this study, we synthesised and explored two distinct series of squaric acid analogues designed to inhibit mycobacterial ATP synthase. Among the extensive array of compounds investigated, members of the phenyl-substituted sub-library emerged as primary hits. To gain deeper insights into their mechanisms of action, we conducted advanced biological studies, focusing on the compounds displaying a direct binding of a nitrogen heteroatom to the phenyl ring, resulting in the highest potency. Our investigations into spontaneous mutants led to the validation of a single point mutation within the atpB gene (Rv1304), responsible for encoding the ATP synthase subunit a. This genetic alteration sheds light on the molecular basis of resistance to squaramides. Furthermore, we explored the possibility of synergy between squaramides and the reference drug clofazimine using a checkerboard assay, highlighting the promising avenue for enhancing the effectiveness of existing treatments through combined therapeutic approaches. This study contributes to the expansion of investigating squaramides as promising drug candidates in the ongoing battle against drug-resistant tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Trifosfato de Adenosina/metabolismo , Antituberculosos/química , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(38): 23519-23526, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900941

RESUMO

The structure of the dimeric ATP synthase from bovine mitochondria determined in three rotational states by electron cryo-microscopy provides evidence that the proton uptake from the mitochondrial matrix via the proton inlet half channel proceeds via a Grotthus mechanism, and a similar mechanism may operate in the exit half channel. The structure has given information about the architecture and mechanical constitution and properties of the peripheral stalk, part of the membrane extrinsic region of the stator, and how the action of the peripheral stalk damps the side-to-side rocking motions that occur in the enzyme complex during the catalytic cycle. It also describes wedge structures in the membrane domains of each monomer, where the skeleton of each wedge is provided by three α-helices in the membrane domains of the b-subunit to which the supernumerary subunits e, f, and g and the membrane domain of subunit A6L are bound. Protein voids in the wedge are filled by three specifically bound cardiolipin molecules and two other phospholipids. The external surfaces of the wedges link the monomeric complexes together into the dimeric structures and provide a pivot to allow the monomer-monomer interfaces to change during catalysis and to accommodate other changes not related directly to catalysis in the monomer-monomer interface that occur in mitochondrial cristae. The structure of the bovine dimer also demonstrates that the structures of dimeric ATP synthases in a tetrameric porcine enzyme have been seriously misinterpreted in the membrane domains.


Assuntos
Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras , Animais , Bovinos , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Torque
12.
Crit Rev Biochem Mol Biol ; 55(4): 309-321, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32580582

RESUMO

Of the two main sectors of the F-type ATP synthase, the membrane-intrinsic FO domain is the one which, during evolution, has undergone the highest structural variations and changes in subunit composition. The FO complexity in mitochondria is apparently related to additional enzyme functions that lack in bacterial and thylakoid complexes. Indeed, the F-type ATP synthase has the main bioenergetic role to synthesize ATP by exploiting the electrochemical gradient built by respiratory complexes. The FO membrane domain, essential in the enzyme machinery, also participates in the bioenergetic cost of synthesizing ATP and in the formation of the cristae, thus contributing to mitochondrial morphology. The recent enzyme involvement in a high-conductance channel, which forms in the inner mitochondrial membrane and promotes the mitochondrial permeability transition, highlights a new F-type ATP synthase role. Point mutations which cause amino acid substitutions in FO subunits produce mitochondrial dysfunctions and lead to severe pathologies. The FO variability in different species, pointed out by cryo-EM analysis, mirrors the multiple enzyme functions and opens a new scenario in mitochondrial biology.


Assuntos
Trifosfato de Adenosina , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , ATPases Mitocondriais Próton-Translocadoras , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Humanos , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(10): 4250-4255, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760595

RESUMO

Mitochondrial ATP synthases form dimers, which assemble into long ribbons at the rims of the inner membrane cristae. We reconstituted detergent-purified mitochondrial ATP synthase dimers from the green algae Polytomella sp. and the yeast Yarrowia lipolytica into liposomes and examined them by electron cryotomography. Tomographic volumes revealed that ATP synthase dimers from both species self-assemble into rows and bend the lipid bilayer locally. The dimer rows and the induced degree of membrane curvature closely resemble those in the inner membrane cristae. Monomers of mitochondrial ATP synthase reconstituted into liposomes do not bend membrane visibly and do not form rows. No specific lipids or proteins other than ATP synthase dimers are required for row formation and membrane remodelling. Long rows of ATP synthase dimers are a conserved feature of mitochondrial inner membranes. They are required for cristae formation and a main factor in mitochondrial morphogenesis.


Assuntos
Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Clorofíceas , Clorófitas/metabolismo , Bicamadas Lipídicas/metabolismo , Lipossomos/ultraestrutura , Mitocôndrias/metabolismo , Membranas Mitocondriais/ultraestrutura , Simulação de Dinâmica Molecular , Conformação Proteica , Yarrowia/metabolismo
14.
Proteins ; 89(5): 477-482, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33378096

RESUMO

The mitochondrial F1 FO -ATPase in the presence of the natural cofactor Mg2+ acts as the enzyme of life by synthesizing ATP, but it can also hydrolyze ATP to pump H+ . Interestingly, Mg2+ can be replaced by Ca2+ , but only to sustain ATP hydrolysis and not ATP synthesis. When Ca2+ inserts in F1 , the torque generation built by the chemomechanical coupling between F1 and the rotating central stalk was reported as unable to drive the transmembrane H+ flux within FO . However, the failed H+ translocation is not consistent with the oligomycin-sensitivity of the Ca2+ -dependent F1 FO -ATP(hydrol)ase. New enzyme roles in mitochondrial energy transduction are suggested by recent advances. Accordingly, the structural F1 FO -ATPase distortion driven by ATP hydrolysis sustained by Ca2+ is consistent with the permeability transition pore signal propagation pathway. The Ca2+ -activated F1 FO -ATPase, by forming the pore, may contribute to dissipate the transmembrane H+ gradient created by the same enzyme complex.


Assuntos
Trifosfato de Adenosina/química , Cálcio/química , Coenzimas/química , Magnésio/química , Mitocôndrias Cardíacas/química , ATPases Mitocondriais Próton-Translocadoras/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Cátions Bivalentes , Coenzimas/metabolismo , Hidrólise/efeitos dos fármacos , Cinética , Magnésio/metabolismo , Mitocôndrias Cardíacas/enzimologia , Poro de Transição de Permeabilidade Mitocondrial/química , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , ATPases Mitocondriais Próton-Translocadoras/isolamento & purificação , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Miocárdio/química , Miocárdio/enzimologia , Oligomicinas/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Suínos , Termodinâmica
15.
Am J Hum Genet ; 102(3): 494-504, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29478781

RESUMO

ATP synthase, H+ transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F1FO ATP synthase and subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.


Assuntos
Alelos , Doenças Metabólicas/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação/genética , Subunidades Proteicas/genética , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Mutação com Perda de Função/genética , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/química , Subunidades Proteicas/química
16.
Biochem Soc Trans ; 49(2): 815-827, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33929490

RESUMO

In the last two decades, IF1, the endogenous inhibitor of the mitochondrial F1Fo-ATPase (ATP synthase) has assumed greater and ever greater interest since it has been found to be overexpressed in many cancers. At present, several findings indicate that IF1 is capable of playing a central role in cancer cells by promoting metabolic reprogramming, proliferation and resistance to cell death. However, the mechanism(s) at the basis of this pro-oncogenic action of IF1 remains elusive. Here, we recall the main features of the mechanism of the action of IF1 when the ATP synthase works in reverse, and discuss the experimental evidence that support its relevance in cancer cells. In particular, a clear pro-oncogenic action of IF1 is to avoid wasting of ATP when cancer cells are exposed to anoxia or near anoxia conditions, therefore favoring cell survival and tumor growth. However, more recently, various papers have described IF1 as an inhibitor of the ATP synthase when it is working physiologically (i.e. synthethizing ATP), and therefore reprogramming cell metabolism to aerobic glycolysis. In contrast, other studies excluded IF1 as an inhibitor of ATP synthase under normoxia, providing the basis for a hot debate. This review focuses on the role of IF1 as a modulator of the ATP synthase in normoxic cancer cells with the awareness that the knowledge of the molecular action of IF1 on the ATP synthase is crucial in unravelling the molecular mechanism(s) responsible for the pro-oncogenic role of IF1 in cancer and in developing related anticancer strategies.


Assuntos
Metabolismo Energético/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Neoplasias/genética , Proteínas/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas/química , Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Proteína Inibidora de ATPase
17.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530556

RESUMO

Although the mitochondrial permeability transition pore (PTP) is presumably formed by either ATP synthase or the ATP/ADP carrier (AAC), little is known about their differential roles in PTP activation. We explored the role of AAC and ATP synthase in PTP formation in Saccharomyces cerevisiae using bisindolylpyrrole (BP), an activator of the mammalian PTP. The yeast mitochondrial membrane potential, as indicated by tetramethylrhodamine methyl ester signals, dissipated over 2-4 h after treatment of cells with 5 µM BP, which was sensitive to cyclosporin A (CsA) and Cpr3 deficiency and blocked by porin1/2 deficiency. The BP-induced depolarization was inhibited by a specific AAC inhibitor, bongkrekate, and consistently blocked in a yeast strain lacking all three AACs, while it was not affected in the strain with defective ATP synthase dimerization, suggesting the involvement of an AAC-associated pore. Upon BP treatment, isolated yeast mitochondria underwent CsA- and bongkrekate-sensitive depolarization without affecting the mitochondrial calcein signals, indicating the induction of a low conductance channel. These data suggest that, upon BP treatment, yeast can form a porin1/2- and Cpr3-regulated PTP, which is mediated by AACs but not by ATP synthase dimers. This implies that yeast may be an excellent tool for the screening of PTP modulators.


Assuntos
Ciclofilinas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Porinas/metabolismo , Pirróis/farmacologia , Leveduras/efeitos dos fármacos , Leveduras/fisiologia , Ciclofilinas/genética , Relação Dose-Resposta a Droga , Potencial da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Permeabilidade , Porinas/genética , Multimerização Proteica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia
18.
J Mol Cell Cardiol ; 144: 109-118, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32461058

RESUMO

The mitochondrial permeability transition pore (mPTP) or mitochondrial megachannel is arguably one of the most mysterious phenomena in biology today. mPTP has been at the center of ongoing extensive scientific research for the last several decades. In this review we will discuss recent advances in the field that enhance our understanding of the molecular composition of mPTP, its regulatory mechanisms and its pathophysiological role. We will describe our recent findings on the role of ATP synthase c-subunit ring as a central player in mitochondrial permeability transition and as an important metabolic regulator during development and in degenerative diseases.


Assuntos
Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras , Subunidades Proteicas , Animais , Humanos , Suscetibilidade a Doenças , Metabolismo Energético , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Plasticidade Neuronal , Neurônios/metabolismo , Permeabilidade , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
19.
J Mol Cell Cardiol ; 144: 76-86, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32454060

RESUMO

The mitochondrial permeability transition, an established mechanism for heart diseases, is a long-standing mystery of mitochondrial biology and a prime drug target for cardioprotection. Several hypotheses about its molecular nature have been put forward over the years, and the prevailing view is that permeabilization of the inner mitochondrial membrane follows opening of a high-conductance channel, the permeability transition pore, which is also called mitochondrial megachannel or multiconductance channel. The permeability transition strictly requires matrix Ca2+ and is favored by the matrix protein cyclophilin D, which mediates the inhibitory effects of cyclosporin A. Here we provide a review of the field, with specific emphasis on the possible role of the adenine nucleotide translocator and of the F-ATP synthase in channel formation, and on currently available small molecule inhibitors. While the possible mechanisms through which the adenine nucleotide translocator and the F-ATP synthase might form high-conductance channels remain unknown, reconstitution experiments and site-directed mutagenesis combined to electrophysiology have provided important clues. The hypothesis that more than one protein may act as a permeability transition pore provides a reasonable explanation for current controversies in the field, and holds great promise for the solution of the mystery of the permeability transition.


Assuntos
Cardiotônicos/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Animais , Biomarcadores , Descoberta de Drogas , Camundongos , Camundongos Knockout , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Permeabilidade/efeitos dos fármacos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
20.
J Biol Chem ; 294(28): 10987-10997, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31160339

RESUMO

The mitochondrial F-ATP synthase is a complex molecular motor arranged in V-shaped dimers that is responsible for most cellular ATP synthesis in aerobic conditions. In the yeast F-ATP synthase, subunits e and g of the FO sector constitute a lateral domain, which is required for dimer stability and cristae formation. Here, by using site-directed mutagenesis, we identified Arg-8 of subunit e as a critical residue in mediating interactions between subunits e and g, most likely through an interaction with Glu-83 of subunit g. Consistent with this hypothesis, (i) the substitution of Arg-8 in subunit e (eArg-8) with Ala or Glu or of Glu-83 in subunit g (gGlu-83) with Ala or Lys destabilized the digitonin-extracted F-ATP synthase, resulting in decreased dimer formation as revealed by blue-native electrophoresis; and (ii) simultaneous substitution of eArg-8 with Glu and of gGlu-83 with Lys rescued digitonin-stable F-ATP synthase dimers. When tested in lipid bilayers for generation of Ca2+-dependent channels, WT dimers displayed the high-conductance channel activity expected for the mitochondrial megachannel/permeability transition pore, whereas dimers obtained at low digitonin concentrations from the Arg-8 variants displayed currents of strikingly small conductance. Remarkably, double replacement of eArg-8 with Glu and of gGlu-83 with Lys restored high-conductance channels indistinguishable from those seen in WT enzymes. These findings suggest that the interaction of subunit e with subunit g is important for generation of the full-conductance megachannel from F-ATP synthase.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dimerização , Potencial da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA