Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biochem J ; 452(1): 147-59, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23409959

RESUMO

In a view to develop new DNA alkylating antitumour drugs, evaluating the precise mechanism of action and the molecular/cellular consequences of the alkylation is a point of major interest. The benzo-b-acronycine derivative S23906-1 alkylates guanine nucleobases in the minor groove of the DNA helix and presents an original ability to locally open the double helix of DNA, which appears to be associated with its cytotoxic activity. However, the molecular mechanism linking adduct formation to cellular consequences is not precisely known. The objective of the present study was to identify proteins involved in the recognition and mechanism of action of S23906-DNA adducts. We found that GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is a protein that binds to S23906-alkylated single-stranded, double-stranded and telomeric sequences in a drug-dependent and DNA sequence/structure-dependent manner. We used the CASTing (cyclic amplification of sequence targeting) method to identify GAPDH DNA-binding selectivity and then evaluated its binding to such selected S23906-alkylated sequences. At the cellular level, alkylation of S23906-1 results in an increase in the binding of GAPDH and its protein partner HMG (high-mobility group) B1 to the chromatin. Regarding the multiple roles of GAPDH in apoptosis and DNA repair, the cytotoxic and apoptotic activities of GAPDH were evaluated and present opposite effects in two different cellular models.


Assuntos
Acronina/análogos & derivados , Adutos de DNA/química , Gliceraldeído-3-Fosfato Desidrogenases/química , Proteínas Nucleares/química , Acronina/química , Alquilação , Adutos de DNA/genética , Adutos de DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Células HT29 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/genética
2.
Mol Pharmacol ; 76(6): 1172-85, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19752199

RESUMO

S23906-1 is a benzo[b]acronycine derivative acting as a DNA-alkylating agent through covalent bonding to the exocyclic amino group of guanines and subsequent local opening of the DNA helix. This compound was selected for phase I clinical trials based on its efficient antitumor activity in experimental models and its unique mode of action. S23906-1 is the racemate of cis-1,2-diacetoxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one. Here, we evaluated the cytotoxic and antitumor activities of the two pure cis-enantiomers and investigated the mechanism of action of both cis- and trans-racemates and their enantiomers in terms of DNA alkylation potency and locally drug-induced DNA helix opening process. Reaction with glutathione, as a detoxification process, was also studied. The trans-compounds, both as racemate or separated enantiomers, were found less potent than the corresponding cis-derivatives. Among the cis-enantiomers, the most efficient one regarding DNA alkylation bears the acetate on the reactive C1 position in the R configuration, both on purified DNA and genomic DNA extracted from cell cultures. By contrast, the most cytotoxic and tumor-active enantiomer bears the C1-acetate in the S configuration. Distinct cellular DNA-alkylation levels or covalent bonding to glutathione could not explain the differences. However, we showed that the S and R orientations of the acetate on C1 asymmetric carbon lead to different local opening of the DNA, as visualized using nuclease S1 mapping. These different interactions could lead to modulated DNA-repair, protein/DNA interaction, and apoptosis processes.


Assuntos
Acronina/análogos & derivados , Antineoplásicos Alquilantes/farmacologia , Citotoxinas/farmacologia , Substâncias Intercalantes/farmacologia , Acronina/química , Acronina/farmacologia , Animais , Antineoplásicos Alquilantes/química , Domínio Catalítico , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxinas/química , Adutos de DNA/metabolismo , Humanos , Substâncias Intercalantes/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neoplasias Experimentais/tratamento farmacológico , Estereoisomerismo
3.
Bioorg Med Chem ; 17(5): 1918-27, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19217791

RESUMO

Monocinnamoyl esters at position 2 of (+/-)-cis-1,2-dihydroxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one and their acetyl derivatives at position 1 were prepared as stabilized analogues of the anticancer alkylating agent S23906-1. Monocinnamoyl esters at position 2 were slower DNA alkylators than the reference 2-monoacetate. Mixed esters bearing an acetyl ester group at position 1 and a cinnamoyl ester group at position 2 alkylated DNA slower than S23906-1. A strong correlation was observed between cytotoxicity and DNA alkylation kinetics, with slower alkylators displaying more potent antiproliferative activities. The most cytotoxic compounds proved to be significantly active in vivo against murine C-38 adenocarcinoma implanted in mice, but less potent than S23906-1.


Assuntos
Acronina/análogos & derivados , Acronina/toxicidade , Antineoplásicos Alquilantes/síntese química , Antineoplásicos Alquilantes/toxicidade , Acronina/síntese química , Acronina/química , Acronina/farmacologia , Animais , Antineoplásicos Alquilantes/química , Linhagem Celular Tumoral , DNA/química , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Transplante Homólogo
4.
J Nat Prod ; 72(3): 527-39, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19191562

RESUMO

Fused isopropylfuran and dimethylpyran units are privileged structures present in numerous bioactive natural products exemplified, in the field of anticancer drugs, by the furanoxanthone psorospermin and the pyranoacridone acronycine. Psorospermin binds to the N-7 position of the guanine units in the presence of topoisomerase II. In contrast, acronycine derivatives such as cis-1,2-diacetoxy-1,2-dihydrobenzo[b]acronycine alkylate the 2-amino group of DNA guanine residues in the minor groove. Hybrid compounds associating the acridone or benzo[b]acridone chromophore of acronycine derivatives and the epoxyfuran alkylating unit present in psorospermin also display very potent antiproliferative activities, alkylating DNA guanine units at position N-7 in the major groove, as natural xanthones belonging to the psorospermin series.


Assuntos
Acronina/farmacologia , Produtos Biológicos/farmacologia , Dano ao DNA , Xantonas/farmacologia , Acronina/química , Produtos Biológicos/química , Estrutura Molecular , Xantonas/química
5.
Bull Acad Natl Med ; 191(1): 83-91; discussion 91-3, 2007 Jan.
Artigo em Francês | MEDLINE | ID: mdl-17645109

RESUMO

The acridone alkaloid acronycine, first isolated in 1948, was shown in 1966 to have promising activity against a range of solid tumors. Clinical trials conducted in 1983 gave disappointing results, however, probably owing to the moderate potency of this drug. Our isolation of the unstable molecule acronycine epoxide raised the possibility of bioactivating acronycine by transforming the 1,2-double bond into the corresponding epoxide in vivo. Evidence that acronycine interacts with DNA prompted us to develop analogs in the benzo[b]acronycine series. In vivo, benzo[b]acronycine derivatives show marked activity in nude mouse models of orthotopic human lung, ovarian and colon cancers. Their mechanism of action involves monoalkylation of the 2-amino group of DNA guanine residues. A typical representative--a diacetate designated S 23906--is currently in phase II clinical trials.


Assuntos
Acronina/análogos & derivados , Acronina/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias/tratamento farmacológico , Acronina/química , Acronina/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular
6.
Curr Med Chem Anticancer Agents ; 4(2): 83-92, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15032716

RESUMO

Acronycine, a natural alkaloid originally extracted from the bark of the Australian ash scrub Acronychia baueri, has shown a significant antitumor activity in animal models. Acronycine has been tested against human cancers in the early 1980s, but the clinical trials showed modest therapeutic effects and its development was rapidly discontinued. In order to optimize the antineoplastic effect, different benzoacronycine derivatives were synthesized. Among those, the di-acetate compound S23906-1 was recently identified as a promising anticancer drug candidate and a novel alkylating agent specifically reacting with the exocylic 2-NH2 group of guanines in DNA. The study of DNA bonding capacity of acronycine derivatives leads to the identification of the structural requirements for DNA alkylation. In nearly all cases, the potent alkylating agents, such as S23906-1, were found to be much more cytotoxic than the unreactive analogs such as acronycine itself or diol derivatives. Alkylation of DNA by the monoacetate derivative S28687-1, which is a highly reactive hydrolysis metabolite of S23906-1, occurs with a marked preference for the N2 position of guanine. Other bionucleophiles can react with S23906-1. The benzacronycine derivatives, which efficiently alkylate DNA, also covalently bind to the tripeptide glutathione (GSH) but not to the oxidized product glutathione disulfide. Here we review the reactivity of S23906-1 and some derivatives toward DNA and GSH. The structure-activity relationships in the benzacronycine series validate the reaction mechanism implicating DNA as the main molecular target. S23906-1 stands as the most promising lead of a medicinal chemistry program aimed at discovering novel antitumor drugs based on the acronycine skeleton.


Assuntos
Acronina/análogos & derivados , Antineoplásicos Alquilantes/química , DNA/química , Acronina/química , Acronina/farmacologia , Alquilação , Animais , Antineoplásicos Alquilantes/farmacologia , DNA/metabolismo , Glutationa/metabolismo , Guanina/metabolismo , Humanos , Relação Estrutura-Atividade
7.
J Med Chem ; 43(12): 2395-402, 2000 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10882366

RESUMO

Benzo¿bacronycine (6-methoxy-3,3,14-trimethyl-3, 14-dihydro-7H-benzo¿bpyrano¿3,2-hacridin-7-one, 4), an acronycine analogue with an additional aromatic ring linearly fused on the natural alkaloid basic skeleton, was synthesized in three steps, starting from 3-amino-2-naphthalenecarboxylic acid (5). Eight 1, 2-dihydroxy-1,2-dihydrobenzo¿bacronycine esters and diesters (17-24) were obtained by catalytic osmic oxidation, followed by acylation. All these compounds were significantly more cytotoxic than acronycine, when tested against L1210 leukemia cells in vitro. The potency of the cyclic carbonate 24 was in the range of the most active drugs currently used in cancer chemotherapy. Two selected diesters (17 and 24) were evaluated in vivo against P388 leukemia and colon 38 adenocarcinoma implanted in mice. Both compounds were markedly active at doses 16-fold lower than the dose of acronycine itself. Against colon 38 adenocarcinoma, compounds 17 and 24 were highly efficient, inhibiting tumor growth by more than 80%. Diacetate 17 was the most active, inhibiting tumor growth by 96% at 6.25 mg/kg, with two of seven mice being tumor-free on day 43.


Assuntos
Acridinas/síntese química , Acronina/análogos & derivados , Acronina/síntese química , Antineoplásicos/síntese química , Benzopiranos/síntese química , Acridinas/química , Acridinas/farmacologia , Acronina/química , Acronina/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzopiranos/química , Benzopiranos/farmacologia , DNA de Neoplasias , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Transplante de Neoplasias , Relação Estrutura-Atividade
8.
J Med Chem ; 46(14): 3072-82, 2003 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12825945

RESUMO

The cytotoxic and antitumor activities of cis-1,2-diacyloxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one derivatives 3, 6-9 were strongly correlated with their ability to give covalent adducts with purified, as well as genomic, DNA. Such adducts involve reaction between the exocyclic N-2 amino group of guanines exposed in the minor groove of double helical DNA and the leaving ester group at the benzylic position 1 of the drug. A transesterification process of the ester group from position 2 to position 1 in aqueous medium accounted for the intense activity of the cis-1-hydroxy-2-acyloxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one derivatives 10-13. Compounds without acyloxy or hydroxy group at position 1, such as 15, 17, 18, and 22, were inert with respect to DNA and almost devoid of significant cytotoxic activity. Condensation of 5-amino-2,2-dimethyl-2H-chromene (26) with 3-bromo-2-naphthoic acid (27), followed by cyclization, gave access to 6-demethoxy analogues. Diacetate 32 and cyclic carbonate 33, both belonging to the latter series, were less reactive toward DNA and less cytotoxic than their 6-methoxy counterparts 3 and 34. DNA alkylation appears thus to play an important role in the antitumor properties of benzo[b]pyrano[3,2-h]acridin-7-one derivatives.


Assuntos
Acridinas/química , Acronina/análogos & derivados , Acronina/química , Antineoplásicos/química , Benzopiranos/química , Acridinas/farmacologia , Acronina/farmacologia , Alquilação , Animais , Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Divisão Celular/efeitos dos fármacos , DNA/química , DNA/metabolismo , Adutos de DNA/química , Adutos de DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Transplante de Neoplasias , Relação Estrutura-Atividade , Células Tumorais Cultivadas
9.
Biochem Pharmacol ; 63(8): 1443-52, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11996885

RESUMO

The benzoacronycine derivative S23906-1 is a highly potent antitumor agent with a broad spectrum of activity against different human solid tumor xenografts. The marked cytotoxic potential of this drug may be the result of its interaction with DNA but the precise mechanism of action remains unclear at present. We have investigated the induction of apoptosis in human promyelocytic leukemia HL-60 and murine melanoma B16 cells treated with S23906-1. With both cell lines, the drug induces cell cycle perturbations (G2/M arrest) and triggers apoptosis as revealed by the externalization of Annexin V-targeted PS residues at the periphery of the cells. But the biochemical pathways leading to apoptosis are different for the two cancer cell lines. In HL-60 cells, the drug induces significant variations of the Delta Psi(mt), measured by flow cytometry using the fluorochromes JC-1 and cm-X-ros. Activation of caspase-3 and chromatin condensation in HL-60 cells exposed to submicromolar concentrations of S23906-1 for 24hr were also clearly seen by flow cytometry and confocal microscopy experiments. In contrast, the extent of apoptosis induced by S23906-1 was found to be much more limited in B16 cells. No significant variations of Delta Psi(mt) and no cleavage of the fluorescent caspase-3 substrate GDEVDGI (PhiPhiLux-G(1)D(2) probe) could be detected by cytometry in B16 cells exposed to S23906-1. In addition, we characterized the mitochondrial production of reactive oxygen species (ROS) using the probe dihydroethidine (HE) and the variations of the mitochondrial mass using the cardiolipin-interacting probe nonyl acridine orange (NAO). S23906-1 stimulates the production of ROS in both cell lines but the number of mitochondria seems to increase only in drug-treated B16 cells. Collectively these findings identify S23906-1 as a potent inducer of cell apoptosis in the leukemia cells and to a lower extent in the melanoma cells. The results help to understand the downstream cytotoxic actions of this new anticancer agent which is currently undergoing preclinical development.


Assuntos
Acronina/análogos & derivados , Acronina/farmacologia , Antineoplásicos/farmacologia , Apoptose , Leucemia/patologia , Melanoma Experimental/patologia , Acronina/química , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células HL-60 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo
10.
Eur J Med Chem ; 39(8): 649-55, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15276298

RESUMO

A hypothesis of bioactivation of the antitumor alkaloid acronycine by transformation of the 1,2-double bond into the corresponding epoxide in vivo and the suggestion that acronycine could interact with DNA, led to develop 1,2-dihydroxy-1,2-dihydrobenzo[b]acronycine diesters (1,2-dihydroxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one diesters) as new anticancer drug candidates. Compared to acronycine these compounds were markedly more potent, both in terms of cytotoxicity and antitumor activity. The biological activity of these compounds was strongly related with their ability to give covalent adducts with purified as well as genomic DNA. Formation of those adducts involves alkylation of the exocyclic N-2 amino groups of guanines exposed in the minor groove of double helical DNA by the carbocation produced by the elimination of the acyloxy leaving group at position 1 of the drug. A transesterification process of the ester group from position 2 to position 1 accounted for the intense activity of cis-1-hydroxy-2-acyloxy-1,2-dihydrobenzo[b]acronycine derivatives. Cis-1,2-diacetoxy-1,2-dihydrobenzo[b]acronycine, which displays a particularly impressive broad antitumor spectrum, is currently developed by Servier Laboratories under the code S23906-1.


Assuntos
Acronina/química , Antineoplásicos Fitogênicos/química , Benzeno/química , Acronina/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Benzeno/farmacologia , Linhagem Celular Tumoral , Humanos
11.
J Med Chem ; 57(24): 10329-42, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25360689

RESUMO

A series of 6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]chromeno[6,5-g][1,8]naphthyridin-7-one (4), 13-aza derivatives of benzo[b]acronycine, the isomeric 5-methoxy-2,2,13-trimethyl-2,13-dihydro-6H-benzo[b]chromeno[7,6-g][1,8]naphthyridin-6-one (5), and related cis-diols mono- and diesters were designed and synthesized. Their in vitro and in vivo biological activities were evaluated. As previously observed in the acronycine series, esters were the most potent derivatives exhibiting submicromolar activities; among them monoesters are particularly active. Racemic diacetate 21 showed a strong activity against KB-3-1 cell lines and was selected for in vivo evaluation and proved to be active, inhibiting tumor growth by more than 80%. After separation of the two enantiomers, compounds 21a and 21b were also evaluated against C38 colon adenocarcinoma; their activities were found to be significantly different.


Assuntos
Acronina/química , Adenocarcinoma/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Naftiridinas/síntese química , Naftiridinas/farmacologia , Adenocarcinoma/patologia , Animais , Carcinoma de Células Escamosas/patologia , Neoplasias do Colo/patologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Eur J Med Chem ; 46(5): 1861-73, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21411193

RESUMO

The impact of substitutions at position 10 in the A ring of the cytotoxic benzo[a]acronycine and benzo[b]acronycine series has been explored. 10-Bromobenzo[a] and 10-bromobenzo[b]acronycine were prepared in 12% and 15% yield respectively from commercially available chemicals. Their 1,2-dihydro-1,2-dihydroxy diesters were synthesized. The different derivatives were tested against two cell lines KB-3-1 and L1210. Their cytotoxic activities were found in the same range of magnitude as their non-substituted counterparts. These structure-activity relationships permitted to conclude that the introduction of a substituent at position 10 maintains the activity in both the benzo[a] and [b]acronycine series and open the way to further pharmacomodulations.


Assuntos
Acronina/análogos & derivados , Antineoplásicos/farmacologia , Acronina/síntese química , Acronina/química , Acronina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
J Med Chem ; 51(22): 7287-97, 2008 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18947222

RESUMO

Compounds possessing the epoxyfuran system present in the natural cytotoxic dihydrofuroxanthone psorospermin (4) fused onto the acridone or benzo[b]acridone chromophores present in the antitumor acronycine (1) and S23906-1 (3) were prepared. The basic furoacridone and benzofuroacridone cores bearing an isopropenyl substituent at a convenient position were synthesized by condensation of 1,3-dihydroxyacridone (7) or 1,3-dihydroxybenz[b]acridin-12(5H)-one (9) with (E)-1,4-dibromo-2-methylbut-2-ene. In both series, the (2R*,1'S*) epoxides, with the same relative configuration as psorospermin, were the most active compounds, exhibiting cytotoxic properties with IC50 values in the 10-100 nM range. As in the acronycine and psorospermin series, the new compounds act through alkylation of the DNA guanine units. However, a strong difference was noted in the DNA alkylation site between the benzopyranoacridone S23906-1, which alkylates DNA guanine units at position N-2 in the minor groove, and the new 13H-benzo[b]furo[3,2-h]acridin-6-one derived epoxide 21, which alkylates DNA guanine units at position N-7 in the major groove.


Assuntos
Acridonas/química , Acronina/síntese química , Acronina/farmacologia , Benzofuranos/química , Xantonas/síntese química , Xantonas/farmacologia , Acronina/análogos & derivados , Acronina/química , Animais , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Estereoisomerismo , Células Tumorais Cultivadas , Xantonas/química
14.
Eur J Med Chem ; 43(12): 2677-87, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18342404

RESUMO

In order to explore the structure-activity relationships in the acronycine series, simplified analogues of cis-1,2-diacetoxy-1,2-dihydroacronycine and cis-1,2-diacetoxy-1,2-dihydrobenzo[b]acronycine (S23906-1, under clinical trials) lacking the fused pyran ring, but possessing an acetoxymethyl leaving group at position 4 were prepared. These new analogues only displayed marginal antiproliferative activity compared to the parent compounds. The presence of the angularly fused dimethylpyran ring appears as an indispensable structural requirement to observe significant cytotoxic activity in this series.


Assuntos
Acronina/análogos & derivados , Acronina/farmacologia , Antineoplásicos/farmacologia , Acronina/síntese química , Acronina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
15.
Chem Pharm Bull (Tokyo) ; 54(8): 1113-8, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880654

RESUMO

Condensation of 2-hydroxy-1-naphthalenecarboxylic acid with phloroglucinol afforded 9,11-dihydroxy-12H-benzo[a]xanthen-12-one (6). Construction of an additional dimethylpyran ring onto this skeleton, by alkylation with 3-chloro-3-methyl-1-butyne followed by Claisen rearrangement, gave access to 6-hydroxy-3,3-dimethyl-3H,7H-benzo[a]pyrano[3,2-h]xanthen-7-one (12) and 5-hydroxy-2,2-dimethyl-2H,6H-benzo[a]pyrano[2,3-i]xanthen-6-one (13), which were methylated into 6-methoxy-3,3-dimethyl-3H,7H-benzo[a]pyrano[3,2-h]xanthen-7-one (14) and 5-methoxy-2,2-dimethyl-2H,6H-benzo[a]pyrano[2,3-i]xanthen-6-one (15), respectively. Osmium tetroxide oxidation of 14 and 15 gave the corresponding (+/-)-cis-diols 16 and 17, which afforded the corresponding esters 18-21 upon acylation. Similarly, condensation of 2-hydroxy-1-naphthalenecarboxylic acid with 3,5-dimethoxyaniline gave 11-amino-9-methoxy-12H-benzo[a]xanthen-12-one (23) which was converted into 11-amino-9-hydroxy-12H-benzo[a]xanthen-12-one (24) upon treatment with hydrogen bromide in acetic acid. Alkylation with 3-chloro-3-methyl-1-butyne followed by Claisen rearrangement afforded 6-amino-3,3-dimethyl-3H,7H-benzo[a]pyrano[3,2-h]xanthen-7-one (25) and 5-amino-2,2-dimethyl-2H,6H-benzo[a]pyrano[2,3-i]xanthen-6-one (26). The new benzopyranoxanthone derivatives only displayed marginal antiproliferative activity when tested against L1210 and KB-3-1 cell lines. The only compounds found significantly active against L1210 cell line, 16 and 20, belong to the benzo[a]pyrano[3,2-h]xanthen-7-one series, which possess a pyran ring fused angularly onto the xanthone basic core.


Assuntos
Acronina/análogos & derivados , Acronina/química , Benzo(a)pireno/química , Xantonas/química , Xantonas/farmacologia , Acronina/síntese química , Acronina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzo(a)pireno/análogos & derivados , Benzo(a)pireno/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Xantonas/síntese química
16.
Chem Pharm Bull (Tokyo) ; 53(8): 919-22, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16079520

RESUMO

A series of 2-acyl-6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]pyrano[3,2-h]acridin-7-ones (4-6) was prepared by treatment of 6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one (3) with an excess of an appropriate acyl chloride in the presence of aluminum chloride. Treatment of (+/-)-cis-1-hydroxy-2-acyloxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-ones (9, 10) or (+/-)-cis-1,2-diacyloxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-ones (2, 11) with hydrochloric acid gave the corresponding 2-acyloxy-6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]pyrano[3,2-h]acridin-7-ones, exemplified by acetate 7 and butyrate 8. None of the Michael acceptors 4-6 showed significant antiproliferative activity. Enol esters 7 and 8 were markedly cytotoxic toward L1210 leukemia cells, with IC50 values within the same range of magnitude as (+/-)-cis-1,2-diacetoxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one (S23906-1), currently under phase I clinical trials. In contrast with S23906-1, enol esters 7 and 8 were not reactive toward purified DNA.


Assuntos
Acronina/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Acronina/síntese química , Acronina/química , Acronina/farmacologia , Animais , Antineoplásicos/química , Ciclo Celular , Linhagem Celular Tumoral , Desenho de Fármacos , Ésteres , Leucemia L1210/patologia , Espectroscopia de Ressonância Magnética , Camundongos , Espectrofotometria Ultravioleta
17.
Bioorg Med Chem ; 13(5): 1653-9, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15698783

RESUMO

A series of thioacridone compounds that were previously shown to have DNA binding interaction, were screened for antimalarial activity. The new compounds were assessed for in vitro antimalarial activity against a chloroquine sensitive (D10) strain of the malaria parasite Plasmodium falciparum, using a lactate dehydrogenase (PfLDH) assay. In the series, the IC(50) values ranged from 0.4 to 27 microg/ml. 1-(2-Dimethylaminoethylamino)-9(10H)-thioacridone was found to be the most potent against P. falciparum (D10) with an IC(50) value of 0.4 microg/ml. This compound was also evaluated against a South African chloroquine resistant (RSA 11) P. falciparum strain and was found to have an IC(50) value of 1 microg/ml, compared with 0.16 microg/ml for chloroquine. Quantitative structure-activity relationships of this series were also investigated and a multiple linear regression r(2) of 0.58 was found for the best fit equation. The most potent compound, 1-(2-dimethylaminoethylamino)-9(10H)-thioacridone, was docked into the chloroquine binding site of PfLDH and it was found that the slightly lower activity of this compound, compared with chloroquine, is likely due to steric interference within a restricted binding pocket.


Assuntos
Acridinas/farmacologia , Acronina/química , Alcaloides/farmacologia , Antimaláricos/farmacologia , Acridinas/química , Alcaloides/química , Animais , Antimaláricos/química , Plasmodium falciparum/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade
18.
Chem Pharm Bull (Tokyo) ; 47(11): 1604-6, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10605058

RESUMO

Condensation of 2-chloro-3-nitrobenzoic acid with either 5-amino-7-methoxy-2,2-dimethyl-2H-chromene or 5-amino-2,2-dimethyl-2H-chromene afforded diphenylamines 14 and 15. Trifluoroacetic anhydride mediated cyclization gave the corresponding acridones 16 and 17, which were subsequently N-methylated and reduced to 11-aminoacronycine and 11-amino-6-demethoxyacronycine. These two amino compounds, which gave stable water soluble salts, were 2- to 3-fold more potent than acronycine or 6-demethoxyacronycine in inhibiting L1210 cell proliferation.


Assuntos
Acronina/análogos & derivados , Acronina/síntese química , Acronina/farmacologia , Acronina/química , Animais , Leucemia L1210/patologia , Camundongos , Análise Espectral , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Biochemistry ; 41(31): 9911-20, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12146956

RESUMO

The discovery of a new DNA-targeted antitumor agent is a challenging enterprise, and the elucidation of its mechanism of action is an essential first step in investigating the structural and biological consequences of DNA modification and to guide the rational design of analogues. Here, we have dissected the mode of action of the newly discovered antitumor agent S23906-1. Gel retardation experiments reveal that the diacetate compound S23906-1 and its monoacetate analogue S28687 form highly stable covalent adducts with DNA. The covalent adducts formed between S23906-1 and a 7-bp hairpin oligonucleotide duplex were identified by spectrometry. In contrast, the inactive compound S23907, lacking the two acetate groups of S23906-1, fails to yield covalent DNA adducts, indicating that the C1-C2 functionality is the DNA reactive moiety. DNase I footprinting and DNA alkylation experiments indicate that S23906-1 reacts primarily with guanine residues. A 30-mer oligonucleotide containing only G.C bp forms highly stable complexes with S23906-1 and S28687, whereas the equivalent A.T oligonucleotide is not a good substrate for these two drugs. The use of an oligonucleotide duplex containing inosines instead of guanosines identifies the guanine 2-amino group exposed in the minor groove of DNA as the potential reactive site. The reactivity of S23906-1 toward the guanine-N2 group was independently confirmed by fluorescence spectroscopy. Covalent DNA adducts were also identified in the genomic DNA of B16 melanoma cells exposed to S23906-1, and the specific accumulation of the drug in the nucleus of the cells was visualized by confocal microscopy. The elucidation of the mechanism of action of this highly potent anticancer agent opens a new field for future drug design.


Assuntos
Acronina/análogos & derivados , Acronina/química , Antineoplásicos Fitogênicos/química , Guanina/química , Alquilação , Animais , Sequência de Bases , Primers do DNA , Espectrometria de Massas , Células Tumorais Cultivadas
20.
Chem Pharm Bull (Tokyo) ; 49(10): 1304-7, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11605659

RESUMO

Thermic aromatic nucleophilic displacement of the methoxy group at C-6 of (+/-)-1-oxo-2-hydroxy-1,2-dihydroacronycine (2) by an amine is a reaction that gives a facile entry to acronycine derivatives bearing an amino substituent at this position. The introduction of the amino substituents was confirmed with a long-range 1H-15N correlation NMR spectrum at natural abundance. Under basic conditions, compound 2 can also be rearranged to the corresponding isopropylfuroacridone 12, in 80% yield.


Assuntos
Acronina/química , Acronina/síntese química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/síntese química , Acronina/análogos & derivados , Aminação , Animais , Indicadores e Reagentes , Leucemia L1210/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA